mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
adding softmax function (#1267)
* adding softmax function * wraped lines as asked
This commit is contained in:
parent
0e333ae021
commit
0e2d6b2963
56
maths/softmax.py
Normal file
56
maths/softmax.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
"""
|
||||
This script demonstrates the implementation of the Softmax function.
|
||||
|
||||
Its a function that takes as input a vector of K real numbers, and normalizes
|
||||
it into a probability distribution consisting of K probabilities proportional
|
||||
to the exponentials of the input numbers. After softmax, the elements of the
|
||||
vector always sum up to 1.
|
||||
|
||||
Script inspired from its corresponding Wikipedia article
|
||||
https://en.wikipedia.org/wiki/Softmax_function
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def softmax(vector):
|
||||
"""
|
||||
Implements the softmax function
|
||||
|
||||
Parameters:
|
||||
vector (np.array,list,tuple): A numpy array of shape (1,n)
|
||||
consisting of real values or a similar list,tuple
|
||||
|
||||
|
||||
Returns:
|
||||
softmax_vec (np.array): The input numpy array after applying
|
||||
softmax.
|
||||
|
||||
The softmax vector adds up to one. We need to ceil to mitigate for
|
||||
precision
|
||||
>>> np.ceil(np.sum(softmax([1,2,3,4])))
|
||||
1.0
|
||||
|
||||
>>> vec = np.array([5,5])
|
||||
>>> softmax(vec)
|
||||
array([0.5, 0.5])
|
||||
|
||||
>>> softmax([0])
|
||||
array([1.])
|
||||
"""
|
||||
|
||||
# Calculate e^x for each x in your vector where e is Euler's
|
||||
# number (approximately 2.718)
|
||||
exponentVector = np.exp(vector)
|
||||
|
||||
# Add up the all the exponentials
|
||||
sumOfExponents = np.sum(exponentVector)
|
||||
|
||||
# Divide every exponent by the sum of all exponents
|
||||
softmax_vector = exponentVector / sumOfExponents
|
||||
|
||||
return softmax_vector
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(softmax((0,)))
|
Loading…
Reference in New Issue
Block a user