2017-10-12 19:35:23 +00:00
|
|
|
|
"""
|
|
|
|
|
This program calculates the nth Fibonacci number in O(log(n)).
|
|
|
|
|
It's possible to calculate F(1000000) in less than a second.
|
|
|
|
|
"""
|
2017-11-25 09:23:50 +00:00
|
|
|
|
from __future__ import print_function
|
2017-10-12 19:35:23 +00:00
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# returns F(n)
|
2018-01-20 11:33:27 +00:00
|
|
|
|
def fibonacci(n: int): # noqa: F821 This syntax is Python 3 only
|
2017-10-12 19:35:23 +00:00
|
|
|
|
if n < 0:
|
|
|
|
|
raise ValueError("Negative arguments are not supported")
|
|
|
|
|
return _fib(n)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# returns (F(n), F(n-1))
|
2018-01-20 11:33:27 +00:00
|
|
|
|
def _fib(n: int): # noqa: F821 This syntax is Python 3 only
|
2017-10-12 19:35:23 +00:00
|
|
|
|
if n == 0:
|
|
|
|
|
# (F(0), F(1))
|
|
|
|
|
return (0, 1)
|
|
|
|
|
else:
|
|
|
|
|
# F(2n) = F(n)[2F(n+1) − F(n)]
|
|
|
|
|
# F(2n+1) = F(n+1)^2+F(n)^2
|
|
|
|
|
a, b = _fib(n // 2)
|
|
|
|
|
c = a * (b * 2 - a)
|
|
|
|
|
d = a * a + b * b
|
|
|
|
|
if n % 2 == 0:
|
|
|
|
|
return (c, d)
|
|
|
|
|
else:
|
|
|
|
|
return (d, c + d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
args = sys.argv[1:]
|
|
|
|
|
if len(args) != 1:
|
|
|
|
|
print("Too few or too much parameters given.")
|
|
|
|
|
exit(1)
|
|
|
|
|
try:
|
|
|
|
|
n = int(args[0])
|
|
|
|
|
except ValueError:
|
|
|
|
|
print("Could not convert data to an integer.")
|
|
|
|
|
exit(1)
|
|
|
|
|
print("F(%d) = %d" % (n, fibonacci(n)))
|