mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-03 21:38:40 +00:00
Merge pull request #1 from ankana2113/main
fixes ruff check in loss_functions.py
This commit is contained in:
commit
0c04372ebc
@ -240,7 +240,7 @@ def ascend_tree(leaf_node: TreeNode, prefix_path: list[str]) -> None:
|
||||
ascend_tree(leaf_node.parent, prefix_path)
|
||||
|
||||
|
||||
def find_prefix_path(base_pat: frozenset, tree_node: TreeNode | None) -> dict: # noqa: ARG001
|
||||
def find_prefix_path(_: frozenset, tree_node: TreeNode | None) -> dict:
|
||||
"""
|
||||
Find the conditional pattern base for a given base pattern.
|
||||
|
||||
|
@ -629,13 +629,15 @@ def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) ->
|
||||
return np.mean(loss)
|
||||
|
||||
|
||||
def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
def kullback_leibler_divergence(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-10
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
|
||||
and predicted probabilities.
|
||||
|
||||
KL divergence loss quantifies dissimilarity between true labels and predicted
|
||||
probabilities. It's often used in training generative models.
|
||||
KL divergence loss quantifies the dissimilarity between true labels and predicted
|
||||
probabilities. It is often used in training generative models.
|
||||
|
||||
KL = Σ(y_true * ln(y_true / y_pred))
|
||||
|
||||
@ -649,6 +651,7 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
|
||||
>>> predicted_probs = np.array([0.3, 0.3, 0.4])
|
||||
>>> float(kullback_leibler_divergence(true_labels, predicted_probs))
|
||||
0.030478754035472025
|
||||
|
||||
>>> true_labels = np.array([0.2, 0.3, 0.5])
|
||||
>>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
|
||||
>>> kullback_leibler_divergence(true_labels, predicted_probs)
|
||||
@ -659,7 +662,13 @@ def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
kl_loss = y_true * np.log(y_true / y_pred)
|
||||
# negligible epsilon to avoid issues with log(0) or division by zero
|
||||
epsilon = 1e-10
|
||||
y_pred = np.clip(y_pred, epsilon, None)
|
||||
|
||||
# calculate KL divergence only where y_true is not zero
|
||||
kl_loss = np.where(y_true != 0, y_true * np.log(y_true / y_pred), 0.0)
|
||||
|
||||
return np.sum(kl_loss)
|
||||
|
||||
|
||||
|
@ -15,68 +15,68 @@ class RidgeRegression:
|
||||
self.theta: np.ndarray = None
|
||||
|
||||
def feature_scaling(
|
||||
self, x: np.ndarray
|
||||
self, features: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
mean = np.mean(x, axis=0)
|
||||
std = np.std(x, axis=0)
|
||||
mean = np.mean(features, axis=0)
|
||||
std = np.std(features, axis=0)
|
||||
|
||||
# avoid division by zero for constant features (std = 0)
|
||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||
|
||||
x_scaled = (x - mean) / std
|
||||
return x_scaled, mean, std
|
||||
features_scaled = (features - mean) / std
|
||||
return features_scaled, mean, std
|
||||
|
||||
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
||||
x_scaled, mean, std = self.feature_scaling(x)
|
||||
m, n = x_scaled.shape
|
||||
def fit(self, features: np.ndarray, target: np.ndarray) -> None:
|
||||
features_scaled, mean, std = self.feature_scaling(features)
|
||||
m, n = features_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
|
||||
for _ in range(self.num_iterations):
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
predictions = features_scaled.dot(self.theta)
|
||||
error = predictions - target
|
||||
|
||||
# computing gradient with L2 regularization
|
||||
gradient = (
|
||||
x_scaled.T.dot(error) + self.regularization_param * self.theta
|
||||
features_scaled.T.dot(error) + self.regularization_param * self.theta
|
||||
) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
return x_scaled.dot(self.theta)
|
||||
def predict(self, features: np.ndarray) -> np.ndarray:
|
||||
features_scaled, _, _ = self.feature_scaling(features)
|
||||
return features_scaled.dot(self.theta)
|
||||
|
||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
m = len(y)
|
||||
def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
|
||||
features_scaled, _, _ = self.feature_scaling(features)
|
||||
m = len(target)
|
||||
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
predictions = features_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + (
|
||||
self.regularization_param / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
return np.mean(np.abs(y_true - y_pred))
|
||||
def mean_absolute_error(self, target: np.ndarray, predictions: np.ndarray) -> float:
|
||||
return np.mean(np.abs(target - predictions))
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
data = pd.read_csv("ADRvsRating.csv")
|
||||
x = data[["Rating"]].to_numpy()
|
||||
y = data["ADR"].to_numpy()
|
||||
y = (y - np.mean(y)) / np.std(y)
|
||||
features_matrix = data[["Rating"]].to_numpy()
|
||||
target = data["ADR"].to_numpy()
|
||||
target = (target - np.mean(target)) / np.std(target)
|
||||
|
||||
# added bias term to the feature matrix
|
||||
x = np.c_[np.ones(x.shape[0]), x]
|
||||
x = np.c_[np.ones(features_matrix.shape[0]), features_matrix]
|
||||
|
||||
# initialize and train the ridge regression model
|
||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
model.fit(x, y)
|
||||
model.fit(features_matrix, target)
|
||||
|
||||
# predictions
|
||||
predictions = model.predict(x)
|
||||
predictions = model.predict(features_matrix)
|
||||
|
||||
# results
|
||||
print("Optimized Weights:", model.theta)
|
||||
print("Cost:", model.compute_cost(x, y))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
|
||||
print("Cost:", model.compute_cost(features_matrix, target))
|
||||
print("Mean Absolute Error:", model.mean_absolute_error(target, predictions))
|
||||
|
@ -12,7 +12,10 @@ To run these tests, use the following command:
|
||||
"""
|
||||
|
||||
import numpy as np # noqa: F401
|
||||
from ridge_regression import RidgeRegression # noqa: F401
|
||||
|
||||
from machine_learning.ridge_regression.ridge_regression import (
|
||||
RidgeRegression, # noqa: F401
|
||||
)
|
||||
|
||||
|
||||
def test_feature_scaling():
|
||||
@ -20,9 +23,9 @@ def test_feature_scaling():
|
||||
Tests the feature_scaling function of RidgeRegression.
|
||||
--------
|
||||
>>> model = RidgeRegression()
|
||||
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
|
||||
>>> X_scaled, mean, std = model.feature_scaling(X)
|
||||
>>> np.round(X_scaled, 2)
|
||||
>>> features = np.array([[1, 2], [2, 3], [3, 4]])
|
||||
>>> features_scaled, mean, std = model.feature_scaling(features)
|
||||
>>> np.round(features_scaled, 2)
|
||||
array([[-1.22, -1.22],
|
||||
[ 0. , 0. ],
|
||||
[ 1.22, 1.22]])
|
||||
@ -40,14 +43,14 @@ def test_fit():
|
||||
>>> model = RidgeRegression(alpha=0.01,
|
||||
... regularization_param=0.1,
|
||||
... num_iterations=1000)
|
||||
>>> X = np.array([[1], [2], [3]])
|
||||
>>> y = np.array([2, 3, 4])
|
||||
>>> features = np.array([[1], [2], [3]])
|
||||
>>> target = np.array([2, 3, 4])
|
||||
|
||||
# Adding a bias term
|
||||
>>> X = np.c_[np.ones(X.shape[0]), X]
|
||||
>>> features = np.c_[np.ones(features.shape[0]), features]
|
||||
|
||||
# Fit the model
|
||||
>>> model.fit(X, y)
|
||||
>>> model.fit(features, target)
|
||||
|
||||
# Check if the weights have been updated
|
||||
>>> np.round(model.theta, decimals=2)
|
||||
@ -62,17 +65,17 @@ def test_predict():
|
||||
>>> model = RidgeRegression(alpha=0.01,
|
||||
... regularization_param=0.1,
|
||||
... num_iterations=1000)
|
||||
>>> X = np.array([[1], [2], [3]])
|
||||
>>> y = np.array([2, 3, 4])
|
||||
>>> features = np.array([[1], [2], [3]])
|
||||
>>> target = np.array([2, 3, 4])
|
||||
|
||||
# Adding a bias term
|
||||
>>> X = np.c_[np.ones(X.shape[0]), X]
|
||||
>>> features = np.c_[np.ones(features.shape[0]), features]
|
||||
|
||||
# Fit the model
|
||||
>>> model.fit(X, y)
|
||||
>>> model.fit(features, target)
|
||||
|
||||
# Predict with the model
|
||||
>>> predictions = model.predict(X)
|
||||
>>> predictions = model.predict(features)
|
||||
>>> np.round(predictions, decimals=2)
|
||||
array([-0.97, 0. , 0.97])
|
||||
"""
|
||||
@ -83,9 +86,9 @@ def test_mean_absolute_error():
|
||||
Tests the mean_absolute_error function of RidgeRegression
|
||||
--------
|
||||
>>> model = RidgeRegression()
|
||||
>>> y_true = np.array([2, 3, 4])
|
||||
>>> y_pred = np.array([2.1, 3.0, 3.9])
|
||||
>>> mae = model.mean_absolute_error(y_true, y_pred)
|
||||
>>> target = np.array([2, 3, 4])
|
||||
>>> predictions = np.array([2.1, 3.0, 3.9])
|
||||
>>> mae = model.mean_absolute_error(target, predictions)
|
||||
>>> float(np.round(mae, 2))
|
||||
0.07
|
||||
"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user