Updated postfix_evaluation.py to support Unary operators (#8787)

* Updated postfix_evaluation.py to support Unary operators and floating point numbers Fixes #8754 and #8724

Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py

Signed-off-by: Arijit De <arijitde2050@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Updated postfix_evaluation.py to support Unary operators and floating point numbers. Fixes #8754 and formatted code to pass ruff and black test.

Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py which fixes #8724 and made sure it passes doctest

Signed-off-by: Arijit De <arijitde2050@gmail.com>

* Fixed return type hinting required by pre commit for evaluate function

Signed-off-by: Arijit De <arijitde2050@gmail.com>

* Changed line 186 to return only top of stack instead of calling the get_number function as it was converting float values to int, resulting in data loss. Fixes #8754 and #8724

Signed-off-by: Arijit De <arijitde2050@gmail.com>

* Made the requested changes

Also changed the code to make the evaluate function first convert all the numbers and then process the valid expression.

* Fixes #8754, #8724 Updated postfix_evaluation.py

postfix_evaluation.py now supports Unary operators and floating point numbers.
Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py which fixes #8724. Added a doctest example with unary operator.

* Fixes #8754, #8724 Updated postfix_evaluation.py

postfix_evaluation.py now supports Unary operators and floating point numbers.
Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py which fixes #8724. Added a doctest example with unary operator.

* Fixes #8754, #8724 Updated the parse_token function of postfix_evaluation.py

ostfix_evaluation.py now supports Unary operators and floating point numbers.
Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py which fixes #8724. Added a doctest example with unary operator and invalid expression.

* Fixes #8754, #8724 Updated postfix_evaluation.py

postfix_evaluation.py now supports Unary operators and floating point numbers.
Also merged evaluate_postfix_notations.py and postfix_evaluation.py into postfix_evaluation.py which fixes #8724. Added a doctest example with unary operator and invalid expression.

* Update postfix_evaluation.py

* Update postfix_evaluation.py

* Update postfix_evaluation.py

* Update postfix_evaluation.py

* Update postfix_evaluation.py

---------

Signed-off-by: Arijit De <arijitde2050@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Arijit De 2023-08-23 18:06:59 +05:30 committed by GitHub
parent fceacf977f
commit 0a9438071e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 168 additions and 88 deletions

View File

@ -1,52 +0,0 @@
"""
The Reverse Polish Nation also known as Polish postfix notation
or simply postfix notation.
https://en.wikipedia.org/wiki/Reverse_Polish_notation
Classic examples of simple stack implementations
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
"""
from __future__ import annotations
from typing import Any
def evaluate_postfix(postfix_notation: list) -> int:
"""
>>> evaluate_postfix(["2", "1", "+", "3", "*"])
9
>>> evaluate_postfix(["4", "13", "5", "/", "+"])
6
>>> evaluate_postfix([])
0
"""
if not postfix_notation:
return 0
operations = {"+", "-", "*", "/"}
stack: list[Any] = []
for token in postfix_notation:
if token in operations:
b, a = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1)
else:
stack.append(a // b)
else:
stack.append(int(token))
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,4 +1,11 @@
"""
Reverse Polish Nation is also known as Polish postfix notation or simply postfix
notation.
https://en.wikipedia.org/wiki/Reverse_Polish_notation
Classic examples of simple stack implementations.
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
Output:
Enter a Postfix Equation (space separated) = 5 6 9 * +
@ -17,52 +24,177 @@ Enter a Postfix Equation (space separated) = 5 6 9 * +
Result = 59
"""
import operator as op
# Defining valid unary operator symbols
UNARY_OP_SYMBOLS = ("-", "+")
# operators & their respective operation
OPERATORS = {
"^": lambda p, q: p**q,
"*": lambda p, q: p * q,
"/": lambda p, q: p / q,
"+": lambda p, q: p + q,
"-": lambda p, q: p - q,
}
def solve(post_fix):
def parse_token(token: str | float) -> float | str:
"""
Converts the given data to the appropriate number if it is indeed a number, else
returns the data as it is with a False flag. This function also serves as a check
of whether the input is a number or not.
Parameters
----------
token: The data that needs to be converted to the appropriate operator or number.
Returns
-------
float or str
Returns a float if `token` is a number or a str if `token` is an operator
"""
if token in OPERATORS:
return token
try:
return float(token)
except ValueError:
msg = f"{token} is neither a number nor a valid operator"
raise ValueError(msg)
def evaluate(post_fix: list[str], verbose: bool = False) -> float:
"""
Evaluate postfix expression using a stack.
>>> evaluate(["0"])
0.0
>>> evaluate(["-0"])
-0.0
>>> evaluate(["1"])
1.0
>>> evaluate(["-1"])
-1.0
>>> evaluate(["-1.1"])
-1.1
>>> evaluate(["2", "1", "+", "3", "*"])
9.0
>>> evaluate(["2", "1.9", "+", "3", "*"])
11.7
>>> evaluate(["2", "-1.9", "+", "3", "*"])
0.30000000000000027
>>> evaluate(["4", "13", "5", "/", "+"])
6.6
>>> evaluate(["2", "-", "3", "+"])
1.0
>>> evaluate(["-4", "5", "*", "6", "-"])
-26.0
>>> evaluate([])
0
>>> evaluate(["4", "-", "6", "7", "/", "9", "8"])
Traceback (most recent call last):
...
ArithmeticError: Input is not a valid postfix expression
Parameters
----------
post_fix:
The postfix expression is tokenized into operators and operands and stored
as a Python list
verbose:
Display stack contents while evaluating the expression if verbose is True
Returns
-------
float
The evaluated value
"""
if not post_fix:
return 0
# Checking the list to find out whether the postfix expression is valid
valid_expression = [parse_token(token) for token in post_fix]
if verbose:
# print table header
print("Symbol".center(8), "Action".center(12), "Stack", sep=" | ")
print("-" * (30 + len(post_fix)))
stack = []
div = lambda x, y: int(x / y) # noqa: E731 integer division operation
opr = {
"^": op.pow,
"*": op.mul,
"/": div,
"+": op.add,
"-": op.sub,
} # operators & their respective operation
# print table header
print("Symbol".center(8), "Action".center(12), "Stack", sep=" | ")
print("-" * (30 + len(post_fix)))
for x in post_fix:
if x.isdigit(): # if x in digit
for x in valid_expression:
if x not in OPERATORS:
stack.append(x) # append x to stack
# output in tabular format
print(x.rjust(8), ("push(" + x + ")").ljust(12), ",".join(stack), sep=" | ")
else:
if verbose:
# output in tabular format
print(
f"{x}".rjust(8),
f"push({x})".ljust(12),
stack,
sep=" | ",
)
continue
# If x is operator
# If only 1 value is inside the stack and + or - is encountered
# then this is unary + or - case
if x in UNARY_OP_SYMBOLS and len(stack) < 2:
b = stack.pop() # pop stack
# output in tabular format
print("".rjust(8), ("pop(" + b + ")").ljust(12), ",".join(stack), sep=" | ")
a = stack.pop() # pop stack
# output in tabular format
print("".rjust(8), ("pop(" + a + ")").ljust(12), ",".join(stack), sep=" | ")
stack.append(
str(opr[x](int(a), int(b)))
) # evaluate the 2 values popped from stack & push result to stack
if x == "-":
b *= -1 # negate b
stack.append(b)
if verbose:
# output in tabular format
print(
"".rjust(8),
f"pop({b})".ljust(12),
stack,
sep=" | ",
)
print(
str(x).rjust(8),
f"push({x}{b})".ljust(12),
stack,
sep=" | ",
)
continue
b = stack.pop() # pop stack
if verbose:
# output in tabular format
print(
x.rjust(8),
("push(" + a + x + b + ")").ljust(12),
",".join(stack),
"".rjust(8),
f"pop({b})".ljust(12),
stack,
sep=" | ",
)
return int(stack[0])
a = stack.pop() # pop stack
if verbose:
# output in tabular format
print(
"".rjust(8),
f"pop({a})".ljust(12),
stack,
sep=" | ",
)
# evaluate the 2 values popped from stack & push result to stack
stack.append(OPERATORS[x](a, b)) # type: ignore[index]
if verbose:
# output in tabular format
print(
f"{x}".rjust(8),
f"push({a}{x}{b})".ljust(12),
stack,
sep=" | ",
)
# If everything is executed correctly, the stack will contain
# only one element which is the result
if len(stack) != 1:
raise ArithmeticError("Input is not a valid postfix expression")
return float(stack[0])
if __name__ == "__main__":
Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ")
print("\n\tResult = ", solve(Postfix))
# Create a loop so that the user can evaluate postfix expressions multiple times
while True:
expression = input("Enter a Postfix Expression (space separated): ").split(" ")
prompt = "Do you want to see stack contents while evaluating? [y/N]: "
verbose = input(prompt).strip().lower() == "y"
output = evaluate(expression, verbose)
print("Result = ", output)
prompt = "Do you want to enter another expression? [y/N]: "
if input(prompt).strip().lower() != "y":
break