mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Fix all errors mentioned in pre-commit run (#2512)
* Fix all errors mentioned in pre-commit run: - Fix end of file - Remove trailing whitespace - Fix files with black - Fix imports with isort * Fix errors
This commit is contained in:
parent
e6e2dc69d5
commit
0a42ae9095
|
@ -3,14 +3,16 @@ render 3d points for 2d surfaces.
|
|||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
__version__ = "2020.9.26"
|
||||
__author__ = "xcodz-dot, cclaus, dhruvmanila"
|
||||
|
||||
|
||||
def convert_to_2d(x: float, y: float, z: float, scale: float,
|
||||
distance: float) -> tuple[float, float]:
|
||||
def convert_to_2d(
|
||||
x: float, y: float, z: float, scale: float, distance: float
|
||||
) -> tuple[float, float]:
|
||||
"""
|
||||
Converts 3d point to a 2d drawable point
|
||||
|
||||
|
@ -26,15 +28,17 @@ def convert_to_2d(x: float, y: float, z: float, scale: float,
|
|||
TypeError: Input values must either be float or int: ['1', 2, 3, 10, 10]
|
||||
"""
|
||||
if not all(isinstance(val, (float, int)) for val in locals().values()):
|
||||
raise TypeError("Input values must either be float or int: "
|
||||
f"{list(locals().values())}")
|
||||
raise TypeError(
|
||||
"Input values must either be float or int: " f"{list(locals().values())}"
|
||||
)
|
||||
projected_x = ((x * distance) / (z + distance)) * scale
|
||||
projected_y = ((y * distance) / (z + distance)) * scale
|
||||
return projected_x, projected_y
|
||||
|
||||
|
||||
def rotate(x: float, y: float, z: float, axis: str,
|
||||
angle: float) -> tuple[float, float, float]:
|
||||
def rotate(
|
||||
x: float, y: float, z: float, axis: str, angle: float
|
||||
) -> tuple[float, float, float]:
|
||||
"""
|
||||
rotate a point around a certain axis with a certain angle
|
||||
angle can be any integer between 1, 360 and axis can be any one of
|
||||
|
@ -67,18 +71,20 @@ def rotate(x: float, y: float, z: float, axis: str,
|
|||
input_variables = locals()
|
||||
del input_variables["axis"]
|
||||
if not all(isinstance(val, (float, int)) for val in input_variables.values()):
|
||||
raise TypeError("Input values except axis must either be float or int: "
|
||||
f"{list(input_variables.values())}")
|
||||
raise TypeError(
|
||||
"Input values except axis must either be float or int: "
|
||||
f"{list(input_variables.values())}"
|
||||
)
|
||||
angle = (angle % 360) / 450 * 180 / math.pi
|
||||
if axis == 'z':
|
||||
if axis == "z":
|
||||
new_x = x * math.cos(angle) - y * math.sin(angle)
|
||||
new_y = y * math.cos(angle) + x * math.sin(angle)
|
||||
new_z = z
|
||||
elif axis == 'x':
|
||||
elif axis == "x":
|
||||
new_y = y * math.cos(angle) - z * math.sin(angle)
|
||||
new_z = z * math.cos(angle) + y * math.sin(angle)
|
||||
new_x = x
|
||||
elif axis == 'y':
|
||||
elif axis == "y":
|
||||
new_x = x * math.cos(angle) - z * math.sin(angle)
|
||||
new_z = z * math.cos(angle) + x * math.sin(angle)
|
||||
new_y = y
|
||||
|
|
|
@ -3,11 +3,11 @@
|
|||
predict house price.
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.ensemble import GradientBoostingRegressor
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
|
@ -42,10 +42,7 @@ def main():
|
|||
training_score = model.score(X_train, y_train).round(3)
|
||||
test_score = model.score(X_test, y_test).round(3)
|
||||
print("Training score of GradientBoosting is :", training_score)
|
||||
print(
|
||||
"The test score of GradientBoosting is :",
|
||||
test_score
|
||||
)
|
||||
print("The test score of GradientBoosting is :", test_score)
|
||||
# Let us evaluation the model by finding the errors
|
||||
y_pred = model.predict(X_test)
|
||||
|
||||
|
@ -57,8 +54,7 @@ def main():
|
|||
# So let's run the model against the test data
|
||||
fig, ax = plt.subplots()
|
||||
ax.scatter(y_test, y_pred, edgecolors=(0, 0, 0))
|
||||
ax.plot([y_test.min(), y_test.max()],
|
||||
[y_test.min(), y_test.max()], "k--", lw=4)
|
||||
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], "k--", lw=4)
|
||||
ax.set_xlabel("Actual")
|
||||
ax.set_ylabel("Predicted")
|
||||
ax.set_title("Truth vs Predicted")
|
||||
|
|
|
@ -73,4 +73,3 @@ The array elements are taken from a Standard Normal Distribution , having mean =
|
|||
|
||||
|
||||
------------------
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user