diff --git a/blockchain/chinese_remainder_theorem.py b/blockchain/chinese_remainder_theorem.py index 3e4b2b7b4..b50147ac1 100644 --- a/blockchain/chinese_remainder_theorem.py +++ b/blockchain/chinese_remainder_theorem.py @@ -1,18 +1,21 @@ -# Chinese Remainder Theorem: -# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) +""" +Chinese Remainder Theorem: +GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) -# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b -# there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are -# two such integers, then n1=n2(mod ab) +If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b +there exists integer n, such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are +two such integers, then n1=n2(mod ab) -# Algorithm : +Algorithm : -# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 -# 2. Take n = ra*by + rb*ax +1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 +2. Take n = ra*by + rb*ax +""" +from typing import Tuple # Extended Euclid -def extended_euclid(a: int, b: int) -> (int, int): +def extended_euclid(a: int, b: int) -> Tuple[int, int]: """ >>> extended_euclid(10, 6) (-1, 2) diff --git a/blockchain/diophantine_equation.py b/blockchain/diophantine_equation.py index a92c2a13c..7df674cb1 100644 --- a/blockchain/diophantine_equation.py +++ b/blockchain/diophantine_equation.py @@ -1,12 +1,14 @@ -# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the -# diophantine equation a*x + b*y = c has a solution (where x and y are integers) -# iff gcd(a,b) divides c. - -# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) +from typing import Tuple -def diophantine(a: int, b: int, c: int) -> (int, int): +def diophantine(a: int, b: int, c: int) -> Tuple[float, float]: """ + Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the + diophantine equation a*x + b*y = c has a solution (where x and y are integers) + iff gcd(a,b) divides c. + + GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) + >>> diophantine(10,6,14) (-7.0, 14.0) @@ -26,19 +28,19 @@ def diophantine(a: int, b: int, c: int) -> (int, int): return (r * x, r * y) -# Lemma : if n|ab and gcd(a,n) = 1, then n|b. - -# Finding All solutions of Diophantine Equations: - -# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine -# Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the solutions have the form -# a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer. - -# n is the number of solution you want, n = 2 by default - - def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None: """ + Lemma : if n|ab and gcd(a,n) = 1, then n|b. + + Finding All solutions of Diophantine Equations: + + Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of + Diophantine Equation a*x + b*y = c. a*x0 + b*y0 = c, then all the + solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, + where t is an arbitrary integer. + + n is the number of solution you want, n = 2 by default + >>> diophantine_all_soln(10, 6, 14) -7.0 14.0 -4.0 9.0 @@ -67,13 +69,12 @@ def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None: print(x, y) -# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b - -# Euclid's Algorithm - - def greatest_common_divisor(a: int, b: int) -> int: """ + Euclid's Lemma : d divides a and b, if and only if d divides a-b and b + + Euclid's Algorithm + >>> greatest_common_divisor(7,5) 1 @@ -94,12 +95,11 @@ def greatest_common_divisor(a: int, b: int) -> int: return b -# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers -# x and y, then d = gcd(a,b) - - -def extended_gcd(a: int, b: int) -> (int, int, int): +def extended_gcd(a: int, b: int) -> Tuple[int, int, int]: """ + Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers + x and y, then d = gcd(a,b) + >>> extended_gcd(10, 6) (2, -1, 2) diff --git a/blockchain/modular_division.py b/blockchain/modular_division.py index e012db28f..4f7f50a92 100644 --- a/blockchain/modular_division.py +++ b/blockchain/modular_division.py @@ -1,21 +1,23 @@ -# Modular Division : -# An efficient algorithm for dividing b by a modulo n. - -# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) - -# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should -# return an integer x such that 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)). - -# Theorem: -# a has a multiplicative inverse modulo n iff gcd(a,n) = 1 - - -# This find x = b*a^(-1) mod n -# Uses ExtendedEuclid to find the inverse of a +from typing import Tuple def modular_division(a: int, b: int, n: int) -> int: """ + Modular Division : + An efficient algorithm for dividing b by a modulo n. + + GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) + + Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should + return an integer x such that 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)). + + Theorem: + a has a multiplicative inverse modulo n iff gcd(a,n) = 1 + + + This find x = b*a^(-1) mod n + Uses ExtendedEuclid to find the inverse of a + >>> modular_division(4,8,5) 2 @@ -32,9 +34,10 @@ def modular_division(a: int, b: int, n: int) -> int: return x -# This function find the inverses of a i.e., a^(-1) def invert_modulo(a: int, n: int) -> int: """ + This function find the inverses of a i.e., a^(-1) + >>> invert_modulo(2, 5) 3 @@ -50,9 +53,11 @@ def invert_modulo(a: int, n: int) -> int: # ------------------ Finding Modular division using invert_modulo ------------------- -# This function used the above inversion of a to find x = (b*a^(-1))mod n + def modular_division2(a: int, b: int, n: int) -> int: """ + This function used the above inversion of a to find x = (b*a^(-1))mod n + >>> modular_division2(4,8,5) 2 @@ -68,17 +73,15 @@ def modular_division2(a: int, b: int, n: int) -> int: return x -# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x -# and y, then d = gcd(a,b) - - -def extended_gcd(a: int, b: int) -> (int, int, int): +def extended_gcd(a: int, b: int) -> Tuple[int, int, int]: """ - >>> extended_gcd(10, 6) - (2, -1, 2) + Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x + and y, then d = gcd(a,b) + >>> extended_gcd(10, 6) + (2, -1, 2) - >>> extended_gcd(7, 5) - (1, -2, 3) + >>> extended_gcd(7, 5) + (1, -2, 3) ** extended_gcd function is used when d = gcd(a,b) is required in output @@ -98,9 +101,9 @@ def extended_gcd(a: int, b: int) -> (int, int, int): return (d, x, y) -# Extended Euclid -def extended_euclid(a: int, b: int) -> (int, int): +def extended_euclid(a: int, b: int) -> Tuple[int, int]: """ + Extended Euclid >>> extended_euclid(10, 6) (-1, 2) @@ -115,12 +118,11 @@ def extended_euclid(a: int, b: int) -> (int, int): return (y, x - k * y) -# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b -# Euclid's Algorithm - - def greatest_common_divisor(a: int, b: int) -> int: """ + Euclid's Lemma : d divides a and b, if and only if d divides a-b and b + Euclid's Algorithm + >>> greatest_common_divisor(7,5) 1