mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
ENH: two algorithms for the convex hull problem of a set of 2d points on a plain (#1135)
* divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * a naive and divide-and-conquer algorithms for the convex-hull problem * two convex-hull algorithms, a divide-and-conquer and a naive algorithm * two convex-hull algorithms, a divide-and-conquer and a naive algorithm * two convex-hull algorithms, a divide-and-conquer and a naive algorithm
This commit is contained in:
parent
a18a8fe2b9
commit
05c9a05f36
431
divide_and_conquer/convex_hull.py
Normal file
431
divide_and_conquer/convex_hull.py
Normal file
|
@ -0,0 +1,431 @@
|
|||
from __future__ import print_function, absolute_import, division
|
||||
|
||||
from numbers import Number
|
||||
"""
|
||||
The convex hull problem is problem of finding all the vertices of convex polygon, P of
|
||||
a set of points in a plane such that all the points are either on the vertices of P or
|
||||
inside P. TH convex hull problem has several applications in geometrical problems,
|
||||
computer graphics and game development.
|
||||
|
||||
Two algorithms have been implemented for the convex hull problem here.
|
||||
1. A brute-force algorithm which runs in O(n^3)
|
||||
2. A divide-and-conquer algorithm which runs in O(n^3)
|
||||
|
||||
There are other several other algorithms for the convex hull problem
|
||||
which have not been implemented here, yet.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class Point:
|
||||
"""
|
||||
Defines a 2-d point for use by all convex-hull algorithms.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x: an int or a float, the x-coordinate of the 2-d point
|
||||
y: an int or a float, the y-coordinate of the 2-d point
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> Point(1, 2)
|
||||
(1, 2)
|
||||
>>> Point("1", "2")
|
||||
(1.0, 2.0)
|
||||
>>> Point(1, 2) > Point(0, 1)
|
||||
True
|
||||
>>> Point(1, 1) == Point(1, 1)
|
||||
True
|
||||
>>> Point(-0.5, 1) == Point(0.5, 1)
|
||||
False
|
||||
>>> Point("pi", "e")
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: x and y must be both numeric types but got <class 'str'>, <class 'str'> instead
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
if not (isinstance(x, Number) and isinstance(y, Number)):
|
||||
try:
|
||||
x, y = float(x), float(y)
|
||||
except ValueError as e:
|
||||
e.args = ("x and y must be both numeric types "
|
||||
"but got {}, {} instead".format(type(x), type(y)), )
|
||||
raise
|
||||
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.x == other.x and self.y == other.y
|
||||
|
||||
def __ne__(self, other):
|
||||
return not self == other
|
||||
|
||||
def __gt__(self, other):
|
||||
if self.x > other.x:
|
||||
return True
|
||||
elif self.x == other.x:
|
||||
return self.y > other.y
|
||||
return False
|
||||
|
||||
def __lt__(self, other):
|
||||
return not self > other
|
||||
|
||||
def __ge__(self, other):
|
||||
if self.x > other.x:
|
||||
return True
|
||||
elif self.x == other.x:
|
||||
return self.y >= other.y
|
||||
return False
|
||||
|
||||
def __le__(self, other):
|
||||
if self.x < other.x:
|
||||
return True
|
||||
elif self.x == other.x:
|
||||
return self.y <= other.y
|
||||
return False
|
||||
|
||||
def __repr__(self):
|
||||
return "({}, {})".format(self.x, self.y)
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self.x)
|
||||
|
||||
|
||||
def _construct_points(list_of_tuples):
|
||||
"""
|
||||
constructs a list of points from an array-like object of numbers
|
||||
|
||||
Arguments
|
||||
---------
|
||||
|
||||
list_of_tuples: array-like object of type numbers. Acceptable types so far
|
||||
are lists, tuples and sets.
|
||||
|
||||
Returns
|
||||
--------
|
||||
points: a list where each item is of type Point. This contains only objects
|
||||
which can be converted into a Point.
|
||||
|
||||
Examples
|
||||
-------
|
||||
>>> _construct_points([[1, 1], [2, -1], [0.3, 4]])
|
||||
[(1, 1), (2, -1), (0.3, 4)]
|
||||
>>> _construct_points(([1, 1], [2, -1], [0.3, 4]))
|
||||
[(1, 1), (2, -1), (0.3, 4)]
|
||||
>>> _construct_points([(1, 1), (2, -1), (0.3, 4)])
|
||||
[(1, 1), (2, -1), (0.3, 4)]
|
||||
>>> _construct_points([[1, 1], (2, -1), [0.3, 4]])
|
||||
[(1, 1), (2, -1), (0.3, 4)]
|
||||
>>> _construct_points([1, 2])
|
||||
Ignoring deformed point 1. All points must have at least 2 coordinates.
|
||||
Ignoring deformed point 2. All points must have at least 2 coordinates.
|
||||
[]
|
||||
>>> _construct_points([])
|
||||
[]
|
||||
>>> _construct_points(None)
|
||||
[]
|
||||
"""
|
||||
|
||||
points = []
|
||||
if list_of_tuples:
|
||||
for p in list_of_tuples:
|
||||
try:
|
||||
points.append(Point(p[0], p[1]))
|
||||
except (IndexError, TypeError):
|
||||
print("Ignoring deformed point {}. All points"
|
||||
" must have at least 2 coordinates.".format(p))
|
||||
return points
|
||||
|
||||
|
||||
def _validate_input(points):
|
||||
"""
|
||||
validates an input instance before a convex-hull algorithms uses it
|
||||
|
||||
Parameters
|
||||
---------
|
||||
points: array-like, the 2d points to validate before using with
|
||||
a convex-hull algorithm. The elements of points must be either lists, tuples or
|
||||
Points.
|
||||
|
||||
Returns
|
||||
-------
|
||||
points: array_like, an iterable of all well-defined Points constructed passed in.
|
||||
|
||||
|
||||
Exception
|
||||
---------
|
||||
ValueError: if points is empty or None, or if a wrong data structure like a scalar is passed
|
||||
|
||||
TypeError: if an iterable but non-indexable object (eg. dictionary) is passed.
|
||||
The exception to this a set which we'll convert to a list before using
|
||||
|
||||
|
||||
Examples
|
||||
-------
|
||||
>>> _validate_input([[1, 2]])
|
||||
[(1, 2)]
|
||||
>>> _validate_input([(1, 2)])
|
||||
[(1, 2)]
|
||||
>>> _validate_input([Point(2, 1), Point(-1, 2)])
|
||||
[(2, 1), (-1, 2)]
|
||||
>>> _validate_input([])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Expecting a list of points but got []
|
||||
>>> _validate_input(1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Expecting an iterable object but got an non-iterable type 1
|
||||
"""
|
||||
|
||||
if not points:
|
||||
raise ValueError("Expecting a list of points but got {}".format(points))
|
||||
|
||||
if isinstance(points, set):
|
||||
points = list(points)
|
||||
|
||||
try:
|
||||
if hasattr(points, "__iter__") and not isinstance(points[0], Point):
|
||||
if isinstance(points[0], (list, tuple)):
|
||||
points = _construct_points(points)
|
||||
else:
|
||||
raise ValueError("Expecting an iterable of type Point, list or tuple. "
|
||||
"Found objects of type {} instead"
|
||||
.format(["point", "list", "tuple"], type(points[0])))
|
||||
elif not hasattr(points, "__iter__"):
|
||||
raise ValueError("Expecting an iterable object "
|
||||
"but got an non-iterable type {}".format(points))
|
||||
except TypeError as e:
|
||||
print("Expecting an iterable of type Point, list or tuple.")
|
||||
raise
|
||||
|
||||
return points
|
||||
|
||||
|
||||
def _det(a, b, c):
|
||||
"""
|
||||
Computes the sign perpendicular distance of a 2d point c from a line segment
|
||||
ab. The sign indicates the direction of c relative to ab.
|
||||
A Positive value means c is above ab (to the left), while a negative value
|
||||
means c is below ab (to the right). 0 means all three points are on a straight line.
|
||||
|
||||
As a side note, 0.5 * abs|det| is the area of triangle abc
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: point, the point on the left end of line segment ab
|
||||
b: point, the point on the right end of line segment ab
|
||||
c: point, the point for which the direction and location is desired.
|
||||
|
||||
Returns
|
||||
--------
|
||||
det: float, abs(det) is the distance of c from ab. The sign
|
||||
indicates which side of line segment ab c is. det is computed as
|
||||
(a_xb_y + c_xa_y + b_xc_y) - (a_yb_x + c_ya_x + b_yc_x)
|
||||
|
||||
Examples
|
||||
----------
|
||||
>>> _det(Point(1, 1), Point(1, 2), Point(1, 5))
|
||||
0
|
||||
>>> _det(Point(0, 0), Point(10, 0), Point(0, 10))
|
||||
100
|
||||
>>> _det(Point(0, 0), Point(10, 0), Point(0, -10))
|
||||
-100
|
||||
"""
|
||||
|
||||
det = (a.x * b.y + b.x * c.y + c.x * a.y) - (a.y * b.x + b.y * c.x + c.y * a.x)
|
||||
return det
|
||||
|
||||
|
||||
def convex_hull_bf(points):
|
||||
"""
|
||||
Constructs the convex hull of a set of 2D points using a brute force algorithm.
|
||||
The algorithm basically considers all combinations of points (i, j) and uses the
|
||||
definition of convexity to determine whether (i, j) is part of the convex hull or not.
|
||||
(i, j) is part of the convex hull if and only iff there are no points on both sides
|
||||
of the line segment connecting the ij, and there is no point k such that k is on either end
|
||||
of the ij.
|
||||
|
||||
Runtime: O(n^3) - definitely horrible
|
||||
|
||||
Parameters
|
||||
---------
|
||||
points: array-like of object of Points, lists or tuples.
|
||||
The set of 2d points for which the convex-hull is needed
|
||||
|
||||
Returns
|
||||
------
|
||||
convex_set: list, the convex-hull of points sorted in non-decreasing order.
|
||||
|
||||
See Also
|
||||
--------
|
||||
convex_hull_recursive,
|
||||
|
||||
Examples
|
||||
---------
|
||||
>>> convex_hull_bf([[0, 0], [1, 0], [10, 1]])
|
||||
[(0, 0), (1, 0), (10, 1)]
|
||||
>>> convex_hull_bf([[0, 0], [1, 0], [10, 0]])
|
||||
[(0, 0), (10, 0)]
|
||||
>>> convex_hull_bf([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]])
|
||||
[(-1, -1), (-1, 1), (1, -1), (1, 1)]
|
||||
>>> convex_hull_bf([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)])
|
||||
[(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)]
|
||||
"""
|
||||
|
||||
points = sorted(_validate_input(points))
|
||||
n = len(points)
|
||||
convex_set = set()
|
||||
|
||||
for i in range(n-1):
|
||||
for j in range(i + 1, n):
|
||||
points_left_of_ij = points_right_of_ij = False
|
||||
ij_part_of_convex_hull = True
|
||||
for k in range(n):
|
||||
if k != i and k != j:
|
||||
det_k = _det(points[i], points[j], points[k])
|
||||
|
||||
if det_k > 0:
|
||||
points_left_of_ij = True
|
||||
elif det_k < 0:
|
||||
points_right_of_ij = True
|
||||
else:
|
||||
# point[i], point[j], point[k] all lie on a straight line
|
||||
# if point[k] is to the left of point[i] or it's to the
|
||||
# right of point[j], then point[i], point[j] cannot be
|
||||
# part of the convex hull of A
|
||||
if points[k] < points[i] or points[k] > points[j]:
|
||||
ij_part_of_convex_hull = False
|
||||
break
|
||||
|
||||
if points_left_of_ij and points_right_of_ij:
|
||||
ij_part_of_convex_hull = False
|
||||
break
|
||||
|
||||
if ij_part_of_convex_hull:
|
||||
convex_set.update([points[i], points[j]])
|
||||
|
||||
return sorted(convex_set)
|
||||
|
||||
|
||||
def convex_hull_recursive(points):
|
||||
"""
|
||||
Constructs the convex hull of a set of 2D points using a divide-and-conquer strategy
|
||||
The algorithm exploits the geometric properties of the problem by repeatedly partitioning
|
||||
the set of points into smaller hulls, and finding the convex hull of these smaller hulls.
|
||||
The union of the convex hull from smaller hulls is the solution to the convex hull of the larger problem.
|
||||
|
||||
Parameter
|
||||
---------
|
||||
points: array-like of object of Points, lists or tuples.
|
||||
The set of 2d points for which the convex-hull is needed
|
||||
|
||||
Runtime: O(n log n)
|
||||
|
||||
Returns
|
||||
-------
|
||||
convex_set: list, the convex-hull of points sorted in non-decreasing order.
|
||||
|
||||
Examples
|
||||
---------
|
||||
>>> convex_hull_recursive([[0, 0], [1, 0], [10, 1]])
|
||||
[(0, 0), (1, 0), (10, 1)]
|
||||
>>> convex_hull_recursive([[0, 0], [1, 0], [10, 0]])
|
||||
[(0, 0), (10, 0)]
|
||||
>>> convex_hull_recursive([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1], [-0.75, 1]])
|
||||
[(-1, -1), (-1, 1), (1, -1), (1, 1)]
|
||||
>>> convex_hull_recursive([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3), (2, -1), (2, -4), (1, -3)])
|
||||
[(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)]
|
||||
|
||||
"""
|
||||
points = sorted(_validate_input(points))
|
||||
n = len(points)
|
||||
|
||||
# divide all the points into an upper hull and a lower hull
|
||||
# the left most point and the right most point are definitely
|
||||
# members of the convex hull by definition.
|
||||
# use these two anchors to divide all the points into two hulls,
|
||||
# an upper hull and a lower hull.
|
||||
|
||||
# all points to the left (above) the line joining the extreme points belong to the upper hull
|
||||
# all points to the right (below) the line joining the extreme points below to the lower hull
|
||||
# ignore all points on the line joining the extreme points since they cannot be part of the
|
||||
# convex hull
|
||||
|
||||
left_most_point = points[0]
|
||||
right_most_point = points[n-1]
|
||||
|
||||
convex_set = {left_most_point, right_most_point}
|
||||
upperhull = []
|
||||
lowerhull = []
|
||||
|
||||
for i in range(1, n-1):
|
||||
det = _det(left_most_point, right_most_point, points[i])
|
||||
|
||||
if det > 0:
|
||||
upperhull.append(points[i])
|
||||
elif det < 0:
|
||||
lowerhull.append(points[i])
|
||||
|
||||
_construct_hull(upperhull, left_most_point, right_most_point, convex_set)
|
||||
_construct_hull(lowerhull, right_most_point, left_most_point, convex_set)
|
||||
|
||||
return sorted(convex_set)
|
||||
|
||||
|
||||
def _construct_hull(points, left, right, convex_set):
|
||||
"""
|
||||
|
||||
Parameters
|
||||
---------
|
||||
points: list or None, the hull of points from which to choose the next convex-hull point
|
||||
left: Point, the point to the left of line segment joining left and right
|
||||
right: The point to the right of the line segment joining left and right
|
||||
convex_set: set, the current convex-hull. The state of convex-set gets updated by this function
|
||||
|
||||
Note
|
||||
----
|
||||
For the line segment 'ab', 'a' is on the left and 'b' on the right.
|
||||
but the reverse is true for the line segment 'ba'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Nothing, only updates the state of convex-set
|
||||
"""
|
||||
if points:
|
||||
extreme_point = None
|
||||
extreme_point_distance = float('-inf')
|
||||
candidate_points = []
|
||||
|
||||
for p in points:
|
||||
det = _det(left, right, p)
|
||||
|
||||
if det > 0:
|
||||
candidate_points.append(p)
|
||||
|
||||
if det > extreme_point_distance:
|
||||
extreme_point_distance = det
|
||||
extreme_point = p
|
||||
|
||||
if extreme_point:
|
||||
_construct_hull(candidate_points, left, extreme_point, convex_set)
|
||||
convex_set.add(extreme_point)
|
||||
_construct_hull(candidate_points, extreme_point, right, convex_set)
|
||||
|
||||
|
||||
def main():
|
||||
points = [(0, 3), (2, 2), (1, 1), (2, 1), (3, 0),
|
||||
(0, 0), (3, 3), (2, -1), (2, -4), (1, -3)]
|
||||
# the convex set of points is
|
||||
# [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)]
|
||||
results_recursive = convex_hull_recursive(points)
|
||||
results_bf = convex_hull_bf(points)
|
||||
assert results_bf == results_recursive
|
||||
|
||||
print(results_bf)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user