mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
adding jaccard similarity (#1270)
* adding jaccard similarity * renaming files. zeebus! what an headache
This commit is contained in:
parent
309204a581
commit
07f04a2e55
80
maths/jaccard_similarity.py
Normal file
80
maths/jaccard_similarity.py
Normal file
|
@ -0,0 +1,80 @@
|
|||
"""
|
||||
The Jaccard similarity coefficient is a commonly used indicator of the
|
||||
similarity between two sets. Let U be a set and A and B be subsets of U,
|
||||
then the Jaccard index/similarity is defined to be the ratio of the number
|
||||
of elements of their intersection and the number of elements of their union.
|
||||
|
||||
Inspired from Wikipedia and
|
||||
the book Mining of Massive Datasets [MMDS 2nd Edition, Chapter 3]
|
||||
|
||||
https://en.wikipedia.org/wiki/Jaccard_index
|
||||
https://mmds.org
|
||||
|
||||
Jaccard similarity is widely used with MinHashing.
|
||||
"""
|
||||
|
||||
|
||||
def jaccard_similariy(setA, setB, alternativeUnion=False):
|
||||
"""
|
||||
Finds the jaccard similarity between two sets.
|
||||
Essentially, its intersection over union.
|
||||
|
||||
The alternative way to calculate this is to take union as sum of the
|
||||
number of items in the two sets. This will lead to jaccard similarity
|
||||
of a set with itself be 1/2 instead of 1. [MMDS 2nd Edition, Page 77]
|
||||
|
||||
Parameters:
|
||||
:setA (set,list,tuple): A non-empty set/list
|
||||
:setB (set,list,tuple): A non-empty set/list
|
||||
:alternativeUnion (boolean): If True, use sum of number of
|
||||
items as union
|
||||
|
||||
Output:
|
||||
(float) The jaccard similarity between the two sets.
|
||||
|
||||
Examples:
|
||||
>>> setA = {'a', 'b', 'c', 'd', 'e'}
|
||||
>>> setB = {'c', 'd', 'e', 'f', 'h', 'i'}
|
||||
>>> jaccard_similariy(setA,setB)
|
||||
0.375
|
||||
|
||||
>>> jaccard_similariy(setA,setA)
|
||||
1.0
|
||||
|
||||
>>> jaccard_similariy(setA,setA,True)
|
||||
0.5
|
||||
|
||||
>>> setA = ['a', 'b', 'c', 'd', 'e']
|
||||
>>> setB = ('c', 'd', 'e', 'f', 'h', 'i')
|
||||
>>> jaccard_similariy(setA,setB)
|
||||
0.375
|
||||
"""
|
||||
|
||||
if isinstance(setA, set) and isinstance(setB, set):
|
||||
|
||||
intersection = len(setA.intersection(setB))
|
||||
|
||||
if alternativeUnion:
|
||||
union = len(setA) + len(setB)
|
||||
else:
|
||||
union = len(setA.union(setB))
|
||||
|
||||
return intersection / union
|
||||
|
||||
if isinstance(setA, (list, tuple)) and isinstance(setB, (list, tuple)):
|
||||
|
||||
intersection = [element for element in setA if element in setB]
|
||||
|
||||
if alternativeUnion:
|
||||
union = len(setA) + len(setB)
|
||||
else:
|
||||
union = setA + [element for element in setB if element not in setA]
|
||||
|
||||
return len(intersection) / len(union)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
setA = {"a", "b", "c", "d", "e"}
|
||||
setB = {"c", "d", "e", "f", "h", "i"}
|
||||
print(jaccard_similariy(setA, setB))
|
Loading…
Reference in New Issue
Block a user