Python/arithmetic_analysis/lu_decomposition.py

33 lines
944 B
Python
Raw Normal View History

# lowerupper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition
2018-10-19 12:48:28 +00:00
import numpy
def LUDecompose (table):
# Table that contains our data
# Table has to be a square array so we need to check first
2018-10-19 12:48:28 +00:00
rows,columns=numpy.shape(table)
L=numpy.zeros((rows,columns))
U=numpy.zeros((rows,columns))
if rows!=columns:
return []
2018-10-19 12:48:28 +00:00
for i in range (columns):
for j in range(i-1):
sum=0
for k in range (j-1):
sum+=L[i][k]*U[k][j]
L[i][j]=(table[i][j]-sum)/U[j][j]
L[i][i]=1
for j in range(i-1,columns):
sum1=0
for k in range(i-1):
sum1+=L[i][k]*U[k][j]
U[i][j]=table[i][j]-sum1
return L,U
if __name__ == "__main__":
matrix =numpy.array([[2,-2,1],
[0,1,2],
[5,3,1]])
L,U = LUDecompose(matrix)
print(L)
print(U)