mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
43 lines
1.0 KiB
Python
43 lines
1.0 KiB
Python
|
from itertools import compress, repeat
|
||
|
from math import ceil, sqrt
|
||
|
|
||
|
|
||
|
def odd_sieve(num: int) -> list[int]:
|
||
|
"""
|
||
|
Returns the prime numbers < `num`. The prime numbers are calculated using an
|
||
|
odd sieve implementation of the Sieve of Eratosthenes algorithm
|
||
|
(see for reference https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes).
|
||
|
|
||
|
>>> odd_sieve(2)
|
||
|
[]
|
||
|
>>> odd_sieve(3)
|
||
|
[2]
|
||
|
>>> odd_sieve(10)
|
||
|
[2, 3, 5, 7]
|
||
|
>>> odd_sieve(20)
|
||
|
[2, 3, 5, 7, 11, 13, 17, 19]
|
||
|
"""
|
||
|
|
||
|
if num <= 2:
|
||
|
return []
|
||
|
if num == 3:
|
||
|
return [2]
|
||
|
|
||
|
# Odd sieve for numbers in range [3, num - 1]
|
||
|
sieve = bytearray(b"\x01") * ((num >> 1) - 1)
|
||
|
|
||
|
for i in range(3, int(sqrt(num)) + 1, 2):
|
||
|
if sieve[(i >> 1) - 1]:
|
||
|
i_squared = i**2
|
||
|
sieve[(i_squared >> 1) - 1 :: i] = repeat(
|
||
|
0, ceil((num - i_squared) / (i << 1))
|
||
|
)
|
||
|
|
||
|
return [2] + list(compress(range(3, num, 2), sieve))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|