mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Ridge Regression
This commit is contained in:
parent
03a42510b0
commit
07db6e01b5
115
machine_learning/Ridge_Regression.py
Normal file
115
machine_learning/Ridge_Regression.py
Normal file
|
@ -0,0 +1,115 @@
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
|
||||||
|
def collect_dataset():
|
||||||
|
"""Collect dataset of CSGO
|
||||||
|
The dataset contains ADR vs Rating of a Player
|
||||||
|
:return : dataset obtained from the link, as matrix
|
||||||
|
"""
|
||||||
|
response = requests.get(
|
||||||
|
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/"
|
||||||
|
"master/Week1/ADRvsRating.csv",
|
||||||
|
timeout=10,
|
||||||
|
)
|
||||||
|
lines = response.text.splitlines()
|
||||||
|
data = []
|
||||||
|
for item in lines:
|
||||||
|
item = item.split(",")
|
||||||
|
data.append(item)
|
||||||
|
data.pop(0) # This is for removing the labels from the list
|
||||||
|
dataset = np.matrix(data)
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_reg):
|
||||||
|
"""Run steep gradient descent and updates the Feature vector accordingly
|
||||||
|
:param data_x : contains the dataset
|
||||||
|
:param data_y : contains the output associated with each data-entry
|
||||||
|
:param len_data : length of the data
|
||||||
|
:param alpha : Learning rate of the model
|
||||||
|
:param theta : Feature vector (weights for our model)
|
||||||
|
:param lambda_reg: Regularization parameter
|
||||||
|
:return : Updated Features using
|
||||||
|
curr_features - alpha_ * gradient(w.r.t. feature)
|
||||||
|
"""
|
||||||
|
n = len_data
|
||||||
|
|
||||||
|
prod = np.dot(theta, data_x.transpose())
|
||||||
|
prod -= data_y.transpose()
|
||||||
|
sum_grad = np.dot(prod, data_x)
|
||||||
|
|
||||||
|
# Add regularization to the gradient
|
||||||
|
theta_regularized = np.copy(theta)
|
||||||
|
theta_regularized[0, 0] = 0 # Don't regularize the bias term
|
||||||
|
sum_grad += lambda_reg * theta_regularized # Add regularization to gradient
|
||||||
|
|
||||||
|
theta = theta - (alpha / n) * sum_grad
|
||||||
|
return theta
|
||||||
|
|
||||||
|
def sum_of_square_error(data_x, data_y, len_data, theta, lambda_reg):
|
||||||
|
"""Return sum of square error for error calculation
|
||||||
|
:param data_x : contains our dataset
|
||||||
|
:param data_y : contains the output (result vector)
|
||||||
|
:param len_data : len of the dataset
|
||||||
|
:param theta : contains the feature vector
|
||||||
|
:param lambda_reg: Regularization parameter
|
||||||
|
:return : sum of square error computed from given features
|
||||||
|
"""
|
||||||
|
prod = np.dot(theta, data_x.transpose())
|
||||||
|
prod -= data_y.transpose()
|
||||||
|
sum_elem = np.sum(np.square(prod))
|
||||||
|
|
||||||
|
# Add regularization to the cost function
|
||||||
|
regularization_term = lambda_reg * np.sum(np.square(theta[:, 1:])) # Don't regularize the bias term
|
||||||
|
error = (sum_elem / (2 * len_data)) + (regularization_term / (2 * len_data))
|
||||||
|
return error
|
||||||
|
|
||||||
|
def run_ridge_regression(data_x, data_y, lambda_reg=1.0):
|
||||||
|
"""Implement Ridge Regression over the dataset
|
||||||
|
:param data_x : contains our dataset
|
||||||
|
:param data_y : contains the output (result vector)
|
||||||
|
:param lambda_reg: Regularization parameter
|
||||||
|
:return : feature for line of best fit (Feature vector)
|
||||||
|
"""
|
||||||
|
iterations = 100000
|
||||||
|
alpha = 0.0001550
|
||||||
|
|
||||||
|
no_features = data_x.shape[1]
|
||||||
|
len_data = data_x.shape[0]
|
||||||
|
|
||||||
|
theta = np.zeros((1, no_features))
|
||||||
|
|
||||||
|
for i in range(iterations):
|
||||||
|
theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_reg)
|
||||||
|
error = sum_of_square_error(data_x, data_y, len_data, theta, lambda_reg)
|
||||||
|
print(f"At Iteration {i + 1} - Error is {error:.5f}")
|
||||||
|
|
||||||
|
return theta
|
||||||
|
|
||||||
|
def mean_absolute_error(predicted_y, original_y):
|
||||||
|
"""Return mean absolute error for error calculation
|
||||||
|
:param predicted_y : contains the output of prediction (result vector)
|
||||||
|
:param original_y : contains values of expected outcome
|
||||||
|
:return : mean absolute error computed from given features
|
||||||
|
"""
|
||||||
|
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
|
||||||
|
return total / len(original_y)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Driver function"""
|
||||||
|
data = collect_dataset()
|
||||||
|
|
||||||
|
len_data = data.shape[0]
|
||||||
|
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
|
||||||
|
data_y = data[:, -1].astype(float)
|
||||||
|
|
||||||
|
lambda_reg = 1.0 # Set your desired regularization parameter
|
||||||
|
theta = run_ridge_regression(data_x, data_y, lambda_reg)
|
||||||
|
|
||||||
|
len_result = theta.shape[1]
|
||||||
|
print("Resultant Feature vector : ")
|
||||||
|
for i in range(len_result):
|
||||||
|
print(f"{theta[0, i]:.5f}")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user