mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
187 lines
6.9 KiB
Python
187 lines
6.9 KiB
Python
|
"""Source: https://github.com/jason9075/opencv-mosaic-data-aug"""
|
||
|
|
||
|
import glob
|
||
|
import os
|
||
|
import random
|
||
|
from string import ascii_lowercase, digits
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
# Parrameters
|
||
|
OUTPUT_SIZE = (720, 1280) # Height, Width
|
||
|
SCALE_RANGE = (0.4, 0.6) # if height or width lower than this scale, drop it.
|
||
|
FILTER_TINY_SCALE = 1 / 100
|
||
|
LABEL_DIR = ""
|
||
|
IMG_DIR = ""
|
||
|
OUTPUT_DIR = ""
|
||
|
NUMBER_IMAGES = 250
|
||
|
|
||
|
|
||
|
def main() -> None:
|
||
|
"""
|
||
|
Get images list and annotations list from input dir.
|
||
|
Update new images and annotations.
|
||
|
Save images and annotations in output dir.
|
||
|
"""
|
||
|
img_paths, annos = get_dataset(LABEL_DIR, IMG_DIR)
|
||
|
for index in range(NUMBER_IMAGES):
|
||
|
idxs = random.sample(range(len(annos)), 4)
|
||
|
new_image, new_annos, path = update_image_and_anno(
|
||
|
img_paths,
|
||
|
annos,
|
||
|
idxs,
|
||
|
OUTPUT_SIZE,
|
||
|
SCALE_RANGE,
|
||
|
filter_scale=FILTER_TINY_SCALE,
|
||
|
)
|
||
|
|
||
|
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
|
||
|
letter_code = random_chars(32)
|
||
|
file_name = path.split(os.sep)[-1].rsplit(".", 1)[0]
|
||
|
file_root = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"
|
||
|
cv2.imwrite(f"{file_root}.jpg", new_image, [cv2.IMWRITE_JPEG_QUALITY, 85])
|
||
|
print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}")
|
||
|
annos_list = []
|
||
|
for anno in new_annos:
|
||
|
width = anno[3] - anno[1]
|
||
|
height = anno[4] - anno[2]
|
||
|
x_center = anno[1] + width / 2
|
||
|
y_center = anno[2] + height / 2
|
||
|
obj = f"{anno[0]} {x_center} {y_center} {width} {height}"
|
||
|
annos_list.append(obj)
|
||
|
with open(f"{file_root}.txt", "w") as outfile:
|
||
|
outfile.write("\n".join(line for line in annos_list))
|
||
|
|
||
|
|
||
|
def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
|
||
|
"""
|
||
|
- label_dir <type: str>: Path to label include annotation of images
|
||
|
- img_dir <type: str>: Path to folder contain images
|
||
|
Return <type: list>: List of images path and labels
|
||
|
"""
|
||
|
img_paths = []
|
||
|
labels = []
|
||
|
for label_file in glob.glob(os.path.join(label_dir, "*.txt")):
|
||
|
label_name = label_file.split(os.sep)[-1].rsplit(".", 1)[0]
|
||
|
with open(label_file) as in_file:
|
||
|
obj_lists = in_file.readlines()
|
||
|
img_path = os.path.join(img_dir, f"{label_name}.jpg")
|
||
|
|
||
|
boxes = []
|
||
|
for obj_list in obj_lists:
|
||
|
obj = obj_list.rstrip("\n").split(" ")
|
||
|
xmin = float(obj[1]) - float(obj[3]) / 2
|
||
|
ymin = float(obj[2]) - float(obj[4]) / 2
|
||
|
xmax = float(obj[1]) + float(obj[3]) / 2
|
||
|
ymax = float(obj[2]) + float(obj[4]) / 2
|
||
|
|
||
|
boxes.append([int(obj[0]), xmin, ymin, xmax, ymax])
|
||
|
if not boxes:
|
||
|
continue
|
||
|
img_paths.append(img_path)
|
||
|
labels.append(boxes)
|
||
|
return img_paths, labels
|
||
|
|
||
|
|
||
|
def update_image_and_anno(
|
||
|
all_img_list: list,
|
||
|
all_annos: list,
|
||
|
idxs: list[int],
|
||
|
output_size: tuple[int, int],
|
||
|
scale_range: tuple[float, float],
|
||
|
filter_scale: float = 0.0,
|
||
|
) -> tuple[list, list, str]:
|
||
|
"""
|
||
|
- all_img_list <type: list>: list of all images
|
||
|
- all_annos <type: list>: list of all annotations of specific image
|
||
|
- idxs <type: list>: index of image in list
|
||
|
- output_size <type: tuple>: size of output image (Height, Width)
|
||
|
- scale_range <type: tuple>: range of scale image
|
||
|
- filter_scale <type: float>: the condition of downscale image and bounding box
|
||
|
Return:
|
||
|
- output_img <type: narray>: image after resize
|
||
|
- new_anno <type: list>: list of new annotation after scale
|
||
|
- path[0] <type: string>: get the name of image file
|
||
|
"""
|
||
|
output_img = np.zeros([output_size[0], output_size[1], 3], dtype=np.uint8)
|
||
|
scale_x = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
|
||
|
scale_y = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
|
||
|
divid_point_x = int(scale_x * output_size[1])
|
||
|
divid_point_y = int(scale_y * output_size[0])
|
||
|
|
||
|
new_anno = []
|
||
|
path_list = []
|
||
|
for i, index in enumerate(idxs):
|
||
|
path = all_img_list[index]
|
||
|
path_list.append(path)
|
||
|
img_annos = all_annos[index]
|
||
|
img = cv2.imread(path)
|
||
|
if i == 0: # top-left
|
||
|
img = cv2.resize(img, (divid_point_x, divid_point_y))
|
||
|
output_img[:divid_point_y, :divid_point_x, :] = img
|
||
|
for bbox in img_annos:
|
||
|
xmin = bbox[1] * scale_x
|
||
|
ymin = bbox[2] * scale_y
|
||
|
xmax = bbox[3] * scale_x
|
||
|
ymax = bbox[4] * scale_y
|
||
|
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
|
||
|
elif i == 1: # top-right
|
||
|
img = cv2.resize(img, (output_size[1] - divid_point_x, divid_point_y))
|
||
|
output_img[:divid_point_y, divid_point_x : output_size[1], :] = img
|
||
|
for bbox in img_annos:
|
||
|
xmin = scale_x + bbox[1] * (1 - scale_x)
|
||
|
ymin = bbox[2] * scale_y
|
||
|
xmax = scale_x + bbox[3] * (1 - scale_x)
|
||
|
ymax = bbox[4] * scale_y
|
||
|
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
|
||
|
elif i == 2: # bottom-left
|
||
|
img = cv2.resize(img, (divid_point_x, output_size[0] - divid_point_y))
|
||
|
output_img[divid_point_y : output_size[0], :divid_point_x, :] = img
|
||
|
for bbox in img_annos:
|
||
|
xmin = bbox[1] * scale_x
|
||
|
ymin = scale_y + bbox[2] * (1 - scale_y)
|
||
|
xmax = bbox[3] * scale_x
|
||
|
ymax = scale_y + bbox[4] * (1 - scale_y)
|
||
|
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
|
||
|
else: # bottom-right
|
||
|
img = cv2.resize(
|
||
|
img, (output_size[1] - divid_point_x, output_size[0] - divid_point_y)
|
||
|
)
|
||
|
output_img[
|
||
|
divid_point_y : output_size[0], divid_point_x : output_size[1], :
|
||
|
] = img
|
||
|
for bbox in img_annos:
|
||
|
xmin = scale_x + bbox[1] * (1 - scale_x)
|
||
|
ymin = scale_y + bbox[2] * (1 - scale_y)
|
||
|
xmax = scale_x + bbox[3] * (1 - scale_x)
|
||
|
ymax = scale_y + bbox[4] * (1 - scale_y)
|
||
|
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
|
||
|
|
||
|
# Remove bounding box small than scale of filter
|
||
|
if 0 < filter_scale:
|
||
|
new_anno = [
|
||
|
anno
|
||
|
for anno in new_anno
|
||
|
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
|
||
|
]
|
||
|
|
||
|
return output_img, new_anno, path_list[0]
|
||
|
|
||
|
|
||
|
def random_chars(number_char: int) -> str:
|
||
|
"""
|
||
|
Automatic generate random 32 characters.
|
||
|
Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
|
||
|
>>> len(random_chars(32))
|
||
|
32
|
||
|
"""
|
||
|
assert number_char > 1, "The number of character should greater than 1"
|
||
|
letter_code = ascii_lowercase + digits
|
||
|
return "".join(random.choice(letter_code) for _ in range(number_char))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|
||
|
print("DONE ✅")
|