Python/maths/extended_euclidean_algorithm.py

86 lines
2.0 KiB
Python
Raw Normal View History

"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
# @Author: S. Sharma <silentcat>
# @Date: 2019-02-25T12:08:53-06:00
# @Email: silentcat@protonmail.com
# @Last modified by: pikulet
# @Last modified time: 2020-10-02
from __future__ import annotations
import sys
def extended_euclidean_algorithm(a: int, b: int) -> tuple[int, int]:
"""
Extended Euclidean Algorithm.
Finds 2 numbers a and b such that it satisfies
the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity)
>>> extended_euclidean_algorithm(1, 24)
(1, 0)
>>> extended_euclidean_algorithm(8, 14)
(2, -1)
>>> extended_euclidean_algorithm(240, 46)
(-9, 47)
>>> extended_euclidean_algorithm(1, -4)
(1, 0)
>>> extended_euclidean_algorithm(-2, -4)
(-1, 0)
>>> extended_euclidean_algorithm(0, -4)
(0, -1)
>>> extended_euclidean_algorithm(2, 0)
(1, 0)
"""
# base cases
if abs(a) == 1:
return a, 0
elif abs(b) == 1:
return 0, b
old_remainder, remainder = a, b
old_coeff_a, coeff_a = 1, 0
old_coeff_b, coeff_b = 0, 1
while remainder != 0:
quotient = old_remainder // remainder
old_remainder, remainder = remainder, old_remainder - quotient * remainder
old_coeff_a, coeff_a = coeff_a, old_coeff_a - quotient * coeff_a
old_coeff_b, coeff_b = coeff_b, old_coeff_b - quotient * coeff_b
# sign correction for negative numbers
if a < 0:
old_coeff_a = -old_coeff_a
if b < 0:
old_coeff_b = -old_coeff_b
return old_coeff_a, old_coeff_b
def main():
"""Call Extended Euclidean Algorithm."""
if len(sys.argv) < 3:
2019-10-05 05:14:13 +00:00
print("2 integer arguments required")
exit(1)
a = int(sys.argv[1])
b = int(sys.argv[2])
print(extended_euclidean_algorithm(a, b))
2019-10-05 05:14:13 +00:00
if __name__ == "__main__":
main()