mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
119 lines
4.2 KiB
Python
119 lines
4.2 KiB
Python
|
import numpy as np
|
||
|
from sklearn.datasets import load_iris
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
from sklearn.tree import DecisionTreeRegressor
|
||
|
|
||
|
|
||
|
class GradientBoostingClassifier:
|
||
|
def __init__(self, n_estimators: int = 100, learning_rate: float = 0.1) -> None:
|
||
|
"""
|
||
|
Initialize a GradientBoostingClassifier.
|
||
|
|
||
|
Parameters:
|
||
|
- n_estimators (int): The number of weak learners to train.
|
||
|
- learning_rate (float): The learning rate for updating the model.
|
||
|
|
||
|
Attributes:
|
||
|
- n_estimators (int): The number of weak learners.
|
||
|
- learning_rate (float): The learning rate.
|
||
|
- models (list): A list to store the trained weak learners.
|
||
|
"""
|
||
|
self.n_estimators = n_estimators
|
||
|
self.learning_rate = learning_rate
|
||
|
self.models: list[tuple[DecisionTreeRegressor, float]] = []
|
||
|
|
||
|
def fit(self, features: np.ndarray, target: np.ndarray) -> None:
|
||
|
"""
|
||
|
Fit the GradientBoostingClassifier to the training data.
|
||
|
|
||
|
Parameters:
|
||
|
- features (np.ndarray): The training features.
|
||
|
- target (np.ndarray): The target values.
|
||
|
|
||
|
Returns:
|
||
|
None
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
|
||
|
>>> iris = load_iris()
|
||
|
>>> X, y = iris.data, iris.target
|
||
|
>>> clf.fit(X, y)
|
||
|
>>> # Check if the model is trained
|
||
|
>>> len(clf.models) == 100
|
||
|
True
|
||
|
"""
|
||
|
for _ in range(self.n_estimators):
|
||
|
# Calculate the pseudo-residuals
|
||
|
residuals = -self.gradient(target, self.predict(features))
|
||
|
# Fit a weak learner (e.g., decision tree) to the residuals
|
||
|
model = DecisionTreeRegressor(max_depth=1)
|
||
|
model.fit(features, residuals)
|
||
|
# Update the model by adding the weak learner with a learning rate
|
||
|
self.models.append((model, self.learning_rate))
|
||
|
|
||
|
def predict(self, features: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
Make predictions on input data.
|
||
|
|
||
|
Parameters:
|
||
|
- features (np.ndarray): The input data for making predictions.
|
||
|
|
||
|
Returns:
|
||
|
- np.ndarray: An array of binary predictions (-1 or 1).
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
|
||
|
>>> iris = load_iris()
|
||
|
>>> X, y = iris.data, iris.target
|
||
|
>>> clf.fit(X, y)
|
||
|
>>> y_pred = clf.predict(X)
|
||
|
>>> # Check if the predictions have the correct shape
|
||
|
>>> y_pred.shape == y.shape
|
||
|
True
|
||
|
"""
|
||
|
# Initialize predictions with zeros
|
||
|
predictions = np.zeros(features.shape[0])
|
||
|
for model, learning_rate in self.models:
|
||
|
predictions += learning_rate * model.predict(features)
|
||
|
return np.sign(predictions) # Convert to binary predictions (-1 or 1)
|
||
|
|
||
|
def gradient(self, target: np.ndarray, y_pred: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
Calculate the negative gradient (pseudo-residuals) for logistic loss.
|
||
|
|
||
|
Parameters:
|
||
|
- target (np.ndarray): The target values.
|
||
|
- y_pred (np.ndarray): The predicted values.
|
||
|
|
||
|
Returns:
|
||
|
- np.ndarray: An array of pseudo-residuals.
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
|
||
|
>>> target = np.array([0, 1, 0, 1])
|
||
|
>>> y_pred = np.array([0.2, 0.8, 0.3, 0.7])
|
||
|
>>> residuals = clf.gradient(target, y_pred)
|
||
|
>>> # Check if residuals have the correct shape
|
||
|
>>> residuals.shape == target.shape
|
||
|
True
|
||
|
"""
|
||
|
return -target / (1 + np.exp(target * y_pred))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
iris = load_iris()
|
||
|
X, y = iris.data, iris.target
|
||
|
X_train, X_test, y_train, y_test = train_test_split(
|
||
|
X, y, test_size=0.2, random_state=42
|
||
|
)
|
||
|
|
||
|
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
|
||
|
clf.fit(X_train, y_train)
|
||
|
|
||
|
y_pred = clf.predict(X_test)
|
||
|
accuracy = accuracy_score(y_test, y_pred)
|
||
|
print(f"Accuracy: {accuracy:.2f}")
|