diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index aea82d12c..5bdda50be 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -26,7 +26,7 @@ repos: - --profile=black - repo: https://github.com/asottile/pyupgrade - rev: v3.0.0 + rev: v3.1.0 hooks: - id: pyupgrade args: @@ -55,14 +55,14 @@ repos: additional_dependencies: [types-requests] - repo: https://github.com/codespell-project/codespell - rev: v2.2.1 + rev: v2.2.2 hooks: - id: codespell args: - --ignore-words-list=ans,crate,damon,fo,followings,hist,iff,mater,secant,som,sur,tim,zar - - --skip="./.*,./strings/dictionary.txt,./strings/words.txt,./project_euler/problem_022/p022_names.txt" exclude: | (?x)^( + ciphers/prehistoric_men.txt | strings/dictionary.txt | strings/words.txt | project_euler/problem_022/p022_names.txt diff --git a/DIRECTORY.md b/DIRECTORY.md index fae9a5183..94ec42832 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -642,6 +642,7 @@ * [Tower Of Hanoi](other/tower_of_hanoi.py) ## Physics + * [Casimir Effect](physics/casimir_effect.py) * [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py) * [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py) * [N Body Simulation](physics/n_body_simulation.py) @@ -928,6 +929,7 @@ * [Deutsch Jozsa](quantum/deutsch_jozsa.py) * [Half Adder](quantum/half_adder.py) * [Not Gate](quantum/not_gate.py) + * [Q Full Adder](quantum/q_full_adder.py) * [Quantum Entanglement](quantum/quantum_entanglement.py) * [Ripple Adder Classic](quantum/ripple_adder_classic.py) * [Single Qubit Measure](quantum/single_qubit_measure.py) diff --git a/machine_learning/local_weighted_learning/local_weighted_learning.md b/machine_learning/local_weighted_learning/local_weighted_learning.md index 5c7895e75..ef4dbc958 100644 --- a/machine_learning/local_weighted_learning/local_weighted_learning.md +++ b/machine_learning/local_weighted_learning/local_weighted_learning.md @@ -29,7 +29,7 @@ This training phase is possible when data points are linear, but there again com So, here comes the role of non-parametric algorithm which doesn't compute predictions based on fixed set of params. Rather parameters $\theta$ are computed individually for each query point/data point x.

-While Computing $\theta$ , a higher "preferance" is given to points in the vicinity of x than points farther from x. +While Computing $\theta$ , a higher preference is given to points in the vicinity of x than points farther from x. Cost Function J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$ diff --git a/maths/is_square_free.py b/maths/is_square_free.py index 8d83d95ff..4134398d2 100644 --- a/maths/is_square_free.py +++ b/maths/is_square_free.py @@ -15,7 +15,7 @@ def is_square_free(factors: list[int]) -> bool: False These are wrong but should return some value - it simply checks for repition in the numbers. + it simply checks for repetition in the numbers. >>> is_square_free([1, 3, 4, 'sd', 0.0]) True