mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-25 04:30:15 +00:00
180 lines
5.1 KiB
Python
180 lines
5.1 KiB
Python
|
"""
|
||
|
This is a pure Python implementation of the merge-insertion sort algorithm
|
||
|
Source: https://en.wikipedia.org/wiki/Merge-insertion_sort
|
||
|
|
||
|
For doctests run following command:
|
||
|
python3 -m doctest -v merge_insertion_sort.py
|
||
|
or
|
||
|
python -m doctest -v merge_insertion_sort.py
|
||
|
|
||
|
For manual testing run:
|
||
|
python3 merge_insertion_sort.py
|
||
|
"""
|
||
|
|
||
|
from typing import List
|
||
|
|
||
|
|
||
|
def merge_insertion_sort(collection: List[int]) -> List[int]:
|
||
|
"""Pure implementation of merge-insertion sort algorithm in Python
|
||
|
|
||
|
:param collection: some mutable ordered collection with heterogeneous
|
||
|
comparable items inside
|
||
|
:return: the same collection ordered by ascending
|
||
|
|
||
|
Examples:
|
||
|
>>> merge_insertion_sort([0, 5, 3, 2, 2])
|
||
|
[0, 2, 2, 3, 5]
|
||
|
|
||
|
>>> merge_insertion_sort([99])
|
||
|
[99]
|
||
|
|
||
|
>>> merge_insertion_sort([-2, -5, -45])
|
||
|
[-45, -5, -2]
|
||
|
"""
|
||
|
|
||
|
def binary_search_insertion(sorted_list, item):
|
||
|
left = 0
|
||
|
right = len(sorted_list) - 1
|
||
|
while left <= right:
|
||
|
middle = (left + right) // 2
|
||
|
if left == right:
|
||
|
if sorted_list[middle] < item:
|
||
|
left = middle + 1
|
||
|
break
|
||
|
elif sorted_list[middle] < item:
|
||
|
left = middle + 1
|
||
|
else:
|
||
|
right = middle - 1
|
||
|
sorted_list.insert(left, item)
|
||
|
return sorted_list
|
||
|
|
||
|
def sortlist_2d(list_2d):
|
||
|
def merge(left, right):
|
||
|
result = []
|
||
|
while left and right:
|
||
|
if left[0][0] < right[0][0]:
|
||
|
result.append(left.pop(0))
|
||
|
else:
|
||
|
result.append(right.pop(0))
|
||
|
return result + left + right
|
||
|
|
||
|
length = len(list_2d)
|
||
|
if length <= 1:
|
||
|
return list_2d
|
||
|
middle = length // 2
|
||
|
return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))
|
||
|
|
||
|
if len(collection) <= 1:
|
||
|
return collection
|
||
|
|
||
|
"""
|
||
|
Group the items into two pairs, and leave one element if there is a last odd item.
|
||
|
|
||
|
Example: [999, 100, 75, 40, 10000]
|
||
|
-> [999, 100], [75, 40]. Leave 10000.
|
||
|
"""
|
||
|
two_paired_list = []
|
||
|
has_last_odd_item = False
|
||
|
for i in range(0, len(collection), 2):
|
||
|
if i == len(collection) - 1:
|
||
|
has_last_odd_item = True
|
||
|
else:
|
||
|
"""
|
||
|
Sort two-pairs in each groups.
|
||
|
|
||
|
Example: [999, 100], [75, 40]
|
||
|
-> [100, 999], [40, 75]
|
||
|
"""
|
||
|
if collection[i] < collection[i + 1]:
|
||
|
two_paired_list.append([collection[i], collection[i + 1]])
|
||
|
else:
|
||
|
two_paired_list.append([collection[i + 1], collection[i]])
|
||
|
|
||
|
"""
|
||
|
Sort two_paired_list.
|
||
|
|
||
|
Example: [100, 999], [40, 75]
|
||
|
-> [40, 75], [100, 999]
|
||
|
"""
|
||
|
sorted_list_2d = sortlist_2d(two_paired_list)
|
||
|
|
||
|
"""
|
||
|
40 < 100 is sure because it has already been sorted.
|
||
|
Generate the sorted_list of them so that you can avoid unnecessary comparison.
|
||
|
|
||
|
Example:
|
||
|
group0 group1
|
||
|
40 100
|
||
|
75 999
|
||
|
->
|
||
|
group0 group1
|
||
|
[40, 100]
|
||
|
75 999
|
||
|
"""
|
||
|
result = [i[0] for i in sorted_list_2d]
|
||
|
|
||
|
"""
|
||
|
100 < 999 is sure because it has already been sorted.
|
||
|
Put 999 in last of the sorted_list so that you can avoid unnecessary comparison.
|
||
|
|
||
|
Example:
|
||
|
group0 group1
|
||
|
[40, 100]
|
||
|
75 999
|
||
|
->
|
||
|
group0 group1
|
||
|
[40, 100, 999]
|
||
|
75
|
||
|
"""
|
||
|
result.append(sorted_list_2d[-1][1])
|
||
|
|
||
|
"""
|
||
|
Insert the last odd item left if there is.
|
||
|
|
||
|
Example:
|
||
|
group0 group1
|
||
|
[40, 100, 999]
|
||
|
75
|
||
|
->
|
||
|
group0 group1
|
||
|
[40, 100, 999, 10000]
|
||
|
75
|
||
|
"""
|
||
|
if has_last_odd_item:
|
||
|
pivot = collection[-1]
|
||
|
result = binary_search_insertion(result, pivot)
|
||
|
|
||
|
"""
|
||
|
Insert the remaining items.
|
||
|
In this case, 40 < 75 is sure because it has already been sorted.
|
||
|
Therefore, you only need to insert 75 into [100, 999, 10000],
|
||
|
so that you can avoid unnecessary comparison.
|
||
|
|
||
|
Example:
|
||
|
group0 group1
|
||
|
[40, 100, 999, 10000]
|
||
|
^ You don't need to compare with this as 40 < 75 is already sure.
|
||
|
75
|
||
|
->
|
||
|
[40, 75, 100, 999, 10000]
|
||
|
"""
|
||
|
is_last_odd_item_inserted_before_this_index = False
|
||
|
for i in range(len(sorted_list_2d) - 1):
|
||
|
if result[i] == collection[-i]:
|
||
|
is_last_odd_item_inserted_before_this_index = True
|
||
|
pivot = sorted_list_2d[i][1]
|
||
|
# If last_odd_item is inserted before the item's index,
|
||
|
# you should forward index one more.
|
||
|
if is_last_odd_item_inserted_before_this_index:
|
||
|
result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot)
|
||
|
else:
|
||
|
result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
user_input = input("Enter numbers separated by a comma:\n").strip()
|
||
|
unsorted = [int(item) for item in user_input.split(",")]
|
||
|
print(merge_insertion_sort(unsorted))
|