This commit is contained in:
Atharva Date 2024-11-14 14:27:52 +05:30 committed by GitHub
commit 0921346176
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,175 @@
"""
The Hough transform can be used to detect lines, circles or
other parametric curves. It works by transforming
the image edge map (obtained using a Sobel Filter) to Polar coordinates
and then selecting local maxima in the Parametric space as lines based on
majority voting.
References:
https://en.wikipedia.org/wiki/Hough_transform
https://www.cs.cmu.edu/~16385/s17/Slides/5.3_Hough_Transform.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/hough09.pdf
Requirements (pip):
- matplotlib
- cv2
"""
import cv2
import matplotlib.pyplot as plt
import numpy as np
from digital_image_processing.edge_detection import canny
def generate_accumulator(edges: np.ndarray) -> np.ndarray:
"""
- Generates an accumulator by transforming edge coordinates from Cartesian
to polar coordinates (Hough space).
- The accumulator array can be indexed as `accumulator[p][theta]`
Params:
------
edges (np.ndarray): The edge-detected binary image (single-channel).
Returns:
------
np.ndarray: The accumulator array with votes for line candidates.
Example:
------
>>> img = np.array([[1, 0, 0,], [1, 0, 0,], [1, 0, 0,],])
>>> np.sum(generate_accumulator(img))
np.float64(540.0)
"""
n, m = edges.shape
theta_min, theta_max = 0, 180
p_min, p_max = 0, int(n * np.sqrt(2) + 1)
accumulator = np.zeros((int(theta_max - theta_min), int(p_max - p_min)))
for x in range(n):
for y in range(m):
if edges[x][y]:
for theta in range(theta_min, theta_max):
p = int(
x * np.cos(np.deg2rad(theta)) + y * np.sin(np.deg2rad(theta))
)
accumulator[theta][p] += 1
return accumulator
def hough_transform(
img: np.ndarray, threshold: int = 30, max_num_lines: int = 5
) -> list[tuple[int, int, np.float64]]:
"""
Performs the Hough transform to detect lines in the input image.
Params:
------
img (np.ndarray): Single-channel grayscale image.
threshold (int): Minimum vote count in the accumulator to consider a line.
max_num_lines (int): Maximum number of lines to return.
Returns:
------
list[tuple[int, int, int]]: List of detected lines in (theta, p, votes) format.
Raises:
------
AssertionError: If the image is not square or single-channel.
Example:
------
>>> img = np.vstack([np.zeros((30, 50)),np.ones((1, 50)),np.zeros((19, 50))])
>>> hough_transform(img, 30, 1)
[(0, 28, np.float64(48.0))]
"""
assert img.shape[0] == img.shape[1], "image must have equal dimensions"
assert len(img.shape) == 2, "image should be single-channel"
# Obtain edge map for image
edges = canny.canny(img)
# Transform to Polar Coordinates
n, _ = img.shape
theta_min, theta_max = 0, 180
p_min, p_max = 0, int(n * np.sqrt(2) + 1)
accumulator = generate_accumulator(edges)
# Select maxima in Polar space
res = []
for theta in range(theta_min, theta_max):
for p in range(p_min, p_max):
if accumulator[theta][p] > threshold:
res.append((theta, p, accumulator[theta][p]))
res = sorted(res, key=lambda x: x[2], reverse=True)[:max_num_lines]
return res
def draw_hough_lines(
img: np.ndarray,
lines: list[tuple],
thickness: int = 1,
color: tuple[int, int, int] = (255, 0, 0),
) -> None:
"""
Draws detected Hough lines on the image.
Params:
------
img (np.ndarray): The input image to draw lines on.
lines (list[tuple[int, int, int]]):
List of (theta, p, votes) for detected lines.
thickness (int): Line thickness.
color (tuple[int, int, int]): BGR color of the lines.
Example:
------
>>> draw_hough_lines(create_dummy_img(), [(50, 0),])
"""
for line in lines:
theta, p = line[0], line[1]
a = np.sin(np.deg2rad(theta))
b = np.cos(np.deg2rad(theta))
x0, y0 = a * p, b * p
x1, y1 = int(x0 + 100 * (-b)), int(y0 + 100 * (a))
x2, y2 = int(x0 - 100 * (-b)), int(y0 - 100 * (a))
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
def create_dummy_img(height: int = 50, width: int = 50) -> np.ndarray:
"""
Test function to create dummy 3-channel image of specified width and height
Example:
------
>>> create_dummy_img(100, 120).shape
(100, 120, 3)
"""
img = np.zeros((height, width), dtype=np.uint8)
cv2.line(img, (10, 10), (int(0.6 * height), int(0.8 * width)), 255, 1) # type: ignore[call-overload]
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # type: ignore[assignment]
return img
if __name__ == "__main__":
import doctest
# Run doctests
doctest.testmod()
img = create_dummy_img(60, 80)
# Preprocess Image
img = cv2.resize(img, (64, 64), interpolation=cv2.INTER_AREA)
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(img)
plt.show()
# Accumulator
accumulator = generate_accumulator(canny.canny(gray_image))
plt.imshow(accumulator)
plt.show()
# Hough Transform
res = hough_transform(gray_image, 30, 1)
draw_hough_lines(img, res)
plt.imshow(img)
plt.show()