diff --git a/machine_learning/random_forest_classifier.py b/machine_learning/random_forest_classifier.py new file mode 100644 index 000000000..07bd33b34 --- /dev/null +++ b/machine_learning/random_forest_classifier.py @@ -0,0 +1,45 @@ +# Random Forest Classifier Example + +from sklearn.datasets import load_iris +from sklearn.model_selection import train_test_split +from sklearn.ensemble import RandomForestClassifier +from sklearn.metrics import plot_confusion_matrix +import matplotlib.pyplot as plt + + +def main(): + + """ + Random Tree Classifier Example using sklearn function. + Iris type dataset is used to demonstrate algorithm. + """ + + # Load Iris house price dataset + iris = load_iris() + + # Split dataset into train and test data + X = iris["data"] # features + Y = iris["target"] + x_train, x_test, y_train, y_test = train_test_split( + X, Y, test_size=0.3, random_state=1 + ) + + # Random Forest Classifier + rand_for = RandomForestClassifier(random_state=42, n_estimators=100) + rand_for.fit(x_train, y_train) + + # Display Confusion Matrix of Classifier + plot_confusion_matrix( + rand_for, + x_test, + y_test, + display_labels=iris["target_names"], + cmap="Blues", + normalize="true", + ) + plt.title("Normalized Confusion Matrix - IRIS Dataset") + plt.show() + + +if __name__ == "__main__": + main()