mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
added mean absolute percentage error (#10464)
* added mean absolute percentage error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added mean_absolute_percentage_error * added mean_absolute_percentage_error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added mean_absolute_percentage_error * added mean_absolute_percentage_error * added mean absolute percentage error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added mean absolute percentage error * added mean absolute percentage error * added mean absolute percentage error * added mean absolute percentage error * added mean absolute percentage error * Update machine_learning/loss_functions.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
e1e5963812
commit
0ffe506ea7
|
@ -297,6 +297,51 @@ def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> fl
|
|||
return np.mean(squared_logarithmic_errors)
|
||||
|
||||
|
||||
def mean_absolute_percentage_error(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the Mean Absolute Percentage Error between y_true and y_pred.
|
||||
|
||||
Mean Absolute Percentage Error calculates the average of the absolute
|
||||
percentage differences between the predicted and true values.
|
||||
|
||||
Formula = (Σ|y_true[i]-Y_pred[i]/y_true[i]|)/n
|
||||
|
||||
Source: https://stephenallwright.com/good-mape-score/
|
||||
|
||||
Parameters:
|
||||
y_true (np.ndarray): Numpy array containing true/target values.
|
||||
y_pred (np.ndarray): Numpy array containing predicted values.
|
||||
|
||||
Returns:
|
||||
float: The Mean Absolute Percentage error between y_true and y_pred.
|
||||
|
||||
Examples:
|
||||
>>> y_true = np.array([10, 20, 30, 40])
|
||||
>>> y_pred = np.array([12, 18, 33, 45])
|
||||
>>> mean_absolute_percentage_error(y_true, y_pred)
|
||||
0.13125
|
||||
|
||||
>>> y_true = np.array([1, 2, 3, 4])
|
||||
>>> y_pred = np.array([2, 3, 4, 5])
|
||||
>>> mean_absolute_percentage_error(y_true, y_pred)
|
||||
0.5208333333333333
|
||||
|
||||
>>> y_true = np.array([34, 37, 44, 47, 48, 48, 46, 43, 32, 27, 26, 24])
|
||||
>>> y_pred = np.array([37, 40, 46, 44, 46, 50, 45, 44, 34, 30, 22, 23])
|
||||
>>> mean_absolute_percentage_error(y_true, y_pred)
|
||||
0.064671076436071
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("The length of the two arrays should be the same.")
|
||||
|
||||
y_true = np.where(y_true == 0, epsilon, y_true)
|
||||
absolute_percentage_diff = np.abs((y_true - y_pred) / y_true)
|
||||
|
||||
return np.mean(absolute_percentage_diff)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user