diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index aea82d12c..5bdda50be 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -26,7 +26,7 @@ repos:
- --profile=black
- repo: https://github.com/asottile/pyupgrade
- rev: v3.0.0
+ rev: v3.1.0
hooks:
- id: pyupgrade
args:
@@ -55,14 +55,14 @@ repos:
additional_dependencies: [types-requests]
- repo: https://github.com/codespell-project/codespell
- rev: v2.2.1
+ rev: v2.2.2
hooks:
- id: codespell
args:
- --ignore-words-list=ans,crate,damon,fo,followings,hist,iff,mater,secant,som,sur,tim,zar
- - --skip="./.*,./strings/dictionary.txt,./strings/words.txt,./project_euler/problem_022/p022_names.txt"
exclude: |
(?x)^(
+ ciphers/prehistoric_men.txt |
strings/dictionary.txt |
strings/words.txt |
project_euler/problem_022/p022_names.txt
diff --git a/DIRECTORY.md b/DIRECTORY.md
index fae9a5183..94ec42832 100644
--- a/DIRECTORY.md
+++ b/DIRECTORY.md
@@ -642,6 +642,7 @@
* [Tower Of Hanoi](other/tower_of_hanoi.py)
## Physics
+ * [Casimir Effect](physics/casimir_effect.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
* [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
* [N Body Simulation](physics/n_body_simulation.py)
@@ -928,6 +929,7 @@
* [Deutsch Jozsa](quantum/deutsch_jozsa.py)
* [Half Adder](quantum/half_adder.py)
* [Not Gate](quantum/not_gate.py)
+ * [Q Full Adder](quantum/q_full_adder.py)
* [Quantum Entanglement](quantum/quantum_entanglement.py)
* [Ripple Adder Classic](quantum/ripple_adder_classic.py)
* [Single Qubit Measure](quantum/single_qubit_measure.py)
diff --git a/machine_learning/local_weighted_learning/local_weighted_learning.md b/machine_learning/local_weighted_learning/local_weighted_learning.md
index 5c7895e75..ef4dbc958 100644
--- a/machine_learning/local_weighted_learning/local_weighted_learning.md
+++ b/machine_learning/local_weighted_learning/local_weighted_learning.md
@@ -29,7 +29,7 @@ This training phase is possible when data points are linear, but there again com
So, here comes the role of non-parametric algorithm which doesn't compute predictions based on fixed set of params. Rather parameters $\theta$ are computed individually for each query point/data point x.
-While Computing $\theta$ , a higher "preferance" is given to points in the vicinity of x than points farther from x.
+While Computing $\theta$ , a higher preference is given to points in the vicinity of x than points farther from x.
Cost Function J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
diff --git a/maths/is_square_free.py b/maths/is_square_free.py
index 8d83d95ff..4134398d2 100644
--- a/maths/is_square_free.py
+++ b/maths/is_square_free.py
@@ -15,7 +15,7 @@ def is_square_free(factors: list[int]) -> bool:
False
These are wrong but should return some value
- it simply checks for repition in the numbers.
+ it simply checks for repetition in the numbers.
>>> is_square_free([1, 3, 4, 'sd', 0.0])
True