mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
|
"""
|
||
|
Huber Loss Function
|
||
|
|
||
|
Description:
|
||
|
Huber loss function describes the penalty incurred by an estimation procedure.
|
||
|
It serves as a measure of the model's accuracy in regression tasks.
|
||
|
|
||
|
Formula:
|
||
|
Huber Loss = if |y_true - y_pred| <= delta then 0.5 * (y_true - y_pred)^2
|
||
|
else delta * |y_true - y_pred| - 0.5 * delta^2
|
||
|
|
||
|
Source:
|
||
|
[Wikipedia - Huber Loss](https://en.wikipedia.org/wiki/Huber_loss)
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def huber_loss(y_true: np.ndarray, y_pred: np.ndarray, delta: float) -> float:
|
||
|
"""
|
||
|
Calculate the mean of Huber Loss.
|
||
|
|
||
|
Parameters:
|
||
|
- y_true: The true values (ground truth).
|
||
|
- y_pred: The predicted values.
|
||
|
|
||
|
Returns:
|
||
|
- huber_loss: The mean of Huber Loss between y_true and y_pred.
|
||
|
|
||
|
Example usage:
|
||
|
>>> true_values = np.array([0.9, 10.0, 2.0, 1.0, 5.2])
|
||
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||
|
>>> np.isclose(huber_loss(true_values, predicted_values, 1.0), 2.102)
|
||
|
True
|
||
|
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0, 5.0])
|
||
|
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
||
|
>>> np.isclose(huber_loss(true_labels, predicted_probs, 1.0), 1.80164)
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
if len(y_true) != len(y_pred):
|
||
|
raise ValueError("Input arrays must have the same length.")
|
||
|
|
||
|
huber_mse = 0.5 * (y_true - y_pred) ** 2
|
||
|
huber_mae = delta * (np.abs(y_true - y_pred) - 0.5 * delta)
|
||
|
return np.where(np.abs(y_true - y_pred) <= delta, huber_mse, huber_mae).mean()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|