mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-23 06:59:47 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
9e9a3131a3
commit
041571772e
@ -1,7 +1,7 @@
|
|||||||
"""
|
"""
|
||||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||||
Name - - sliding_window_attention.py
|
Name - - sliding_window_attention.py
|
||||||
Goal - - Implement a neural network architecture using sliding window attention for sequence
|
Goal - - Implement a neural network architecture using sliding window attention for sequence
|
||||||
modeling tasks.
|
modeling tasks.
|
||||||
Detail: Total 5 layers neural network
|
Detail: Total 5 layers neural network
|
||||||
* Input layer
|
* Input layer
|
||||||
@ -12,9 +12,9 @@ Author: Stephen Lee
|
|||||||
Github: 245885195@qq.com
|
Github: 245885195@qq.com
|
||||||
Date: 2024.10.20
|
Date: 2024.10.20
|
||||||
References:
|
References:
|
||||||
1. Choromanska, A., et al. (2020). "On the Importance of Initialization and Momentum in
|
1. Choromanska, A., et al. (2020). "On the Importance of Initialization and Momentum in
|
||||||
Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*.
|
Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*.
|
||||||
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast Autoregressive Transformers
|
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast Autoregressive Transformers
|
||||||
with Linear Attention." *arXiv preprint arXiv:2006.16236*.
|
with Linear Attention." *arXiv preprint arXiv:2006.16236*.
|
||||||
3. [Attention Mechanisms in Neural Networks](https://en.wikipedia.org/wiki/Attention_(machine_learning))
|
3. [Attention Mechanisms in Neural Networks](https://en.wikipedia.org/wiki/Attention_(machine_learning))
|
||||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||||
@ -52,7 +52,7 @@ class SlidingWindowAttention:
|
|||||||
Forward pass for the sliding window attention.
|
Forward pass for the sliding window attention.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
input_tensor (np.ndarray): Input tensor of shape (batch_size, seq_length,
|
input_tensor (np.ndarray): Input tensor of shape (batch_size, seq_length,
|
||||||
embed_dim).
|
embed_dim).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -93,7 +93,9 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
# usage
|
# usage
|
||||||
rng = np.random.default_rng()
|
rng = np.random.default_rng()
|
||||||
x = rng.standard_normal((2, 10, 4)) # Batch size 2, sequence length 10, embedding dimension 4
|
x = rng.standard_normal(
|
||||||
|
(2, 10, 4)
|
||||||
|
) # Batch size 2, sequence length 10, embedding dimension 4
|
||||||
attention = SlidingWindowAttention(embed_dim=4, window_size=3)
|
attention = SlidingWindowAttention(embed_dim=4, window_size=3)
|
||||||
output = attention.forward(x)
|
output = attention.forward(x)
|
||||||
print(output)
|
print(output)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user