Added solution for euler problem 493 (#5573)

* Added solution for problem 493

* fixed typo

* return result as string
This commit is contained in:
Simon 2021-10-31 11:48:10 +01:00 committed by GitHub
parent f4fd147d03
commit 0f015fa034
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 53 additions and 0 deletions

View File

View File

@ -0,0 +1,53 @@
"""
Project Euler Problem 493: https://projecteuler.net/problem=493
70 coloured balls are placed in an urn, 10 for each of the seven rainbow colours.
What is the expected number of distinct colours in 20 randomly picked balls?
Give your answer with nine digits after the decimal point (a.bcdefghij).
-----
This combinatorial problem can be solved by decomposing the problem into the
following steps:
1. Calculate the total number of possible picking cominations
[combinations := binom_coeff(70, 20)]
2. Calculate the number of combinations with one colour missing
[missing := binom_coeff(60, 20)]
3. Calculate the probability of one colour missing
[missing_prob := missing / combinations]
4. Calculate the probability of no colour missing
[no_missing_prob := 1 - missing_prob]
5. Calculate the expected number of distinct colours
[expected = 7 * no_missing_prob]
References:
- https://en.wikipedia.org/wiki/Binomial_coefficient
"""
import math
BALLS_PER_COLOUR = 10
NUM_COLOURS = 7
NUM_BALLS = BALLS_PER_COLOUR * NUM_COLOURS
def solution(num_picks: int = 20) -> str:
"""
Calculates the expected number of distinct colours
>>> solution(10)
'5.669644129'
>>> solution(30)
'6.985042712'
"""
total = math.comb(NUM_BALLS, num_picks)
missing_colour = math.comb(NUM_BALLS - BALLS_PER_COLOUR, num_picks)
result = NUM_COLOURS * (1 - missing_colour / total)
return f"{result:.9f}"
if __name__ == "__main__":
print(solution(20))