2017-01-03 11:20:13 +00:00
|
|
|
"""
|
2019-08-19 05:39:39 +00:00
|
|
|
Given weights and values of n items, put these items in a knapsack of
|
|
|
|
capacity W to get the maximum total value in the knapsack.
|
|
|
|
|
|
|
|
Note that only the integer weights 0-1 knapsack problem is solvable
|
|
|
|
using dynamic programming.
|
2017-01-03 11:20:13 +00:00
|
|
|
"""
|
2019-08-19 05:39:39 +00:00
|
|
|
|
|
|
|
|
|
|
|
def MF_knapsack(i, wt, val, j):
|
2018-07-22 19:06:53 +00:00
|
|
|
'''
|
|
|
|
This code involves the concept of memory functions. Here we solve the subproblems which are needed
|
|
|
|
unlike the below example
|
|
|
|
F is a 2D array with -1s filled up
|
|
|
|
'''
|
|
|
|
global F # a global dp table for knapsack
|
|
|
|
if F[i][j] < 0:
|
2019-08-19 05:39:39 +00:00
|
|
|
if j < wt[i-1]:
|
|
|
|
val = MF_knapsack(i-1, wt, val, j)
|
2018-07-22 19:06:53 +00:00
|
|
|
else:
|
2019-08-19 05:39:39 +00:00
|
|
|
val = max(MF_knapsack(i-1, wt, val, j),
|
|
|
|
MF_knapsack(i-1, wt, val, j - wt[i-1]) + val[i-1])
|
2018-07-22 19:06:53 +00:00
|
|
|
F[i][j] = val
|
|
|
|
return F[i][j]
|
|
|
|
|
2019-08-19 05:39:39 +00:00
|
|
|
|
2017-01-03 11:20:13 +00:00
|
|
|
def knapsack(W, wt, val, n):
|
|
|
|
dp = [[0 for i in range(W+1)]for j in range(n+1)]
|
|
|
|
|
|
|
|
for i in range(1,n+1):
|
2019-08-19 05:39:39 +00:00
|
|
|
for w in range(1, W+1):
|
|
|
|
if wt[i-1] <= w:
|
|
|
|
dp[i][w] = max(val[i-1] + dp[i-1][w-wt[i-1]], dp[i-1][w])
|
2017-01-03 11:20:13 +00:00
|
|
|
else:
|
|
|
|
dp[i][w] = dp[i-1][w]
|
|
|
|
|
2019-08-19 05:39:39 +00:00
|
|
|
return dp[n][W], dp
|
|
|
|
|
|
|
|
|
|
|
|
def knapsack_with_example_solution(W: int, wt: list, val:list):
|
|
|
|
"""
|
|
|
|
Solves the integer weights knapsack problem returns one of
|
|
|
|
the several possible optimal subsets.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
---------
|
|
|
|
|
|
|
|
W: int, the total maximum weight for the given knapsack problem.
|
|
|
|
wt: list, the vector of weights for all items where wt[i] is the weight
|
|
|
|
of the ith item.
|
|
|
|
val: list, the vector of values for all items where val[i] is the value
|
|
|
|
of te ith item
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
optimal_val: float, the optimal value for the given knapsack problem
|
|
|
|
example_optional_set: set, the indices of one of the optimal subsets
|
|
|
|
which gave rise to the optimal value.
|
|
|
|
|
|
|
|
Examples
|
|
|
|
-------
|
|
|
|
>>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])
|
|
|
|
(142, {2, 3, 4})
|
|
|
|
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])
|
|
|
|
(8, {3, 4})
|
|
|
|
>>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: The number of weights must be the same as the number of values.
|
|
|
|
But got 4 weights and 3 values
|
|
|
|
"""
|
|
|
|
if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):
|
|
|
|
raise ValueError("Both the weights and values vectors must be either lists or tuples")
|
|
|
|
|
|
|
|
num_items = len(wt)
|
|
|
|
if num_items != len(val):
|
|
|
|
raise ValueError("The number of weights must be the "
|
|
|
|
"same as the number of values.\nBut "
|
|
|
|
"got {} weights and {} values".format(num_items, len(val)))
|
|
|
|
for i in range(num_items):
|
|
|
|
if not isinstance(wt[i], int):
|
|
|
|
raise TypeError("All weights must be integers but "
|
|
|
|
"got weight of type {} at index {}".format(type(wt[i]), i))
|
|
|
|
|
|
|
|
optimal_val, dp_table = knapsack(W, wt, val, num_items)
|
|
|
|
example_optional_set = set()
|
|
|
|
_construct_solution(dp_table, wt, num_items, W, example_optional_set)
|
|
|
|
|
|
|
|
return optimal_val, example_optional_set
|
|
|
|
|
|
|
|
|
|
|
|
def _construct_solution(dp:list, wt:list, i:int, j:int, optimal_set:set):
|
|
|
|
"""
|
|
|
|
Recursively reconstructs one of the optimal subsets given
|
|
|
|
a filled DP table and the vector of weights
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
---------
|
|
|
|
|
|
|
|
dp: list of list, the table of a solved integer weight dynamic programming problem
|
|
|
|
|
|
|
|
wt: list or tuple, the vector of weights of the items
|
|
|
|
i: int, the index of the item under consideration
|
|
|
|
j: int, the current possible maximum weight
|
|
|
|
optimal_set: set, the optimal subset so far. This gets modified by the function.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
None
|
|
|
|
|
|
|
|
"""
|
|
|
|
# for the current item i at a maximum weight j to be part of an optimal subset,
|
|
|
|
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
|
|
|
|
# where i - 1 means considering only the previous items at the given maximum weight
|
|
|
|
if i > 0 and j > 0:
|
|
|
|
if dp[i - 1][j] == dp[i][j]:
|
|
|
|
_construct_solution(dp, wt, i - 1, j, optimal_set)
|
|
|
|
else:
|
|
|
|
optimal_set.add(i)
|
|
|
|
_construct_solution(dp, wt, i - 1, j - wt[i-1], optimal_set)
|
|
|
|
|
2018-07-22 19:06:53 +00:00
|
|
|
|
2018-07-23 07:31:02 +00:00
|
|
|
if __name__ == '__main__':
|
2018-07-22 19:06:53 +00:00
|
|
|
'''
|
|
|
|
Adding test case for knapsack
|
|
|
|
'''
|
2019-08-19 05:39:39 +00:00
|
|
|
val = [3, 2, 4, 4]
|
|
|
|
wt = [4, 3, 2, 3]
|
2018-07-22 19:06:53 +00:00
|
|
|
n = 4
|
|
|
|
w = 6
|
2019-08-19 05:39:39 +00:00
|
|
|
F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
|
|
|
|
optimal_solution, _ = knapsack(w,wt,val, n)
|
|
|
|
print(optimal_solution)
|
|
|
|
print(MF_knapsack(n,wt,val,w)) # switched the n and w
|
|
|
|
|
|
|
|
# testing the dynamic programming problem with example
|
|
|
|
# the optimal subset for the above example are items 3 and 4
|
|
|
|
optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)
|
|
|
|
assert optimal_solution == 8
|
|
|
|
assert optimal_subset == {3, 4}
|
|
|
|
print("optimal_value = ", optimal_solution)
|
|
|
|
print("An optimal subset corresponding to the optimal value", optimal_subset)
|
|
|
|
|