Merge pull request #1 from ankana2113/main

fixes ruff check in loss_functions.py
This commit is contained in:
Ankana Pari 2024-10-24 16:44:54 +05:30 committed by GitHub
commit 0c04372ebc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 62 additions and 50 deletions

View File

@ -240,7 +240,7 @@ def ascend_tree(leaf_node: TreeNode, prefix_path: list[str]) -> None:
ascend_tree(leaf_node.parent, prefix_path) ascend_tree(leaf_node.parent, prefix_path)
def find_prefix_path(base_pat: frozenset, tree_node: TreeNode | None) -> dict: # noqa: ARG001 def find_prefix_path(_: frozenset, tree_node: TreeNode | None) -> dict:
""" """
Find the conditional pattern base for a given base pattern. Find the conditional pattern base for a given base pattern.

View File

@ -629,13 +629,15 @@ def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) ->
return np.mean(loss) return np.mean(loss)
def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float: def kullback_leibler_divergence(
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-10
) -> float:
""" """
Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
and predicted probabilities. and predicted probabilities.
KL divergence loss quantifies dissimilarity between true labels and predicted KL divergence loss quantifies the dissimilarity between true labels and predicted
probabilities. It's often used in training generative models. probabilities. It is often used in training generative models.
KL = Σ(y_true * ln(y_true / y_pred)) KL = Σ(y_true * ln(y_true / y_pred))
@ -649,6 +651,7 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
>>> predicted_probs = np.array([0.3, 0.3, 0.4]) >>> predicted_probs = np.array([0.3, 0.3, 0.4])
>>> float(kullback_leibler_divergence(true_labels, predicted_probs)) >>> float(kullback_leibler_divergence(true_labels, predicted_probs))
0.030478754035472025 0.030478754035472025
>>> true_labels = np.array([0.2, 0.3, 0.5]) >>> true_labels = np.array([0.2, 0.3, 0.5])
>>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5]) >>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
>>> kullback_leibler_divergence(true_labels, predicted_probs) >>> kullback_leibler_divergence(true_labels, predicted_probs)
@ -659,7 +662,13 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
if len(y_true) != len(y_pred): if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.") raise ValueError("Input arrays must have the same length.")
kl_loss = y_true * np.log(y_true / y_pred) # negligible epsilon to avoid issues with log(0) or division by zero
epsilon = 1e-10
y_pred = np.clip(y_pred, epsilon, None)
# calculate KL divergence only where y_true is not zero
kl_loss = np.where(y_true != 0, y_true * np.log(y_true / y_pred), 0.0)
return np.sum(kl_loss) return np.sum(kl_loss)

View File

@ -15,68 +15,68 @@ class RidgeRegression:
self.theta: np.ndarray = None self.theta: np.ndarray = None
def feature_scaling( def feature_scaling(
self, x: np.ndarray self, features: np.ndarray
) -> tuple[np.ndarray, np.ndarray, np.ndarray]: ) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(x, axis=0) mean = np.mean(features, axis=0)
std = np.std(x, axis=0) std = np.std(features, axis=0)
# avoid division by zero for constant features (std = 0) # avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # set std=1 for constant features to avoid NaN std[std == 0] = 1 # set std=1 for constant features to avoid NaN
x_scaled = (x - mean) / std features_scaled = (features - mean) / std
return x_scaled, mean, std return features_scaled, mean, std
def fit(self, x: np.ndarray, y: np.ndarray) -> None: def fit(self, features: np.ndarray, target: np.ndarray) -> None:
x_scaled, mean, std = self.feature_scaling(x) features_scaled, mean, std = self.feature_scaling(features)
m, n = x_scaled.shape m, n = features_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros self.theta = np.zeros(n) # initializing weights to zeros
for _ in range(self.num_iterations): for _ in range(self.num_iterations):
predictions = x_scaled.dot(self.theta) predictions = features_scaled.dot(self.theta)
error = predictions - y error = predictions - target
# computing gradient with L2 regularization # computing gradient with L2 regularization
gradient = ( gradient = (
x_scaled.T.dot(error) + self.regularization_param * self.theta features_scaled.T.dot(error) + self.regularization_param * self.theta
) / m ) / m
self.theta -= self.alpha * gradient # updating weights self.theta -= self.alpha * gradient # updating weights
def predict(self, x: np.ndarray) -> np.ndarray: def predict(self, features: np.ndarray) -> np.ndarray:
x_scaled, _, _ = self.feature_scaling(x) features_scaled, _, _ = self.feature_scaling(features)
return x_scaled.dot(self.theta) return features_scaled.dot(self.theta)
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float: def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
x_scaled, _, _ = self.feature_scaling(x) features_scaled, _, _ = self.feature_scaling(features)
m = len(y) m = len(target)
predictions = x_scaled.dot(self.theta) predictions = features_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + (
self.regularization_param / (2 * m) self.regularization_param / (2 * m)
) * np.sum(self.theta**2) ) * np.sum(self.theta**2)
return cost return cost
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float: def mean_absolute_error(self, target: np.ndarray, predictions: np.ndarray) -> float:
return np.mean(np.abs(y_true - y_pred)) return np.mean(np.abs(target - predictions))
# Example usage # Example usage
if __name__ == "__main__": if __name__ == "__main__":
data = pd.read_csv("ADRvsRating.csv") data = pd.read_csv("ADRvsRating.csv")
x = data[["Rating"]].to_numpy() features_matrix = data[["Rating"]].to_numpy()
y = data["ADR"].to_numpy() target = data["ADR"].to_numpy()
y = (y - np.mean(y)) / np.std(y) target = (target - np.mean(target)) / np.std(target)
# added bias term to the feature matrix # added bias term to the feature matrix
x = np.c_[np.ones(x.shape[0]), x] x = np.c_[np.ones(features_matrix.shape[0]), features_matrix]
# initialize and train the ridge regression model # initialize and train the ridge regression model
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
model.fit(x, y) model.fit(features_matrix, target)
# predictions # predictions
predictions = model.predict(x) predictions = model.predict(features_matrix)
# results # results
print("Optimized Weights:", model.theta) print("Optimized Weights:", model.theta)
print("Cost:", model.compute_cost(x, y)) print("Cost:", model.compute_cost(features_matrix, target))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions)) print("Mean Absolute Error:", model.mean_absolute_error(target, predictions))

View File

@ -12,7 +12,10 @@ To run these tests, use the following command:
""" """
import numpy as np # noqa: F401 import numpy as np # noqa: F401
from ridge_regression import RidgeRegression # noqa: F401
from machine_learning.ridge_regression.ridge_regression import (
RidgeRegression, # noqa: F401
)
def test_feature_scaling(): def test_feature_scaling():
@ -20,9 +23,9 @@ def test_feature_scaling():
Tests the feature_scaling function of RidgeRegression. Tests the feature_scaling function of RidgeRegression.
-------- --------
>>> model = RidgeRegression() >>> model = RidgeRegression()
>>> X = np.array([[1, 2], [2, 3], [3, 4]]) >>> features = np.array([[1, 2], [2, 3], [3, 4]])
>>> X_scaled, mean, std = model.feature_scaling(X) >>> features_scaled, mean, std = model.feature_scaling(features)
>>> np.round(X_scaled, 2) >>> np.round(features_scaled, 2)
array([[-1.22, -1.22], array([[-1.22, -1.22],
[ 0. , 0. ], [ 0. , 0. ],
[ 1.22, 1.22]]) [ 1.22, 1.22]])
@ -40,14 +43,14 @@ def test_fit():
>>> model = RidgeRegression(alpha=0.01, >>> model = RidgeRegression(alpha=0.01,
... regularization_param=0.1, ... regularization_param=0.1,
... num_iterations=1000) ... num_iterations=1000)
>>> X = np.array([[1], [2], [3]]) >>> features = np.array([[1], [2], [3]])
>>> y = np.array([2, 3, 4]) >>> target = np.array([2, 3, 4])
# Adding a bias term # Adding a bias term
>>> X = np.c_[np.ones(X.shape[0]), X] >>> features = np.c_[np.ones(features.shape[0]), features]
# Fit the model # Fit the model
>>> model.fit(X, y) >>> model.fit(features, target)
# Check if the weights have been updated # Check if the weights have been updated
>>> np.round(model.theta, decimals=2) >>> np.round(model.theta, decimals=2)
@ -62,17 +65,17 @@ def test_predict():
>>> model = RidgeRegression(alpha=0.01, >>> model = RidgeRegression(alpha=0.01,
... regularization_param=0.1, ... regularization_param=0.1,
... num_iterations=1000) ... num_iterations=1000)
>>> X = np.array([[1], [2], [3]]) >>> features = np.array([[1], [2], [3]])
>>> y = np.array([2, 3, 4]) >>> target = np.array([2, 3, 4])
# Adding a bias term # Adding a bias term
>>> X = np.c_[np.ones(X.shape[0]), X] >>> features = np.c_[np.ones(features.shape[0]), features]
# Fit the model # Fit the model
>>> model.fit(X, y) >>> model.fit(features, target)
# Predict with the model # Predict with the model
>>> predictions = model.predict(X) >>> predictions = model.predict(features)
>>> np.round(predictions, decimals=2) >>> np.round(predictions, decimals=2)
array([-0.97, 0. , 0.97]) array([-0.97, 0. , 0.97])
""" """
@ -83,9 +86,9 @@ def test_mean_absolute_error():
Tests the mean_absolute_error function of RidgeRegression Tests the mean_absolute_error function of RidgeRegression
-------- --------
>>> model = RidgeRegression() >>> model = RidgeRegression()
>>> y_true = np.array([2, 3, 4]) >>> target = np.array([2, 3, 4])
>>> y_pred = np.array([2.1, 3.0, 3.9]) >>> predictions = np.array([2.1, 3.0, 3.9])
>>> mae = model.mean_absolute_error(y_true, y_pred) >>> mae = model.mean_absolute_error(target, predictions)
>>> float(np.round(mae, 2)) >>> float(np.round(mae, 2))
0.07 0.07
""" """