diff --git a/Neural_Network/perceptron.py b/Neural_Network/perceptron.py new file mode 100644 index 000000000..bbd16a808 --- /dev/null +++ b/Neural_Network/perceptron.py @@ -0,0 +1,125 @@ +''' + + Perceptron + w = w + N * (d(k) - y) * x(k) + + Using perceptron network for oil analysis, + with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2 + p1 = -1 + p2 = 1 + +''' + +import random + + +class Perceptron: + def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1): + self.sample = sample + self.exit = exit + self.learn_rate = learn_rate + self.epoch_number = epoch_number + self.bias = bias + self.number_sample = len(sample) + self.col_sample = len(sample[0]) + self.weight = [] + + def trannig(self): + for sample in self.sample: + sample.insert(0, self.bias) + + for i in range(self.col_sample): + self.weight.append(random.random()) + + self.weight.insert(0, self.bias) + + epoch_count = 0 + + while True: + erro = False + for i in range(self.number_sample): + u = 0 + for j in range(self.col_sample + 1): + u = u + self.weight[j] * self.sample[i][j] + y = self.sign(u) + if y != self.exit[i]: + + for j in range(self.col_sample + 1): + + self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j] + erro = True + #print('Epoch: \n',epoch_count) + epoch_count = epoch_count + 1 + # if you want controle the epoch or just by erro + if erro == False: + #if epoch_count > self.epoch_number or not erro: + break + + def sort(self, sample): + sample.insert(0, self.bias) + u = 0 + for i in range(self.col_sample + 1): + u = u + self.weight[i] * sample[i] + + y = self.sign(u) + + if y == -1: + print('Sample: ', sample) + print('classification: P1') + else: + print('Sample: ', sample) + print('classification: P2') + + def sign(self, u): + return 1 if u >= 0 else -1 + + +samples = [ + [-0.6508, 0.1097, 4.0009], + [-1.4492, 0.8896, 4.4005], + [2.0850, 0.6876, 12.0710], + [0.2626, 1.1476, 7.7985], + [0.6418, 1.0234, 7.0427], + [0.2569, 0.6730, 8.3265], + [1.1155, 0.6043, 7.4446], + [0.0914, 0.3399, 7.0677], + [0.0121, 0.5256, 4.6316], + [-0.0429, 0.4660, 5.4323], + [0.4340, 0.6870, 8.2287], + [0.2735, 1.0287, 7.1934], + [0.4839, 0.4851, 7.4850], + [0.4089, -0.1267, 5.5019], + [1.4391, 0.1614, 8.5843], + [-0.9115, -0.1973, 2.1962], + [0.3654, 1.0475, 7.4858], + [0.2144, 0.7515, 7.1699], + [0.2013, 1.0014, 6.5489], + [0.6483, 0.2183, 5.8991], + [-0.1147, 0.2242, 7.2435], + [-0.7970, 0.8795, 3.8762], + [-1.0625, 0.6366, 2.4707], + [0.5307, 0.1285, 5.6883], + [-1.2200, 0.7777, 1.7252], + [0.3957, 0.1076, 5.6623], + [-0.1013, 0.5989, 7.1812], + [2.4482, 0.9455, 11.2095], + [2.0149, 0.6192, 10.9263], + [0.2012, 0.2611, 5.4631] +] + +exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1] + +network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1) + +network.trannig() + +while True: + i = 0 + sample = [] + while i < 3: + value = input('value: ') + value = float(value) + sample.insert(i, value) + i = i + 1 + + network.sort(sample) \ No newline at end of file