mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
closest pair of points algo (#943)
* created divide_and_conquer folder and added max_sub_array_sum.py under it (issue #817) * additional file in divide_and_conqure (closest pair of points)
This commit is contained in:
parent
03f9940775
commit
035457f569
113
divide_and_conquer/closest_pair_of_points.py
Normal file
113
divide_and_conquer/closest_pair_of_points.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
"""
|
||||
The algorithm finds distance btw closest pair of points in the given n points.
|
||||
Approach used -> Divide and conquer
|
||||
The points are sorted based on Xco-ords
|
||||
& by applying divide and conquer approach,
|
||||
minimum distance is obtained recursively.
|
||||
|
||||
>> closest points lie on different sides of partition
|
||||
This case handled by forming a strip of points
|
||||
whose Xco-ords distance is less than closest_pair_dis
|
||||
from mid-point's Xco-ords.
|
||||
Closest pair distance is found in the strip of points. (closest_in_strip)
|
||||
|
||||
min(closest_pair_dis, closest_in_strip) would be the final answer.
|
||||
|
||||
Time complexity: O(n * (logn)^2)
|
||||
"""
|
||||
|
||||
|
||||
import math
|
||||
|
||||
|
||||
def euclidean_distance_sqr(point1, point2):
|
||||
return pow(point1[0] - point2[0], 2) + pow(point1[1] - point2[1], 2)
|
||||
|
||||
|
||||
def column_based_sort(array, column = 0):
|
||||
return sorted(array, key = lambda x: x[column])
|
||||
|
||||
|
||||
def dis_between_closest_pair(points, points_counts, min_dis = float("inf")):
|
||||
""" brute force approach to find distance between closest pair points
|
||||
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
min_dis (float): distance between closest pair of points
|
||||
|
||||
"""
|
||||
|
||||
for i in range(points_counts - 1):
|
||||
for j in range(i+1, points_counts):
|
||||
current_dis = euclidean_distance_sqr(points[i], points[j])
|
||||
if current_dis < min_dis:
|
||||
min_dis = current_dis
|
||||
return min_dis
|
||||
|
||||
|
||||
def dis_between_closest_in_strip(points, points_counts, min_dis = float("inf")):
|
||||
""" closest pair of points in strip
|
||||
|
||||
Parameters :
|
||||
points, points_count, min_dis (list(tuple(int, int)), int, int)
|
||||
|
||||
Returns :
|
||||
min_dis (float): distance btw closest pair of points in the strip (< min_dis)
|
||||
|
||||
"""
|
||||
|
||||
for i in range(min(6, points_counts - 1), points_counts):
|
||||
for j in range(max(0, i-6), i):
|
||||
current_dis = euclidean_distance_sqr(points[i], points[j])
|
||||
if current_dis < min_dis:
|
||||
min_dis = current_dis
|
||||
return min_dis
|
||||
|
||||
|
||||
def closest_pair_of_points_sqr(points, points_counts):
|
||||
""" divide and conquer approach
|
||||
|
||||
Parameters :
|
||||
points, points_count (list(tuple(int, int)), int)
|
||||
|
||||
Returns :
|
||||
(float): distance btw closest pair of points
|
||||
|
||||
"""
|
||||
|
||||
# base case
|
||||
if points_counts <= 3:
|
||||
return dis_between_closest_pair(points, points_counts)
|
||||
|
||||
# recursion
|
||||
mid = points_counts//2
|
||||
closest_in_left = closest_pair_of_points(points[:mid], mid)
|
||||
closest_in_right = closest_pair_of_points(points[mid:], points_counts - mid)
|
||||
closest_pair_dis = min(closest_in_left, closest_in_right)
|
||||
|
||||
""" cross_strip contains the points, whose Xcoords are at a
|
||||
distance(< closest_pair_dis) from mid's Xcoord
|
||||
"""
|
||||
|
||||
cross_strip = []
|
||||
for point in points:
|
||||
if abs(point[0] - points[mid][0]) < closest_pair_dis:
|
||||
cross_strip.append(point)
|
||||
|
||||
cross_strip = column_based_sort(cross_strip, 1)
|
||||
closest_in_strip = dis_between_closest_in_strip(cross_strip,
|
||||
len(cross_strip), closest_pair_dis)
|
||||
return min(closest_pair_dis, closest_in_strip)
|
||||
|
||||
|
||||
def closest_pair_of_points(points, points_counts):
|
||||
return math.sqrt(closest_pair_of_points_sqr(points, points_counts))
|
||||
|
||||
|
||||
points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (0, 2), (5, 6), (1, 2)]
|
||||
points = column_based_sort(points)
|
||||
print("Distance:", closest_pair_of_points(points, len(points)))
|
||||
|
||||
|
75
divide_and_conquer/max_subarray_sum.py
Normal file
75
divide_and_conquer/max_subarray_sum.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
"""
|
||||
Given a array of length n, max_subarray_sum() finds
|
||||
the maximum of sum of contiguous sub-array using divide and conquer method.
|
||||
|
||||
Time complexity : O(n log n)
|
||||
|
||||
Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION
|
||||
(section : 4, sub-section : 4.1, page : 70)
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def max_sum_from_start(array):
|
||||
""" This function finds the maximum contiguous sum of array from 0 index
|
||||
|
||||
Parameters :
|
||||
array (list[int]) : given array
|
||||
|
||||
Returns :
|
||||
max_sum (int) : maximum contiguous sum of array from 0 index
|
||||
|
||||
"""
|
||||
array_sum = 0
|
||||
max_sum = float("-inf")
|
||||
for num in array:
|
||||
array_sum += num
|
||||
if array_sum > max_sum:
|
||||
max_sum = array_sum
|
||||
return max_sum
|
||||
|
||||
|
||||
def max_cross_array_sum(array, left, mid, right):
|
||||
""" This function finds the maximum contiguous sum of left and right arrays
|
||||
|
||||
Parameters :
|
||||
array, left, mid, right (list[int], int, int, int)
|
||||
|
||||
Returns :
|
||||
(int) : maximum of sum of contiguous sum of left and right arrays
|
||||
|
||||
"""
|
||||
|
||||
max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1])
|
||||
max_sum_of_right = max_sum_from_start(array[mid+1: right+1])
|
||||
return max_sum_of_left + max_sum_of_right
|
||||
|
||||
|
||||
def max_subarray_sum(array, left, right):
|
||||
""" Maximum contiguous sub-array sum, using divide and conquer method
|
||||
|
||||
Parameters :
|
||||
array, left, right (list[int], int, int) :
|
||||
given array, current left index and current right index
|
||||
|
||||
Returns :
|
||||
int : maximum of sum of contiguous sub-array
|
||||
|
||||
"""
|
||||
|
||||
# base case: array has only one element
|
||||
if left == right:
|
||||
return array[right]
|
||||
|
||||
# Recursion
|
||||
mid = (left + right) // 2
|
||||
left_half_sum = max_subarray_sum(array, left, mid)
|
||||
right_half_sum = max_subarray_sum(array, mid + 1, right)
|
||||
cross_sum = max_cross_array_sum(array, left, mid, right)
|
||||
return max(left_half_sum, right_half_sum, cross_sum)
|
||||
|
||||
|
||||
array = [-2, -5, 6, -2, -3, 1, 5, -6]
|
||||
array_length = len(array)
|
||||
print("Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1))
|
||||
|
Loading…
Reference in New Issue
Block a user