mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Implementation of Johnson Graph Algorithm
This commit is contained in:
parent
6e24935f88
commit
11bfe18e0d
100
graphs/johnson_graph.py
Normal file
100
graphs/johnson_graph.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
from collections import deque
|
||||
import heapq
|
||||
import sys
|
||||
|
||||
#First implementation of johnson algorithm
|
||||
class JohnsonGraph:
|
||||
def __init__(self):
|
||||
self.edges = []
|
||||
self.graph = {}
|
||||
|
||||
#add vertices for a graph
|
||||
def add_vertices(self, u):
|
||||
self.graph[u] = []
|
||||
|
||||
#assign weights for each edges formed of the directed graph
|
||||
def add_edge(self, u, v, w):
|
||||
self.edges.append((u, v, w))
|
||||
self.graph[u].append((v,w))
|
||||
|
||||
#perform a dijkstra algorithm on a directed graph
|
||||
def dijkstra(self, s):
|
||||
no_v = len(self.graph)
|
||||
distances = {vertex: sys.maxsize-1 for vertex in self.graph}
|
||||
pq = [(0,s)]
|
||||
|
||||
distances[s] = 0
|
||||
while pq:
|
||||
weight, v = heapq.heappop(pq)
|
||||
|
||||
if weight > distances[v]:
|
||||
continue
|
||||
|
||||
for node, w in self.graph[v]:
|
||||
if distances[v]+w < distances[node]:
|
||||
distances[node] = distances[v]+w
|
||||
heapq.heappush(pq, (distances[node], node))
|
||||
return distances
|
||||
|
||||
#carry out the bellman ford algorithm for a node and estimate its distance vector
|
||||
def bellman_ford(self, s):
|
||||
no_v = len(self.graph)
|
||||
distances = {vertex: sys.maxsize-1 for vertex in self.graph}
|
||||
distances[s] = 0
|
||||
|
||||
for u in self.graph:
|
||||
for u, v, w in self.edges:
|
||||
if distances[u] != sys.maxsize-1 and distances[u]+w<distances[v]:
|
||||
distances[v] = distances[u]+w
|
||||
|
||||
return distances
|
||||
|
||||
#perform the johnson algorithm to handle the negative weights that could not be handled by either the dijkstra
|
||||
#or the bellman ford algorithm efficiently
|
||||
def johnson_algo(self):
|
||||
|
||||
self.add_vertices("#")
|
||||
for v in self.graph:
|
||||
if v != "#":
|
||||
self.add_edge("#", v, 0)
|
||||
|
||||
n = self.bellman_ford("#")
|
||||
|
||||
for i in range(len(self.edges)):
|
||||
u, v, weight = self.edges[i]
|
||||
self.edges[i] = (u, v, weight + n[u] - n[v])
|
||||
|
||||
self.graph.pop("#")
|
||||
self.edges = [(u, v, w) for u, v, w in self.edges if u != "#"]
|
||||
|
||||
for u in self.graph:
|
||||
self.graph[u] = [(v, weight) for x, v, weight in self.edges if x == u]
|
||||
|
||||
distances = []
|
||||
for u in self.graph:
|
||||
new_dist = self.dijkstra(u)
|
||||
for v in self.graph:
|
||||
if new_dist[v] < sys.maxsize-1:
|
||||
new_dist[v] += n[v] - n[u]
|
||||
distances.append(new_dist)
|
||||
return distances
|
||||
|
||||
g = JohnsonGraph()
|
||||
#this a complete connected graph
|
||||
g.add_vertices("A")
|
||||
g.add_vertices("B")
|
||||
g.add_vertices("C")
|
||||
g.add_vertices("D")
|
||||
g.add_vertices("E")
|
||||
|
||||
g.add_edge("A", "B", 1)
|
||||
g.add_edge("A", "C", 3)
|
||||
g.add_edge("B", "D", 4)
|
||||
g.add_edge("D", "E", 2)
|
||||
g.add_edge("E", "C", -2)
|
||||
|
||||
|
||||
optimal_paths = g.johnson_algo()
|
||||
print("Print all optimal paths of a graph using Johnson Algorithm")
|
||||
for i, row in enumerate(optimal_paths):
|
||||
print(f"{i}: {row}")
|
Loading…
Reference in New Issue
Block a user