diff --git a/DIRECTORY.md b/DIRECTORY.md index 80859356c..b57cb2eb1 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -287,6 +287,7 @@ * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) + * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) diff --git a/graphs/minimum_spanning_tree_prims2.py b/graphs/minimum_spanning_tree_prims2.py new file mode 100644 index 000000000..10ed736c9 --- /dev/null +++ b/graphs/minimum_spanning_tree_prims2.py @@ -0,0 +1,271 @@ +""" +Prim's (also known as Jarník's) algorithm is a greedy algorithm that finds a minimum +spanning tree for a weighted undirected graph. This means it finds a subset of the +edges that forms a tree that includes every vertex, where the total weight of all the +edges in the tree is minimized. The algorithm operates by building this tree one vertex +at a time, from an arbitrary starting vertex, at each step adding the cheapest possible +connection from the tree to another vertex. +""" + +from sys import maxsize +from typing import Dict, Optional, Tuple, Union + + +def get_parent_position(position: int) -> int: + """ + heap helper function get the position of the parent of the current node + + >>> get_parent_position(1) + 0 + >>> get_parent_position(2) + 0 + """ + return (position - 1) // 2 + + +def get_child_left_position(position: int) -> int: + """ + heap helper function get the position of the left child of the current node + + >>> get_child_left_position(0) + 1 + """ + return (2 * position) + 1 + + +def get_child_right_position(position: int) -> int: + """ + heap helper function get the position of the right child of the current node + + >>> get_child_right_position(0) + 2 + """ + return (2 * position) + 2 + + +class MinPriorityQueue: + """ + Minimum Priority Queue Class + + Functions: + is_empty: function to check if the priority queue is empty + push: function to add an element with given priority to the queue + extract_min: function to remove and return the element with lowest weight (highest + priority) + update_key: function to update the weight of the given key + _bubble_up: helper function to place a node at the proper position (upward + movement) + _bubble_down: helper function to place a node at the proper position (downward + movement) + _swap_nodes: helper function to swap the nodes at the given positions + + >>> queue = MinPriorityQueue() + + >>> queue.push(1, 1000) + >>> queue.push(2, 100) + >>> queue.push(3, 4000) + >>> queue.push(4, 3000) + + >>> print(queue.extract_min()) + 2 + + >>> queue.update_key(4, 50) + + >>> print(queue.extract_min()) + 4 + >>> print(queue.extract_min()) + 1 + >>> print(queue.extract_min()) + 3 + """ + + def __init__(self) -> None: + self.heap = [] + self.position_map = {} + self.elements = 0 + + def __len__(self) -> int: + return self.elements + + def __repr__(self) -> str: + return str(self.heap) + + def is_empty(self) -> bool: + # Check if the priority queue is empty + return self.elements == 0 + + def push(self, elem: Union[int, str], weight: int) -> None: + # Add an element with given priority to the queue + self.heap.append((elem, weight)) + self.position_map[elem] = self.elements + self.elements += 1 + self._bubble_up(elem) + + def extract_min(self) -> Union[int, str]: + # Remove and return the element with lowest weight (highest priority) + if self.elements > 1: + self._swap_nodes(0, self.elements - 1) + elem, _ = self.heap.pop() + del self.position_map[elem] + self.elements -= 1 + if self.elements > 0: + bubble_down_elem, _ = self.heap[0] + self._bubble_down(bubble_down_elem) + return elem + + def update_key(self, elem: Union[int, str], weight: int) -> None: + # Update the weight of the given key + position = self.position_map[elem] + self.heap[position] = (elem, weight) + if position > 0: + parent_position = get_parent_position(position) + _, parent_weight = self.heap[parent_position] + if parent_weight > weight: + self._bubble_up(elem) + else: + self._bubble_down(elem) + else: + self._bubble_down(elem) + + def _bubble_up(self, elem: Union[int, str]) -> None: + # Place a node at the proper position (upward movement) [to be used internally + # only] + curr_pos = self.position_map[elem] + if curr_pos == 0: + return + parent_position = get_parent_position(curr_pos) + _, weight = self.heap[curr_pos] + _, parent_weight = self.heap[parent_position] + if parent_weight > weight: + self._swap_nodes(parent_position, curr_pos) + return self._bubble_up(elem) + return + + def _bubble_down(self, elem: Union[int, str]) -> None: + # Place a node at the proper position (downward movement) [to be used + # internally only] + curr_pos = self.position_map[elem] + _, weight = self.heap[curr_pos] + child_left_position = get_child_left_position(curr_pos) + child_right_position = get_child_right_position(curr_pos) + if child_left_position < self.elements and child_right_position < self.elements: + _, child_left_weight = self.heap[child_left_position] + _, child_right_weight = self.heap[child_right_position] + if child_right_weight < child_left_weight: + if child_right_weight < weight: + self._swap_nodes(child_right_position, curr_pos) + return self._bubble_down(elem) + if child_left_position < self.elements: + _, child_left_weight = self.heap[child_left_position] + if child_left_weight < weight: + self._swap_nodes(child_left_position, curr_pos) + return self._bubble_down(elem) + else: + return + if child_right_position < self.elements: + _, child_right_weight = self.heap[child_right_position] + if child_right_weight < weight: + self._swap_nodes(child_right_position, curr_pos) + return self._bubble_down(elem) + else: + return + + def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None: + # Swap the nodes at the given positions + node1_elem = self.heap[node1_pos][0] + node2_elem = self.heap[node2_pos][0] + self.heap[node1_pos], self.heap[node2_pos] = ( + self.heap[node2_pos], + self.heap[node1_pos], + ) + self.position_map[node1_elem] = node2_pos + self.position_map[node2_elem] = node1_pos + + +class GraphUndirectedWeighted: + """ + Graph Undirected Weighted Class + + Functions: + add_node: function to add a node in the graph + add_edge: function to add an edge between 2 nodes in the graph + """ + + def __init__(self) -> None: + self.connections = {} + self.nodes = 0 + + def __repr__(self) -> str: + return str(self.connections) + + def __len__(self) -> int: + return self.nodes + + def add_node(self, node: Union[int, str]) -> None: + # Add a node in the graph if it is not in the graph + if node not in self.connections: + self.connections[node] = {} + self.nodes += 1 + + def add_edge( + self, node1: Union[int, str], node2: Union[int, str], weight: int + ) -> None: + # Add an edge between 2 nodes in the graph + self.add_node(node1) + self.add_node(node2) + self.connections[node1][node2] = weight + self.connections[node2][node1] = weight + + +def prims_algo( + graph: GraphUndirectedWeighted, +) -> Tuple[Dict[str, int], Dict[str, Optional[str]]]: + """ + >>> graph = GraphUndirectedWeighted() + + >>> graph.add_edge("a", "b", 3) + >>> graph.add_edge("b", "c", 10) + >>> graph.add_edge("c", "d", 5) + >>> graph.add_edge("a", "c", 15) + >>> graph.add_edge("b", "d", 100) + + >>> dist, parent = prims_algo(graph) + + >>> abs(dist["a"] - dist["b"]) + 3 + >>> abs(dist["d"] - dist["b"]) + 15 + >>> abs(dist["a"] - dist["c"]) + 13 + """ + # prim's algorithm for minimum spanning tree + dist = {node: maxsize for node in graph.connections} + parent = {node: None for node in graph.connections} + priority_queue = MinPriorityQueue() + [priority_queue.push(node, weight) for node, weight in dist.items()] + if priority_queue.is_empty(): + return dist, parent + + # initialization + node = priority_queue.extract_min() + dist[node] = 0 + for neighbour in graph.connections[node]: + if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: + dist[neighbour] = dist[node] + graph.connections[node][neighbour] + priority_queue.update_key(neighbour, dist[neighbour]) + parent[neighbour] = node + # running prim's algorithm + while not priority_queue.is_empty(): + node = priority_queue.extract_min() + for neighbour in graph.connections[node]: + if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: + dist[neighbour] = dist[node] + graph.connections[node][neighbour] + priority_queue.update_key(neighbour, dist[neighbour]) + parent[neighbour] = node + return dist, parent + + +if __name__ == "__main__": + from doctest import testmod + + testmod()