mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Simple audio filters (#5230)
* Add IIR Filter and Butterworth design functions Signed-off-by: Martmists <martmists@gmail.com> * naming conventions and missing type hints Signed-off-by: Martmists <martmists@gmail.com> * Link wikipedia in IIRFilter Signed-off-by: Martmists <martmists@gmail.com> * Add doctests and None return types Signed-off-by: Martmists <martmists@gmail.com> * More doctests Signed-off-by: Martmists <martmists@gmail.com> * Requested changes Signed-off-by: Martmists <martmists@gmail.com> * run pre-commit Signed-off-by: Martmists <martmists@gmail.com> * Make mypy stop complaining about ints vs floats Signed-off-by: Martmists <martmists@gmail.com> * Use slower listcomp to make it more readable Signed-off-by: Martmists <martmists@gmail.com> * Make doctests happy Signed-off-by: Martmists <martmists@gmail.com> * Remove scipy Signed-off-by: Martmists <martmists@gmail.com> * Test coefficients from bw filters Signed-off-by: Martmists <martmists@gmail.com> * Protocol test Co-authored-by: Christian Clauss <cclauss@me.com> * Make requested change Signed-off-by: Martmists <martmists@gmail.com> * Types Signed-off-by: Martmists <martmists@gmail.com> * Apply suggestions from code review * Apply suggestions from code review * Update butterworth_filter.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
bd9464e4ac
commit
00a67010e8
0
audio_filters/__init__.py
Normal file
0
audio_filters/__init__.py
Normal file
217
audio_filters/butterworth_filter.py
Normal file
217
audio_filters/butterworth_filter.py
Normal file
|
@ -0,0 +1,217 @@
|
|||
from math import cos, sin, sqrt, tau
|
||||
|
||||
from audio_filters.iir_filter import IIRFilter
|
||||
|
||||
"""
|
||||
Create 2nd-order IIR filters with Butterworth design.
|
||||
|
||||
Code based on https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
|
||||
Alternatively you can use scipy.signal.butter, which should yield the same results.
|
||||
"""
|
||||
|
||||
|
||||
def make_lowpass(
|
||||
frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a low-pass filter
|
||||
|
||||
>>> filter = make_lowpass(1000, 48000)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[1.0922959556412573, -1.9828897227476208, 0.9077040443587427, 0.004277569313094809,
|
||||
0.008555138626189618, 0.004277569313094809]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
|
||||
b0 = (1 - _cos) / 2
|
||||
b1 = 1 - _cos
|
||||
|
||||
a0 = 1 + alpha
|
||||
a1 = -2 * _cos
|
||||
a2 = 1 - alpha
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b0])
|
||||
return filt
|
||||
|
||||
|
||||
def make_highpass(
|
||||
frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a high-pass filter
|
||||
|
||||
>>> filter = make_highpass(1000, 48000)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[1.0922959556412573, -1.9828897227476208, 0.9077040443587427, 0.9957224306869052,
|
||||
-1.9914448613738105, 0.9957224306869052]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
|
||||
b0 = (1 + _cos) / 2
|
||||
b1 = -1 - _cos
|
||||
|
||||
a0 = 1 + alpha
|
||||
a1 = -2 * _cos
|
||||
a2 = 1 - alpha
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b0])
|
||||
return filt
|
||||
|
||||
|
||||
def make_bandpass(
|
||||
frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a band-pass filter
|
||||
|
||||
>>> filter = make_bandpass(1000, 48000)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[1.0922959556412573, -1.9828897227476208, 0.9077040443587427, 0.06526309611002579,
|
||||
0, -0.06526309611002579]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
|
||||
b0 = _sin / 2
|
||||
b1 = 0
|
||||
b2 = -b0
|
||||
|
||||
a0 = 1 + alpha
|
||||
a1 = -2 * _cos
|
||||
a2 = 1 - alpha
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b2])
|
||||
return filt
|
||||
|
||||
|
||||
def make_allpass(
|
||||
frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates an all-pass filter
|
||||
|
||||
>>> filter = make_allpass(1000, 48000)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[1.0922959556412573, -1.9828897227476208, 0.9077040443587427, 0.9077040443587427,
|
||||
-1.9828897227476208, 1.0922959556412573]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
|
||||
b0 = 1 - alpha
|
||||
b1 = -2 * _cos
|
||||
b2 = 1 + alpha
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([b2, b1, b0], [b0, b1, b2])
|
||||
return filt
|
||||
|
||||
|
||||
def make_peak(
|
||||
frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a peak filter
|
||||
|
||||
>>> filter = make_peak(1000, 48000, 6)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[1.0653405327119334, -1.9828897227476208, 0.9346594672880666, 1.1303715025601122,
|
||||
-1.9828897227476208, 0.8696284974398878]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
big_a = 10 ** (gain_db / 40)
|
||||
|
||||
b0 = 1 + alpha * big_a
|
||||
b1 = -2 * _cos
|
||||
b2 = 1 - alpha * big_a
|
||||
a0 = 1 + alpha / big_a
|
||||
a1 = -2 * _cos
|
||||
a2 = 1 - alpha / big_a
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b2])
|
||||
return filt
|
||||
|
||||
|
||||
def make_lowshelf(
|
||||
frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a low-shelf filter
|
||||
|
||||
>>> filter = make_lowshelf(1000, 48000, 6)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[3.0409336710888786, -5.608870992220748, 2.602157875636628, 3.139954022810743,
|
||||
-5.591841778072785, 2.5201667380627257]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
big_a = 10 ** (gain_db / 40)
|
||||
pmc = (big_a + 1) - (big_a - 1) * _cos
|
||||
ppmc = (big_a + 1) + (big_a - 1) * _cos
|
||||
mpc = (big_a - 1) - (big_a + 1) * _cos
|
||||
pmpc = (big_a - 1) + (big_a + 1) * _cos
|
||||
aa2 = 2 * sqrt(big_a) * alpha
|
||||
|
||||
b0 = big_a * (pmc + aa2)
|
||||
b1 = 2 * big_a * mpc
|
||||
b2 = big_a * (pmc - aa2)
|
||||
a0 = ppmc + aa2
|
||||
a1 = -2 * pmpc
|
||||
a2 = ppmc - aa2
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b2])
|
||||
return filt
|
||||
|
||||
|
||||
def make_highshelf(
|
||||
frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
|
||||
) -> IIRFilter:
|
||||
"""
|
||||
Creates a high-shelf filter
|
||||
|
||||
>>> filter = make_highshelf(1000, 48000, 6)
|
||||
>>> filter.a_coeffs + filter.b_coeffs # doctest: +NORMALIZE_WHITESPACE
|
||||
[2.2229172136088806, -3.9587208137297303, 1.7841414181566304, 4.295432981120543,
|
||||
-7.922740859457287, 3.6756456963725253]
|
||||
"""
|
||||
w0 = tau * frequency / samplerate
|
||||
_sin = sin(w0)
|
||||
_cos = cos(w0)
|
||||
alpha = _sin / (2 * q_factor)
|
||||
big_a = 10 ** (gain_db / 40)
|
||||
pmc = (big_a + 1) - (big_a - 1) * _cos
|
||||
ppmc = (big_a + 1) + (big_a - 1) * _cos
|
||||
mpc = (big_a - 1) - (big_a + 1) * _cos
|
||||
pmpc = (big_a - 1) + (big_a + 1) * _cos
|
||||
aa2 = 2 * sqrt(big_a) * alpha
|
||||
|
||||
b0 = big_a * (ppmc + aa2)
|
||||
b1 = -2 * big_a * pmpc
|
||||
b2 = big_a * (ppmc - aa2)
|
||||
a0 = pmc + aa2
|
||||
a1 = 2 * mpc
|
||||
a2 = pmc - aa2
|
||||
|
||||
filt = IIRFilter(2)
|
||||
filt.set_coefficients([a0, a1, a2], [b0, b1, b2])
|
||||
return filt
|
92
audio_filters/iir_filter.py
Normal file
92
audio_filters/iir_filter.py
Normal file
|
@ -0,0 +1,92 @@
|
|||
from __future__ import annotations
|
||||
|
||||
|
||||
class IIRFilter:
|
||||
r"""
|
||||
N-Order IIR filter
|
||||
Assumes working with float samples normalized on [-1, 1]
|
||||
|
||||
---
|
||||
|
||||
Implementation details:
|
||||
Based on the 2nd-order function from
|
||||
https://en.wikipedia.org/wiki/Digital_biquad_filter,
|
||||
this generalized N-order function was made.
|
||||
|
||||
Using the following transfer function
|
||||
H(z)=\frac{b_{0}+b_{1}z^{-1}+b_{2}z^{-2}+...+b_{k}z^{-k}}{a_{0}+a_{1}z^{-1}+a_{2}z^{-2}+...+a_{k}z^{-k}}
|
||||
we can rewrite this to
|
||||
y[n]={\frac{1}{a_{0}}}\left(\left(b_{0}x[n]+b_{1}x[n-1]+b_{2}x[n-2]+...+b_{k}x[n-k]\right)-\left(a_{1}y[n-1]+a_{2}y[n-2]+...+a_{k}y[n-k]\right)\right)
|
||||
"""
|
||||
|
||||
def __init__(self, order: int) -> None:
|
||||
self.order = order
|
||||
|
||||
# a_{0} ... a_{k}
|
||||
self.a_coeffs = [1.0] + [0.0] * order
|
||||
# b_{0} ... b_{k}
|
||||
self.b_coeffs = [1.0] + [0.0] * order
|
||||
|
||||
# x[n-1] ... x[n-k]
|
||||
self.input_history = [0.0] * self.order
|
||||
# y[n-1] ... y[n-k]
|
||||
self.output_history = [0.0] * self.order
|
||||
|
||||
def set_coefficients(self, a_coeffs: list[float], b_coeffs: list[float]) -> None:
|
||||
"""
|
||||
Set the coefficients for the IIR filter. These should both be of size order + 1.
|
||||
a_0 may be left out, and it will use 1.0 as default value.
|
||||
|
||||
This method works well with scipy's filter design functions
|
||||
>>> # Make a 2nd-order 1000Hz butterworth lowpass filter
|
||||
>>> import scipy.signal
|
||||
>>> b_coeffs, a_coeffs = scipy.signal.butter(2, 1000,
|
||||
... btype='lowpass',
|
||||
... fs=48000)
|
||||
>>> filt = IIRFilter(2)
|
||||
>>> filt.set_coefficients(a_coeffs, b_coeffs)
|
||||
"""
|
||||
if len(a_coeffs) < self.order:
|
||||
a_coeffs = [1.0] + a_coeffs
|
||||
|
||||
if len(a_coeffs) != self.order + 1:
|
||||
raise ValueError(
|
||||
f"Expected a_coeffs to have {self.order + 1} elements for {self.order}"
|
||||
f"-order filter, got {len(a_coeffs)}"
|
||||
)
|
||||
|
||||
if len(b_coeffs) != self.order + 1:
|
||||
raise ValueError(
|
||||
f"Expected b_coeffs to have {self.order + 1} elements for {self.order}"
|
||||
f"-order filter, got {len(a_coeffs)}"
|
||||
)
|
||||
|
||||
self.a_coeffs = a_coeffs
|
||||
self.b_coeffs = b_coeffs
|
||||
|
||||
def process(self, sample: float) -> float:
|
||||
"""
|
||||
Calculate y[n]
|
||||
|
||||
>>> filt = IIRFilter(2)
|
||||
>>> filt.process(0)
|
||||
0.0
|
||||
"""
|
||||
result = 0.0
|
||||
|
||||
# Start at index 1 and do index 0 at the end.
|
||||
for i in range(1, self.order + 1):
|
||||
result += (
|
||||
self.b_coeffs[i] * self.input_history[i - 1]
|
||||
- self.a_coeffs[i] * self.output_history[i - 1]
|
||||
)
|
||||
|
||||
result = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
|
||||
|
||||
self.input_history[1:] = self.input_history[:-1]
|
||||
self.output_history[1:] = self.output_history[:-1]
|
||||
|
||||
self.input_history[0] = sample
|
||||
self.output_history[0] = result
|
||||
|
||||
return result
|
94
audio_filters/show_response.py
Normal file
94
audio_filters/show_response.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from math import pi
|
||||
from typing import Protocol
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
class FilterType(Protocol):
|
||||
def process(self, sample: float) -> float:
|
||||
"""
|
||||
Calculate y[n]
|
||||
|
||||
>>> issubclass(FilterType, Protocol)
|
||||
True
|
||||
"""
|
||||
return 0.0
|
||||
|
||||
|
||||
def get_bounds(
|
||||
fft_results: np.ndarray, samplerate: int
|
||||
) -> tuple[int | float, int | float]:
|
||||
"""
|
||||
Get bounds for printing fft results
|
||||
|
||||
>>> import numpy
|
||||
>>> array = numpy.linspace(-20.0, 20.0, 1000)
|
||||
>>> get_bounds(array, 1000)
|
||||
(-20, 20)
|
||||
"""
|
||||
lowest = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])])
|
||||
highest = max([20, np.max(fft_results[1 : samplerate // 2 - 1])])
|
||||
return lowest, highest
|
||||
|
||||
|
||||
def show_frequency_response(filter: FilterType, samplerate: int) -> None:
|
||||
"""
|
||||
Show frequency response of a filter
|
||||
|
||||
>>> from audio_filters.iir_filter import IIRFilter
|
||||
>>> filt = IIRFilter(4)
|
||||
>>> show_frequency_response(filt, 48000)
|
||||
"""
|
||||
|
||||
size = 512
|
||||
inputs = [1] + [0] * (size - 1)
|
||||
outputs = [filter.process(item) for item in inputs]
|
||||
|
||||
filler = [0] * (samplerate - size) # zero-padding
|
||||
outputs += filler
|
||||
fft_out = np.abs(np.fft.fft(outputs))
|
||||
fft_db = 20 * np.log10(fft_out)
|
||||
|
||||
# Frequencies on log scale from 24 to nyquist frequency
|
||||
plt.xlim(24, samplerate / 2 - 1)
|
||||
plt.xlabel("Frequency (Hz)")
|
||||
plt.xscale("log")
|
||||
|
||||
# Display within reasonable bounds
|
||||
bounds = get_bounds(fft_db, samplerate)
|
||||
plt.ylim(max([-80, bounds[0]]), min([80, bounds[1]]))
|
||||
plt.ylabel("Gain (dB)")
|
||||
|
||||
plt.plot(fft_db)
|
||||
plt.show()
|
||||
|
||||
|
||||
def show_phase_response(filter: FilterType, samplerate: int) -> None:
|
||||
"""
|
||||
Show phase response of a filter
|
||||
|
||||
>>> from audio_filters.iir_filter import IIRFilter
|
||||
>>> filt = IIRFilter(4)
|
||||
>>> show_phase_response(filt, 48000)
|
||||
"""
|
||||
|
||||
size = 512
|
||||
inputs = [1] + [0] * (size - 1)
|
||||
outputs = [filter.process(item) for item in inputs]
|
||||
|
||||
filler = [0] * (samplerate - size) # zero-padding
|
||||
outputs += filler
|
||||
fft_out = np.angle(np.fft.fft(outputs))
|
||||
|
||||
# Frequencies on log scale from 24 to nyquist frequency
|
||||
plt.xlim(24, samplerate / 2 - 1)
|
||||
plt.xlabel("Frequency (Hz)")
|
||||
plt.xscale("log")
|
||||
|
||||
plt.ylim(-2 * pi, 2 * pi)
|
||||
plt.ylabel("Phase shift (Radians)")
|
||||
plt.plot(np.unwrap(fft_out, -2 * pi))
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user