mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-24 03:03:43 +00:00
83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
|
from collections.abc import Sequence
|
||
|
|
||
|
|
||
|
def assign_ranks(data: Sequence[float]) -> list[int]:
|
||
|
"""
|
||
|
Assigns ranks to elements in the array.
|
||
|
|
||
|
:param data: List of floats.
|
||
|
:return: List of ints representing the ranks.
|
||
|
|
||
|
Example:
|
||
|
>>> assign_ranks([3.2, 1.5, 4.0, 2.7, 5.1])
|
||
|
[3, 1, 4, 2, 5]
|
||
|
|
||
|
>>> assign_ranks([10.5, 8.1, 12.4, 9.3, 11.0])
|
||
|
[3, 1, 5, 2, 4]
|
||
|
"""
|
||
|
ranked_data = sorted((value, index) for index, value in enumerate(data))
|
||
|
ranks = [0] * len(data)
|
||
|
|
||
|
for position, (_, index) in enumerate(ranked_data):
|
||
|
ranks[index] = position + 1
|
||
|
|
||
|
return ranks
|
||
|
|
||
|
|
||
|
def calculate_spearman_rank_correlation(
|
||
|
variable_1: Sequence[float], variable_2: Sequence[float]
|
||
|
) -> float:
|
||
|
"""
|
||
|
Calculates Spearman's rank correlation coefficient.
|
||
|
|
||
|
:param variable_1: List of floats representing the first variable.
|
||
|
:param variable_2: List of floats representing the second variable.
|
||
|
:return: Spearman's rank correlation coefficient.
|
||
|
|
||
|
Example Usage:
|
||
|
|
||
|
>>> x = [1, 2, 3, 4, 5]
|
||
|
>>> y = [5, 4, 3, 2, 1]
|
||
|
>>> calculate_spearman_rank_correlation(x, y)
|
||
|
-1.0
|
||
|
|
||
|
>>> x = [1, 2, 3, 4, 5]
|
||
|
>>> y = [2, 4, 6, 8, 10]
|
||
|
>>> calculate_spearman_rank_correlation(x, y)
|
||
|
1.0
|
||
|
|
||
|
>>> x = [1, 2, 3, 4, 5]
|
||
|
>>> y = [5, 1, 2, 9, 5]
|
||
|
>>> calculate_spearman_rank_correlation(x, y)
|
||
|
0.6
|
||
|
"""
|
||
|
n = len(variable_1)
|
||
|
rank_var1 = assign_ranks(variable_1)
|
||
|
rank_var2 = assign_ranks(variable_2)
|
||
|
|
||
|
# Calculate differences of ranks
|
||
|
d = [rx - ry for rx, ry in zip(rank_var1, rank_var2)]
|
||
|
|
||
|
# Calculate the sum of squared differences
|
||
|
d_squared = sum(di**2 for di in d)
|
||
|
|
||
|
# Calculate the Spearman's rank correlation coefficient
|
||
|
rho = 1 - (6 * d_squared) / (n * (n**2 - 1))
|
||
|
|
||
|
return rho
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|
||
|
|
||
|
# Example usage:
|
||
|
print(
|
||
|
f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [2, 4, 6, 8, 10]) = }"
|
||
|
)
|
||
|
|
||
|
print(f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]) = }")
|
||
|
|
||
|
print(f"{calculate_spearman_rank_correlation([1, 2, 3, 4, 5], [5, 1, 2, 9, 5]) = }")
|