From 0f78cd6a55083c62ceec241b6ec22d3e3d056d7b Mon Sep 17 00:00:00 2001 From: Thejus-Paul Date: Sun, 12 Nov 2017 23:56:18 +0530 Subject: [PATCH] Project Euler Solution Added --- Project Euler/Problem 14/sol1.py | 20 ++++++++++++++++++++ Project Euler/README.md | 7 +++++++ 2 files changed, 27 insertions(+) create mode 100644 Project Euler/Problem 14/sol1.py diff --git a/Project Euler/Problem 14/sol1.py b/Project Euler/Problem 14/sol1.py new file mode 100644 index 000000000..c5050b561 --- /dev/null +++ b/Project Euler/Problem 14/sol1.py @@ -0,0 +1,20 @@ +largest_number = 0 +pre_counter = 0 + +for input1 in range(750000,1000000): + counter = 1 + number = input1 + + while number > 1: + if number % 2 == 0: + number /=2 + counter += 1 + else: + number = (3*number)+1 + counter += 1 + + if counter > pre_counter: + largest_number = input1 + pre_counter = counter + +print('Largest Number:',largest_number,'->',pre_counter,'digits') diff --git a/Project Euler/README.md b/Project Euler/README.md index 7d8bd2d8d..5d7238e40 100644 --- a/Project Euler/README.md +++ b/Project Euler/README.md @@ -42,3 +42,10 @@ PROBLEMS: a^2 + b^2 = c^2 There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. + +14. The following iterative sequence is defined for the set of positive integers: + n → n/2 (n is even) + n → 3n + 1 (n is odd) + Using the rule above and starting with 13, we generate the following sequence: + 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 + Which starting number, under one million, produces the longest chain?