136 lines
4.9 KiB
Python
Raw Normal View History

2024-10-19 10:12:46 +05:30
import datetime
from typing import List, Dict, Any
class Chatbot:
"""
A Chatbot class to manage chat conversations using an LLM service and a database to store chat data.
Methods:
- start_chat: Starts a new conversation, logs the start time.
- handle_user_message: Processes user input and stores user message & bot response in DB.
- end_chat: Ends the conversation and logs the end time.
- continue_chat: Retains only the last few messages if the conversation exceeds 1000 messages.
"""
def __init__(self, db: Any, llm_service: Any) -> None:
"""
Initialize the Chatbot with a database and an LLM service.
Parameters:
- db: The database instance used for storing chat data.
- llm_service: The language model service for generating responses.
"""
self.db = db
self.llm_service = llm_service
self.conversation_history: List[Dict[str, str]] = []
self.chat_id_pk: int = None
def start_chat(self) -> None:
"""
Start a new chat session and insert chat history to the database.
"""
start_time = datetime.datetime.now()
is_stream = 1 # Start new conversation
self.db.insert_chat_history(start_time, is_stream)
self.chat_id_pk = self.db.get_latest_chat_id()
def handle_user_message(self, user_input: str) -> str:
"""
Handle user input and generate a bot response.
If the user sends '/stop', the conversation is terminated.
Parameters:
- user_input: The input provided by the user.
Returns:
- bot_response: The response generated by the bot.
Raises:
- ValueError: If user input is not a string or if no chat_id is available.
Doctest:
>>> class MockDatabase:
... def __init__(self):
... self.data = []
... def insert_chat_data(self, *args, **kwargs):
... pass
... def insert_chat_history(self, *args, **kwargs):
... pass
... def get_latest_chat_id(self):
... return 1
...
>>> class MockLLM:
... def generate_response(self, conversation_history):
... if conversation_history[-1]["content"] == "/stop":
... return "conversation-terminated"
... return "Mock response"
>>> db_mock = MockDatabase()
>>> llm_mock = MockLLM()
>>> bot = Chatbot(db_mock, llm_mock)
>>> bot.start_chat()
>>> bot.handle_user_message("/stop")
'conversation-terminated'
>>> bot.handle_user_message("Hello!")
'Mock response'
"""
if not isinstance(user_input, str):
raise ValueError("User input must be a string.")
if self.chat_id_pk is None:
raise ValueError("Chat has not been started. Call start_chat() first.")
self.conversation_history.append({"role": "user", "content": user_input})
if user_input == "/stop":
2024-10-19 10:31:17 +05:30
bot_response = "conversation-terminated"
# print(f"Bot: {bot_response}")
2024-10-19 10:12:46 +05:30
self.end_chat()
2024-10-19 10:31:17 +05:30
return bot_response
2024-10-19 10:12:46 +05:30
else:
bot_response = self.llm_service.generate_response(self.conversation_history)
2024-10-19 10:31:17 +05:30
# print(f"Bot: {bot_response}")
2024-10-19 10:12:46 +05:30
self.conversation_history.append(
{"role": "assistant", "content": bot_response}
)
self._store_message_in_db(user_input, bot_response)
return bot_response
def _store_message_in_db(self, user_input: str, bot_response: str) -> None:
"""
Store user input and bot response in the database.
Parameters:
- user_input: The message from the user.
- bot_response: The response generated by the bot.
Raises:
- ValueError: If insertion into the database fails.
"""
try:
self.db.insert_chat_data(self.chat_id_pk, user_input, bot_response)
except Exception as e:
raise ValueError(f"Failed to insert chat data: {e}")
def end_chat(self) -> None:
"""
End the chat session and update the chat history in the database.
"""
current_time = datetime.datetime.now()
is_stream = 2 # End of conversation
try:
user_input = "/stop"
bot_response = "conversation-terminated"
self.db.insert_chat_data(self.chat_id_pk, user_input, bot_response)
self.db.insert_chat_history(current_time, is_stream)
except Exception as e:
raise ValueError(f"Failed to update chat history: {e}")
def continue_chat(self) -> None:
"""
Retain only the last few entries if the conversation exceeds 1000 messages.
"""
if len(self.conversation_history) > 1000:
self.conversation_history = self.conversation_history[-3:]