mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Remove Multiple Unused Imports and Variable
This commit is contained in:
parent
765a3267fc
commit
0856a61859
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -7,6 +7,7 @@ __pycache__/
|
||||||
*.so
|
*.so
|
||||||
|
|
||||||
# Distribution / packaging
|
# Distribution / packaging
|
||||||
|
.vscode/
|
||||||
.Python
|
.Python
|
||||||
env/
|
env/
|
||||||
build/
|
build/
|
||||||
|
|
3
.vscode/settings.json
vendored
3
.vscode/settings.json
vendored
|
@ -1,3 +0,0 @@
|
||||||
{
|
|
||||||
"python.pythonPath": "/usr/bin/python3"
|
|
||||||
}
|
|
|
@ -1,7 +1,7 @@
|
||||||
import math
|
|
||||||
import numpy
|
import numpy
|
||||||
|
|
||||||
def LUDecompose (table): #table that contains our data
|
def LUDecompose (table):
|
||||||
|
#table that contains our data
|
||||||
#table has to be a square array so we need to check first
|
#table has to be a square array so we need to check first
|
||||||
rows,columns=numpy.shape(table)
|
rows,columns=numpy.shape(table)
|
||||||
L=numpy.zeros((rows,columns))
|
L=numpy.zeros((rows,columns))
|
||||||
|
@ -31,4 +31,4 @@ def LUDecompose (table): #table that contains our data
|
||||||
matrix =numpy.array([[2,-2,1],[0,1,2],[5,3,1]])
|
matrix =numpy.array([[2,-2,1],[0,1,2],[5,3,1]])
|
||||||
L,U = LUDecompose(matrix)
|
L,U = LUDecompose(matrix)
|
||||||
print(L)
|
print(L)
|
||||||
print(U)
|
print(U)
|
||||||
|
|
|
@ -3,16 +3,14 @@
|
||||||
|
|
||||||
from sympy import diff
|
from sympy import diff
|
||||||
from decimal import Decimal
|
from decimal import Decimal
|
||||||
from math import sin, cos, exp
|
|
||||||
|
|
||||||
def NewtonRaphson(func, a):
|
def NewtonRaphson(func, a):
|
||||||
''' Finds root from the point 'a' onwards by Newton-Raphson method '''
|
''' Finds root from the point 'a' onwards by Newton-Raphson method '''
|
||||||
while True:
|
while True:
|
||||||
x = a
|
|
||||||
c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) )
|
c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) )
|
||||||
|
|
||||||
x = c
|
|
||||||
a = c
|
a = c
|
||||||
|
|
||||||
# This number dictates the accuracy of the answer
|
# This number dictates the accuracy of the answer
|
||||||
if abs(eval(func)) < 10**-15:
|
if abs(eval(func)) < 10**-15:
|
||||||
return c
|
return c
|
||||||
|
|
|
@ -1,8 +1,6 @@
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
import heapq
|
import heapq
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
|
||||||
import copy
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
xrange # Python 2
|
xrange # Python 2
|
|
@ -140,7 +140,7 @@ from collections import deque
|
||||||
|
|
||||||
|
|
||||||
def topo(G, ind=None, Q=[1]):
|
def topo(G, ind=None, Q=[1]):
|
||||||
if ind == None:
|
if ind is None:
|
||||||
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
||||||
for u in G:
|
for u in G:
|
||||||
for v in G[u]:
|
for v in G[u]:
|
||||||
|
|
|
@ -3,7 +3,6 @@ a^2+b^2=c^2
|
||||||
Given N, Check if there exists any Pythagorean triplet for which a+b+c=N
|
Given N, Check if there exists any Pythagorean triplet for which a+b+c=N
|
||||||
Find maximum possible value of product of a,b,c among all such Pythagorean triplets, If there is no such Pythagorean triplet print -1."""
|
Find maximum possible value of product of a,b,c among all such Pythagorean triplets, If there is no such Pythagorean triplet print -1."""
|
||||||
#!/bin/python3
|
#!/bin/python3
|
||||||
import sys
|
|
||||||
|
|
||||||
product=-1
|
product=-1
|
||||||
d=0
|
d=0
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
from math import factorial, ceil
|
from math import factorial
|
||||||
|
|
||||||
def lattice_paths(n):
|
def lattice_paths(n):
|
||||||
n = 2*n #middle entry of odd rows starting at row 3 is the solution for n = 1, 2, 3,...
|
n = 2*n #middle entry of odd rows starting at row 3 is the solution for n = 1, 2, 3,...
|
||||||
|
|
|
@ -68,8 +68,8 @@ def getRandomKey():
|
||||||
while True:
|
while True:
|
||||||
keyA = random.randint(2, len(SYMBOLS))
|
keyA = random.randint(2, len(SYMBOLS))
|
||||||
keyB = random.randint(2, len(SYMBOLS))
|
keyB = random.randint(2, len(SYMBOLS))
|
||||||
if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1:
|
if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1:
|
||||||
return keyA * len(SYMBOLS) + keyB
|
return keyA * len(SYMBOLS) + keyB
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import doctest
|
import doctest
|
||||||
|
|
|
@ -24,7 +24,7 @@ class LinkedList:
|
||||||
temp = self.head
|
temp = self.head
|
||||||
self.head = self.head.next # oldHead <--> 2ndElement(head)
|
self.head = self.head.next # oldHead <--> 2ndElement(head)
|
||||||
self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
|
self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
|
||||||
if(self.head == None):
|
if(self.head is None):
|
||||||
self.tail = None
|
self.tail = None
|
||||||
return temp
|
return temp
|
||||||
|
|
||||||
|
@ -58,7 +58,7 @@ class LinkedList:
|
||||||
current.next.previous = current.previous # 1 <--> 3
|
current.next.previous = current.previous # 1 <--> 3
|
||||||
|
|
||||||
def isEmpty(self): #Will return True if the list is empty
|
def isEmpty(self): #Will return True if the list is empty
|
||||||
return(self.head == None)
|
return(self.head is None)
|
||||||
|
|
||||||
def display(self): #Prints contents of the list
|
def display(self): #Prints contents of the list
|
||||||
current = self.head
|
current = self.head
|
||||||
|
|
|
@ -19,4 +19,4 @@ class LinkedList:
|
||||||
return item
|
return item
|
||||||
|
|
||||||
def is_empty(self):
|
def is_empty(self):
|
||||||
return self.head == None
|
return self.head is None
|
||||||
|
|
|
@ -67,3 +67,4 @@ class Linked_List:
|
||||||
current = next_node
|
current = next_node
|
||||||
# Return prev in order to put the head at the end
|
# Return prev in order to put the head at the end
|
||||||
Head = prev
|
Head = prev
|
||||||
|
return Head
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from random import choice, shuffle
|
from random import shuffle
|
||||||
from numpy import array
|
from numpy import array
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -59,7 +59,6 @@ def sum_of_square_error(data_x, data_y, len_data, theta):
|
||||||
:param theta : contains the feature vector
|
:param theta : contains the feature vector
|
||||||
:return : sum of square error computed from given feature's
|
:return : sum of square error computed from given feature's
|
||||||
"""
|
"""
|
||||||
error = 0.0
|
|
||||||
prod = np.dot(theta, data_x.transpose())
|
prod = np.dot(theta, data_x.transpose())
|
||||||
prod -= data_y.transpose()
|
prod -= data_y.transpose()
|
||||||
sum_elem = np.sum(np.square(prod))
|
sum_elem = np.sum(np.square(prod))
|
||||||
|
|
|
@ -28,9 +28,8 @@ Game-Of-Life Rules:
|
||||||
comes a live cell, as if by reproduction.
|
comes a live cell, as if by reproduction.
|
||||||
'''
|
'''
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import random, time, sys
|
import random, sys
|
||||||
from matplotlib import pyplot as plt
|
from matplotlib import pyplot as plt
|
||||||
import matplotlib.animation as animation
|
|
||||||
from matplotlib.colors import ListedColormap
|
from matplotlib.colors import ListedColormap
|
||||||
|
|
||||||
usage_doc='Usage of script: script_nama <size_of_canvas:int>'
|
usage_doc='Usage of script: script_nama <size_of_canvas:int>'
|
||||||
|
|
|
@ -290,7 +290,7 @@ def goldbach(number):
|
||||||
|
|
||||||
while (i < lenPN and loop):
|
while (i < lenPN and loop):
|
||||||
|
|
||||||
j = i+1;
|
j = i+1
|
||||||
|
|
||||||
|
|
||||||
while (j < lenPN and loop):
|
while (j < lenPN and loop):
|
||||||
|
@ -300,9 +300,8 @@ def goldbach(number):
|
||||||
ans.append(primeNumbers[i])
|
ans.append(primeNumbers[i])
|
||||||
ans.append(primeNumbers[j])
|
ans.append(primeNumbers[j])
|
||||||
|
|
||||||
j += 1;
|
j += 1
|
||||||
|
|
||||||
|
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
# precondition
|
# precondition
|
||||||
|
|
|
@ -2,7 +2,6 @@
|
||||||
This is pure python implementation of interpolation search algorithm
|
This is pure python implementation of interpolation search algorithm
|
||||||
"""
|
"""
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
import bisect
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
raw_input # Python 2
|
raw_input # Python 2
|
||||||
|
|
|
@ -1,8 +1,5 @@
|
||||||
import collections
|
|
||||||
import sys
|
|
||||||
import random
|
import random
|
||||||
import time
|
|
||||||
import math
|
|
||||||
"""
|
"""
|
||||||
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
|
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
|
||||||
https://en.wikipedia.org/wiki/Quickselect
|
https://en.wikipedia.org/wiki/Quickselect
|
||||||
|
@ -25,23 +22,23 @@ def _partition(data, pivot):
|
||||||
equal.append(element)
|
equal.append(element)
|
||||||
return less, equal, greater
|
return less, equal, greater
|
||||||
|
|
||||||
def quickSelect(list, k):
|
def quickSelect(list, k):
|
||||||
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
|
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
|
||||||
smaller = []
|
smaller = []
|
||||||
larger = []
|
larger = []
|
||||||
pivot = random.randint(0, len(list) - 1)
|
pivot = random.randint(0, len(list) - 1)
|
||||||
pivot = list[pivot]
|
pivot = list[pivot]
|
||||||
count = 0
|
count = 0
|
||||||
smaller, equal, larger =_partition(list, pivot)
|
smaller, equal, larger =_partition(list, pivot)
|
||||||
count = len(equal)
|
count = len(equal)
|
||||||
m = len(smaller)
|
m = len(smaller)
|
||||||
|
|
||||||
#k is the pivot
|
#k is the pivot
|
||||||
if m <= k < m + count:
|
if m <= k < m + count:
|
||||||
return pivot
|
return pivot
|
||||||
# must be in smaller
|
# must be in smaller
|
||||||
elif m > k:
|
elif m > k:
|
||||||
return quickSelect(smaller, k)
|
return quickSelect(smaller, k)
|
||||||
#must be in larger
|
#must be in larger
|
||||||
else:
|
else:
|
||||||
return quickSelect(larger, k - (m + count))
|
return quickSelect(larger, k - (m + count))
|
||||||
|
|
|
@ -4,7 +4,6 @@
|
||||||
# Sort large text files in a minimum amount of memory
|
# Sort large text files in a minimum amount of memory
|
||||||
#
|
#
|
||||||
import os
|
import os
|
||||||
import sys
|
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
class FileSplitter(object):
|
class FileSplitter(object):
|
||||||
|
|
|
@ -2,7 +2,6 @@ from __future__ import print_function
|
||||||
from random import randint
|
from random import randint
|
||||||
from tempfile import TemporaryFile
|
from tempfile import TemporaryFile
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -11,12 +11,12 @@ class node():
|
||||||
def insert(self,val):
|
def insert(self,val):
|
||||||
if self.val:
|
if self.val:
|
||||||
if val < self.val:
|
if val < self.val:
|
||||||
if self.left == None:
|
if self.left is None:
|
||||||
self.left = node(val)
|
self.left = node(val)
|
||||||
else:
|
else:
|
||||||
self.left.insert(val)
|
self.left.insert(val)
|
||||||
elif val > self.val:
|
elif val > self.val:
|
||||||
if self.right == None:
|
if self.right is None:
|
||||||
self.right = node(val)
|
self.right = node(val)
|
||||||
else:
|
else:
|
||||||
self.right.insert(val)
|
self.right.insert(val)
|
||||||
|
|
|
@ -68,7 +68,6 @@ def assemble_transformation(ops, i, j):
|
||||||
return seq
|
return seq
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
from time import sleep
|
|
||||||
_, operations = compute_transform_tables('Python', 'Algorithms', -1, 1, 2, 2)
|
_, operations = compute_transform_tables('Python', 'Algorithms', -1, 1, 2, 2)
|
||||||
|
|
||||||
m = len(operations)
|
m = len(operations)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user