Python/data_structures/binary_tree/treap.py

181 lines
4.5 KiB
Python
Raw Normal View History

from random import random
from typing import Tuple
class Node:
"""
Treap's node
Treap is a binary tree by value and heap by priority
"""
def __init__(self, value: int = None):
self.value = value
self.prior = random()
self.left = None
self.right = None
def __repr__(self):
from pprint import pformat
if self.left is None and self.right is None:
return f"'{self.value}: {self.prior:.5}'"
else:
return pformat(
{f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1,
)
def __str__(self):
value = str(self.value) + " "
left = str(self.left or "")
right = str(self.right or "")
return value + left + right
def split(root: Node, value: int) -> Tuple[Node, Node]:
"""
We split current tree into 2 trees with value:
Left tree contains all values less than split value.
Right tree contains all values greater or equal, than split value
"""
if root is None: # None tree is split into 2 Nones
return (None, None)
elif root.value is None:
return (None, None)
else:
if value < root.value:
"""
Right tree's root will be current node.
Now we split(with the same value) current node's left son
Left tree: left part of that split
Right tree's left son: right part of that split
"""
left, root.left = split(root.left, value)
return (left, root)
else:
"""
Just symmetric to previous case
"""
root.right, right = split(root.right, value)
return (root, right)
def merge(left: Node, right: Node) -> Node:
"""
We merge 2 trees into one.
Note: all left tree's values must be less than all right tree's
"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
"""
Left will be root because it has more priority
Now we need to merge left's right son and right tree
"""
left.right = merge(left.right, right)
return left
else:
"""
Symmetric as well
"""
right.left = merge(left, right.left)
return right
def insert(root: Node, value: int) -> Node:
"""
Insert element
Split current tree with a value into left, right,
Insert new node into the middle
Merge left, node, right into root
"""
node = Node(value)
left, right = split(root, value)
return merge(merge(left, node), right)
def erase(root: Node, value: int) -> Node:
"""
Erase element
Split all nodes with values less into left,
Split all nodes with values greater into right.
Merge left, right
"""
left, right = split(root, value - 1)
_, right = split(right, value)
return merge(left, right)
def inorder(root: Node):
"""
Just recursive print of a tree
"""
if not root: # None
return
else:
inorder(root.left)
print(root.value, end=" ")
inorder(root.right)
def interactTreap(root, args):
"""
Commands:
+ value to add value into treap
- value to erase all nodes with value
>>> root = interactTreap(None, "+1")
>>> inorder(root)
1
>>> root = interactTreap(root, "+3 +5 +17 +19 +2 +16 +4 +0")
>>> inorder(root)
0 1 2 3 4 5 16 17 19
>>> root = interactTreap(root, "+4 +4 +4")
>>> inorder(root)
0 1 2 3 4 4 4 4 5 16 17 19
>>> root = interactTreap(root, "-0")
>>> inorder(root)
1 2 3 4 4 4 4 5 16 17 19
>>> root = interactTreap(root, "-4")
>>> inorder(root)
1 2 3 5 16 17 19
>>> root = interactTreap(root, "=0")
Unknown command
"""
for arg in args.split():
if arg[0] == "+":
root = insert(root, int(arg[1:]))
elif arg[0] == "-":
root = erase(root, int(arg[1:]))
else:
print("Unknown command")
return root
def main():
"""After each command, program prints treap"""
root = None
print(
"enter numbers to creat a tree, + value to add value into treap, - value to erase all nodes with value. 'q' to quit. "
)
args = input()
while args != "q":
root = interactTreap(root, args)
print(root)
args = input()
print("good by!")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()