mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
90 lines
2.4 KiB
Python
90 lines
2.4 KiB
Python
|
"""
|
||
|
Use the Runge-Kutta-Gill's method of order 4 to solve Ordinary Differential Equations.
|
||
|
|
||
|
https://www.geeksforgeeks.org/gills-4th-order-method-to-solve-differential-equations/
|
||
|
Author : Ravi Kumar
|
||
|
"""
|
||
|
from collections.abc import Callable
|
||
|
from math import sqrt
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def runge_kutta_gills(
|
||
|
func: Callable[[float, float], float],
|
||
|
x_initial: float,
|
||
|
y_initial: float,
|
||
|
step_size: float,
|
||
|
x_final: float,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Solve an Ordinary Differential Equations using Runge-Kutta-Gills Method of order 4.
|
||
|
|
||
|
args:
|
||
|
func: An ordinary differential equation (ODE) as function of x and y.
|
||
|
x_initial: The initial value of x.
|
||
|
y_initial: The initial value of y.
|
||
|
step_size: The increment value of x.
|
||
|
x_final: The final value of x.
|
||
|
|
||
|
Returns:
|
||
|
Solution of y at each nodal point
|
||
|
|
||
|
>>> def f(x, y):
|
||
|
... return (x-y)/2
|
||
|
>>> y = runge_kutta_gills(f, 0, 3, 0.2, 5)
|
||
|
>>> y[-1]
|
||
|
3.4104259225717537
|
||
|
|
||
|
>>> def f(x,y):
|
||
|
... return x
|
||
|
>>> y = runge_kutta_gills(f, -1, 0, 0.2, 0)
|
||
|
>>> y
|
||
|
array([ 0. , -0.18, -0.32, -0.42, -0.48, -0.5 ])
|
||
|
|
||
|
>>> def f(x, y):
|
||
|
... return x + y
|
||
|
>>> y = runge_kutta_gills(f, 0, 0, 0.2, -1)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: The final value of x must be greater than initial value of x.
|
||
|
|
||
|
>>> def f(x, y):
|
||
|
... return x
|
||
|
>>> y = runge_kutta_gills(f, -1, 0, -0.2, 0)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Step size must be positive.
|
||
|
"""
|
||
|
if x_initial >= x_final:
|
||
|
raise ValueError(
|
||
|
"The final value of x must be greater than initial value of x."
|
||
|
)
|
||
|
|
||
|
if step_size <= 0:
|
||
|
raise ValueError("Step size must be positive.")
|
||
|
|
||
|
n = int((x_final - x_initial) / step_size)
|
||
|
y = np.zeros(n + 1)
|
||
|
y[0] = y_initial
|
||
|
for i in range(n):
|
||
|
k1 = step_size * func(x_initial, y[i])
|
||
|
k2 = step_size * func(x_initial + step_size / 2, y[i] + k1 / 2)
|
||
|
k3 = step_size * func(
|
||
|
x_initial + step_size / 2,
|
||
|
y[i] + (-0.5 + 1 / sqrt(2)) * k1 + (1 - 1 / sqrt(2)) * k2,
|
||
|
)
|
||
|
k4 = step_size * func(
|
||
|
x_initial + step_size, y[i] - (1 / sqrt(2)) * k2 + (1 + 1 / sqrt(2)) * k3
|
||
|
)
|
||
|
|
||
|
y[i + 1] = y[i] + (k1 + (2 - sqrt(2)) * k2 + (2 + sqrt(2)) * k3 + k4) / 6
|
||
|
x_initial += step_size
|
||
|
return y
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|