diff --git a/.coveragerc b/.coveragerc
deleted file mode 100644
index f7e6eb212..000000000
--- a/.coveragerc
+++ /dev/null
@@ -1,4 +0,0 @@
-[report]
-sort = Cover
-omit =
- .env/*
diff --git a/.devcontainer/Dockerfile b/.devcontainer/Dockerfile
new file mode 100644
index 000000000..b5a5347c6
--- /dev/null
+++ b/.devcontainer/Dockerfile
@@ -0,0 +1,8 @@
+# https://github.com/microsoft/vscode-dev-containers/blob/main/containers/python-3/README.md
+ARG VARIANT=3.11-bookworm
+FROM mcr.microsoft.com/vscode/devcontainers/python:${VARIANT}
+COPY requirements.txt /tmp/pip-tmp/
+RUN python3 -m pip install --upgrade pip \
+ && python3 -m pip install --no-cache-dir install -r /tmp/pip-tmp/requirements.txt \
+ && pipx install pre-commit ruff \
+ && pre-commit install
diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json
new file mode 100644
index 000000000..c5a855b25
--- /dev/null
+++ b/.devcontainer/devcontainer.json
@@ -0,0 +1,42 @@
+{
+ "name": "Python 3",
+ "build": {
+ "dockerfile": "Dockerfile",
+ "context": "..",
+ "args": {
+ // Update 'VARIANT' to pick a Python version: 3, 3.10, 3.9, 3.8, 3.7, 3.6
+ // Append -bullseye or -buster to pin to an OS version.
+ // Use -bullseye variants on local on arm64/Apple Silicon.
+ "VARIANT": "3.11-bookworm",
+ }
+ },
+
+ // Configure tool-specific properties.
+ "customizations": {
+ // Configure properties specific to VS Code.
+ "vscode": {
+ // Set *default* container specific settings.json values on container create.
+ "settings": {
+ "python.defaultInterpreterPath": "/usr/local/bin/python",
+ "python.linting.enabled": true,
+ "python.formatting.blackPath": "/usr/local/py-utils/bin/black",
+ "python.linting.mypyPath": "/usr/local/py-utils/bin/mypy"
+ },
+
+ // Add the IDs of extensions you want installed when the container is created.
+ "extensions": [
+ "ms-python.python",
+ "ms-python.vscode-pylance"
+ ]
+ }
+ },
+
+ // Use 'forwardPorts' to make a list of ports inside the container available locally.
+ // "forwardPorts": [],
+
+ // Use 'postCreateCommand' to run commands after the container is created.
+ // "postCreateCommand": "pip3 install --user -r requirements.txt",
+
+ // Comment out to connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
+ "remoteUser": "vscode"
+}
diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS
index 260b9704e..abf99ab22 100644
--- a/.github/CODEOWNERS
+++ b/.github/CODEOWNERS
@@ -31,11 +31,11 @@
# /data_structures/ @cclauss # TODO: Uncomment this line after Hacktoberfest
-/digital_image_processing/ @mateuszz0000
+# /digital_image_processing/
# /divide_and_conquer/
-/dynamic_programming/ @Kush1101
+# /dynamic_programming/
# /file_transfer/
@@ -59,7 +59,7 @@
# /machine_learning/
-/maths/ @Kush1101
+# /maths/
# /matrix/
@@ -69,7 +69,7 @@
# /other/ @cclauss # TODO: Uncomment this line after Hacktoberfest
-/project_euler/ @dhruvmanila @Kush1101
+/project_euler/ @dhruvmanila
# /quantum/
@@ -79,7 +79,7 @@
# /searches/
-/sorts/ @mateuszz0000
+# /sorts/
# /strings/ @cclauss # TODO: Uncomment this line after Hacktoberfest
diff --git a/.github/ISSUE_TEMPLATE/feature_request.yml b/.github/ISSUE_TEMPLATE/feature_request.yml
index bed3e8ab5..09a159b21 100644
--- a/.github/ISSUE_TEMPLATE/feature_request.yml
+++ b/.github/ISSUE_TEMPLATE/feature_request.yml
@@ -17,10 +17,3 @@ body:
implementations.
validations:
required: true
-
- - type: checkboxes
- attributes:
- label: Would you like to work on this feature?
- options:
- - label: Yes, I want to work on this feature!
- required: false
diff --git a/.github/ISSUE_TEMPLATE/other.yml b/.github/ISSUE_TEMPLATE/other.yml
new file mode 100644
index 000000000..44d6ff541
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/other.yml
@@ -0,0 +1,19 @@
+name: Other
+description: Use this for any other issues. PLEASE do not create blank issues
+labels: ["awaiting triage"]
+body:
+ - type: textarea
+ id: issuedescription
+ attributes:
+ label: What would you like to share?
+ description: Provide a clear and concise explanation of your issue.
+ validations:
+ required: true
+
+ - type: textarea
+ id: extrainfo
+ attributes:
+ label: Additional information
+ description: Is there anything else we should know about this issue?
+ validations:
+ required: false
diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md
index 4d2265968..1f9797fae 100644
--- a/.github/pull_request_template.md
+++ b/.github/pull_request_template.md
@@ -16,5 +16,5 @@
* [ ] All functions and variable names follow Python naming conventions.
* [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
-* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
-* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
+* [ ] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
+* [ ] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".
diff --git a/.github/stale.yml b/.github/stale.yml
index 36ca56266..0939e1f22 100644
--- a/.github/stale.yml
+++ b/.github/stale.yml
@@ -45,7 +45,7 @@ pulls:
closeComment: >
Please reopen this pull request once you commit the changes requested
or make improvements on the code. If this is not the case and you need
- some help, feel free to seek help from our [Gitter](https://gitter.im/TheAlgorithms)
+ some help, feel free to seek help from our [Gitter](https://gitter.im/TheAlgorithms/community)
or ping one of the reviewers. Thank you for your contributions!
issues:
@@ -59,5 +59,5 @@ issues:
closeComment: >
Please reopen this issue once you add more information and updates here.
If this is not the case and you need some help, feel free to seek help
- from our [Gitter](https://gitter.im/TheAlgorithms) or ping one of the
+ from our [Gitter](https://gitter.im/TheAlgorithms/community) or ping one of the
reviewers. Thank you for your contributions!
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index 8481b962a..fc8cb6369 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -12,7 +12,7 @@ jobs:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
- python-version: 3.x
+ python-version: 3.11
- uses: actions/cache@v3
with:
path: ~/.cache/pip
@@ -22,6 +22,12 @@ jobs:
python -m pip install --upgrade pip setuptools six wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
- run: pytest --doctest-modules --ignore=project_euler/ --ignore=scripts/validate_solutions.py --cov-report=term-missing:skip-covered --cov=. .
+ # TODO: #8818 Re-enable quantum tests
+ run: pytest
+ --ignore=quantum/q_fourier_transform.py
+ --ignore=project_euler/
+ --ignore=scripts/validate_solutions.py
+ --cov-report=term-missing:skip-covered
+ --cov=. .
- if: ${{ success() }}
run: scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md
diff --git a/.github/workflows/pre-commit.yml b/.github/workflows/pre-commit.yml
deleted file mode 100644
index eb5e3d4ce..000000000
--- a/.github/workflows/pre-commit.yml
+++ /dev/null
@@ -1,28 +0,0 @@
-name: pre-commit
-
-on:
- push:
- branches: [ master ]
- pull_request:
- branches: [ master ]
-
-jobs:
- pre-commit:
- runs-on: ubuntu-latest
- steps:
- - uses: actions/checkout@v3
- - uses: actions/cache@v3
- with:
- path: |
- ~/.cache/pre-commit
- ~/.cache/pip
- key: ${{ runner.os }}-pre-commit-${{ hashFiles('.pre-commit-config.yaml') }}
- - uses: actions/setup-python@v4
- with:
- python-version: 3.x
- # - uses: psf/black@22.6.0
- - name: Install pre-commit
- run: |
- python -m pip install --upgrade pip
- python -m pip install --upgrade pre-commit
- - run: pre-commit run --verbose --all-files --show-diff-on-failure
diff --git a/.github/workflows/ruff.yml b/.github/workflows/ruff.yml
new file mode 100644
index 000000000..ca2d5be47
--- /dev/null
+++ b/.github/workflows/ruff.yml
@@ -0,0 +1,16 @@
+# https://beta.ruff.rs
+name: ruff
+on:
+ push:
+ branches:
+ - master
+ pull_request:
+ branches:
+ - master
+jobs:
+ ruff:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v3
+ - run: pip install --user ruff
+ - run: ruff --format=github .
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 7ff745997..b08139561 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -1,68 +1,41 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- rev: v4.3.0
+ rev: v4.4.0
hooks:
- id: check-executables-have-shebangs
+ - id: check-toml
- id: check-yaml
- id: end-of-file-fixer
types: [python]
- id: trailing-whitespace
- exclude: |
- (?x)^(
- data_structures/heap/binomial_heap.py
- )$
- id: requirements-txt-fixer
+ - repo: https://github.com/MarcoGorelli/auto-walrus
+ rev: v0.2.2
+ hooks:
+ - id: auto-walrus
+
+ - repo: https://github.com/astral-sh/ruff-pre-commit
+ rev: v0.0.284
+ hooks:
+ - id: ruff
+
- repo: https://github.com/psf/black
- rev: 22.6.0
+ rev: 23.7.0
hooks:
- id: black
- - repo: https://github.com/PyCQA/isort
- rev: 5.10.1
- hooks:
- - id: isort
- args:
- - --profile=black
-
- - repo: https://github.com/asottile/pyupgrade
- rev: v2.37.0
- hooks:
- - id: pyupgrade
- args:
- - --py310-plus
-
- - repo: https://gitlab.com/pycqa/flake8
- rev: 3.9.2
- hooks:
- - id: flake8
- args:
- - --ignore=E203,W503
- - --max-complexity=25
- - --max-line-length=88
-
- - repo: https://github.com/pre-commit/mirrors-mypy
- rev: v0.961
- hooks:
- - id: mypy
- args:
- - --ignore-missing-imports
- - --install-types # See mirrors-mypy README.md
- - --non-interactive
-
- repo: https://github.com/codespell-project/codespell
- rev: v2.1.0
+ rev: v2.2.5
hooks:
- id: codespell
- args:
- - --ignore-words-list=ans,crate,fo,followings,hist,iff,mater,secant,som,sur,tim
- - --skip="./.*,./strings/dictionary.txt,./strings/words.txt,./project_euler/problem_022/p022_names.txt"
- exclude: |
- (?x)^(
- strings/dictionary.txt |
- strings/words.txt |
- project_euler/problem_022/p022_names.txt
- )$
+ additional_dependencies:
+ - tomli
+
+ - repo: https://github.com/tox-dev/pyproject-fmt
+ rev: "0.13.1"
+ hooks:
+ - id: pyproject-fmt
- repo: local
hooks:
@@ -71,3 +44,18 @@ repos:
entry: ./scripts/validate_filenames.py
language: script
pass_filenames: false
+
+ - repo: https://github.com/abravalheri/validate-pyproject
+ rev: v0.13
+ hooks:
+ - id: validate-pyproject
+
+ - repo: https://github.com/pre-commit/mirrors-mypy
+ rev: v1.5.0
+ hooks:
+ - id: mypy
+ args:
+ - --ignore-missing-imports
+ - --install-types # See mirrors-mypy README.md
+ - --non-interactive
+ additional_dependencies: [types-requests]
diff --git a/.vscode/settings.json b/.vscode/settings.json
new file mode 100644
index 000000000..ef16fa1aa
--- /dev/null
+++ b/.vscode/settings.json
@@ -0,0 +1,5 @@
+{
+ "githubPullRequests.ignoredPullRequestBranches": [
+ "master"
+ ]
+}
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index c9525aa40..4a1bb6527 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -2,13 +2,13 @@
## Before contributing
-Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before sending your pull requests, make sure that you __read the whole guidelines__. If you have any doubt on the contributing guide, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms).
+Welcome to [TheAlgorithms/Python](https://github.com/TheAlgorithms/Python)! Before sending your pull requests, make sure that you __read the whole guidelines__. If you have any doubt on the contributing guide, please feel free to [state it clearly in an issue](https://github.com/TheAlgorithms/Python/issues/new) or ask the community in [Gitter](https://gitter.im/TheAlgorithms/community).
## Contributing
### Contributor
-We are very happy that you consider implementing algorithms and data structures for others! This repository is referenced and used by learners from all over the globe. Being one of our contributors, you agree and confirm that:
+We are very happy that you are considering implementing algorithms and data structures for others! This repository is referenced and used by learners from all over the globe. Being one of our contributors, you agree and confirm that:
- You did your work - no plagiarism allowed
- Any plagiarized work will not be merged.
@@ -25,7 +25,14 @@ We appreciate any contribution, from fixing a grammar mistake in a comment to im
Your contribution will be tested by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) to save time and mental energy. After you have submitted your pull request, you should see the GitHub Actions tests start to run at the bottom of your submission page. If those tests fail, then click on the ___details___ button try to read through the GitHub Actions output to understand the failure. If you do not understand, please leave a comment on your submission page and a community member will try to help.
-Please help us keep our issue list small by adding fixes: #{$ISSUE_NO} to the commit message of pull requests that resolve open issues. GitHub will use this tag to auto-close the issue when the PR is merged.
+If you are interested in resolving an [open issue](https://github.com/TheAlgorithms/Python/issues), simply make a pull request with your proposed fix. __We do not assign issues in this repo__ so please do not ask for permission to work on an issue.
+
+Please help us keep our issue list small by adding `Fixes #{$ISSUE_NUMBER}` to the description of pull requests that resolve open issues.
+For example, if your pull request fixes issue #10, then please add the following to its description:
+```
+Fixes #10
+```
+GitHub will use this tag to [auto-close the issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue) if and when the PR is merged.
#### What is an Algorithm?
@@ -66,7 +73,7 @@ pre-commit run --all-files --show-diff-on-failure
We want your work to be readable by others; therefore, we encourage you to note the following:
-- Please write in Python 3.9+. For instance: `print()` is a function in Python 3 so `print "Hello"` will *not* work but `print("Hello")` will.
+- Please write in Python 3.11+. For instance: `print()` is a function in Python 3 so `print "Hello"` will *not* work but `print("Hello")` will.
- Please focus hard on the naming of functions, classes, and variables. Help your reader by using __descriptive names__ that can help you to remove redundant comments.
- Single letter variable names are *old school* so please avoid them unless their life only spans a few lines.
- Expand acronyms because `gcd()` is hard to understand but `greatest_common_divisor()` is not.
@@ -81,11 +88,11 @@ We want your work to be readable by others; therefore, we encourage you to note
black .
```
-- All submissions will need to pass the test `flake8 . --ignore=E203,W503 --max-line-length=88` before they will be accepted so if possible, try this test locally on your Python file(s) before submitting your pull request.
+- All submissions will need to pass the test `ruff .` before they will be accepted so if possible, try this test locally on your Python file(s) before submitting your pull request.
```bash
- python3 -m pip install flake8 # only required the first time
- flake8 . --ignore=E203,W503 --max-line-length=88 --show-source
+ python3 -m pip install ruff # only required the first time
+ ruff .
```
- Original code submission require docstrings or comments to describe your work.
@@ -176,7 +183,7 @@ We want your work to be readable by others; therefore, we encourage you to note
- Most importantly,
- __Be consistent in the use of these guidelines when submitting.__
- - __Join__ [Gitter](https://gitter.im/TheAlgorithms) __now!__
+ - __Join__ us on [Discord](https://discord.com/invite/c7MnfGFGa6) and [Gitter](https://gitter.im/TheAlgorithms/community) __now!__
- Happy coding!
Writer [@poyea](https://github.com/poyea), Jun 2019.
diff --git a/DIRECTORY.md b/DIRECTORY.md
index 21aab155c..8d1567465 100644
--- a/DIRECTORY.md
+++ b/DIRECTORY.md
@@ -22,14 +22,18 @@
* [All Permutations](backtracking/all_permutations.py)
* [All Subsequences](backtracking/all_subsequences.py)
* [Coloring](backtracking/coloring.py)
+ * [Combination Sum](backtracking/combination_sum.py)
* [Hamiltonian Cycle](backtracking/hamiltonian_cycle.py)
* [Knight Tour](backtracking/knight_tour.py)
* [Minimax](backtracking/minimax.py)
+ * [Minmax](backtracking/minmax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
+ * [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
+ * [Word Search](backtracking/word_search.py)
## Bit Manipulation
* [Binary And Operator](bit_manipulation/binary_and_operator.py)
@@ -42,6 +46,11 @@
* [Count 1S Brian Kernighan Method](bit_manipulation/count_1s_brian_kernighan_method.py)
* [Count Number Of One Bits](bit_manipulation/count_number_of_one_bits.py)
* [Gray Code Sequence](bit_manipulation/gray_code_sequence.py)
+ * [Highest Set Bit](bit_manipulation/highest_set_bit.py)
+ * [Index Of Rightmost Set Bit](bit_manipulation/index_of_rightmost_set_bit.py)
+ * [Is Even](bit_manipulation/is_even.py)
+ * [Is Power Of Two](bit_manipulation/is_power_of_two.py)
+ * [Numbers Different Signs](bit_manipulation/numbers_different_signs.py)
* [Reverse Bits](bit_manipulation/reverse_bits.py)
* [Single Bit Manipulation Operations](bit_manipulation/single_bit_manipulation_operations.py)
@@ -51,18 +60,27 @@
* [Modular Division](blockchain/modular_division.py)
## Boolean Algebra
+ * [And Gate](boolean_algebra/and_gate.py)
+ * [Nand Gate](boolean_algebra/nand_gate.py)
+ * [Norgate](boolean_algebra/norgate.py)
+ * [Not Gate](boolean_algebra/not_gate.py)
+ * [Or Gate](boolean_algebra/or_gate.py)
* [Quine Mc Cluskey](boolean_algebra/quine_mc_cluskey.py)
+ * [Xnor Gate](boolean_algebra/xnor_gate.py)
+ * [Xor Gate](boolean_algebra/xor_gate.py)
## Cellular Automata
* [Conways Game Of Life](cellular_automata/conways_game_of_life.py)
* [Game Of Life](cellular_automata/game_of_life.py)
* [Nagel Schrekenberg](cellular_automata/nagel_schrekenberg.py)
* [One Dimensional](cellular_automata/one_dimensional.py)
+ * [Wa Tor](cellular_automata/wa_tor.py)
## Ciphers
* [A1Z26](ciphers/a1z26.py)
* [Affine Cipher](ciphers/affine_cipher.py)
* [Atbash](ciphers/atbash.py)
+ * [Autokey](ciphers/autokey.py)
* [Baconian Cipher](ciphers/baconian_cipher.py)
* [Base16](ciphers/base16.py)
* [Base32](ciphers/base32.py)
@@ -107,6 +125,7 @@
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
+ * [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
@@ -120,6 +139,7 @@
* [Pooling Functions](computer_vision/pooling_functions.py)
## Conversions
+ * [Astronomical Length Scale Conversion](conversions/astronomical_length_scale_conversion.py)
* [Binary To Decimal](conversions/binary_to_decimal.py)
* [Binary To Hexadecimal](conversions/binary_to_hexadecimal.py)
* [Binary To Octal](conversions/binary_to_octal.py)
@@ -128,6 +148,7 @@
* [Decimal To Binary Recursion](conversions/decimal_to_binary_recursion.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
+ * [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
@@ -139,19 +160,30 @@
* [Pressure Conversions](conversions/pressure_conversions.py)
* [Rgb Hsv Conversion](conversions/rgb_hsv_conversion.py)
* [Roman Numerals](conversions/roman_numerals.py)
+ * [Speed Conversions](conversions/speed_conversions.py)
* [Temperature Conversions](conversions/temperature_conversions.py)
* [Volume Conversions](conversions/volume_conversions.py)
* [Weight Conversion](conversions/weight_conversion.py)
## Data Structures
+ * Arrays
+ * [Permutations](data_structures/arrays/permutations.py)
+ * [Prefix Sum](data_structures/arrays/prefix_sum.py)
+ * [Product Sum](data_structures/arrays/product_sum.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
* [Binary Search Tree](data_structures/binary_tree/binary_search_tree.py)
* [Binary Search Tree Recursive](data_structures/binary_tree/binary_search_tree_recursive.py)
* [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py)
+ * [Binary Tree Node Sum](data_structures/binary_tree/binary_tree_node_sum.py)
+ * [Binary Tree Path Sum](data_structures/binary_tree/binary_tree_path_sum.py)
* [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py)
+ * [Diff Views Of Binary Tree](data_structures/binary_tree/diff_views_of_binary_tree.py)
+ * [Distribute Coins](data_structures/binary_tree/distribute_coins.py)
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
+ * [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py)
+ * [Is Bst](data_structures/binary_tree/is_bst.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
@@ -167,12 +199,16 @@
* [Alternate Disjoint Set](data_structures/disjoint_set/alternate_disjoint_set.py)
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing
+ * [Bloom Filter](data_structures/hashing/bloom_filter.py)
* [Double Hash](data_structures/hashing/double_hash.py)
+ * [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
+ * Tests
+ * [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py)
@@ -201,7 +237,8 @@
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
- * [Queue On List](data_structures/queue/queue_on_list.py)
+ * [Queue By List](data_structures/queue/queue_by_list.py)
+ * [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
@@ -217,6 +254,7 @@
* [Stack With Singly Linked List](data_structures/stacks/stack_with_singly_linked_list.py)
* [Stock Span Problem](data_structures/stacks/stock_span_problem.py)
* Trie
+ * [Radix Tree](data_structures/trie/radix_tree.py)
* [Trie](data_structures/trie/trie.py)
## Digital Image Processing
@@ -256,7 +294,7 @@
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
- * [Max Subarray Sum](divide_and_conquer/max_subarray_sum.py)
+ * [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
@@ -268,38 +306,58 @@
* [Bitmask](dynamic_programming/bitmask.py)
* [Catalan Numbers](dynamic_programming/catalan_numbers.py)
* [Climbing Stairs](dynamic_programming/climbing_stairs.py)
+ * [Combination Sum Iv](dynamic_programming/combination_sum_iv.py)
* [Edit Distance](dynamic_programming/edit_distance.py)
* [Factorial](dynamic_programming/factorial.py)
* [Fast Fibonacci](dynamic_programming/fast_fibonacci.py)
* [Fibonacci](dynamic_programming/fibonacci.py)
+ * [Fizz Buzz](dynamic_programming/fizz_buzz.py)
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
- * [Fractional Knapsack](dynamic_programming/fractional_knapsack.py)
- * [Fractional Knapsack 2](dynamic_programming/fractional_knapsack_2.py)
* [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
+ * [K Means Clustering Tensorflow](dynamic_programming/k_means_clustering_tensorflow.py)
* [Knapsack](dynamic_programming/knapsack.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
+ * [Longest Common Substring](dynamic_programming/longest_common_substring.py)
* [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py)
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Sub Array](dynamic_programming/longest_sub_array.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
- * [Max Sub Array](dynamic_programming/max_sub_array.py)
- * [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
+ * [Max Product Subarray](dynamic_programming/max_product_subarray.py)
+ * [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
+ * [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
* [Minimum Partition](dynamic_programming/minimum_partition.py)
+ * [Minimum Size Subarray Sum](dynamic_programming/minimum_size_subarray_sum.py)
+ * [Minimum Squares To Represent A Number](dynamic_programming/minimum_squares_to_represent_a_number.py)
* [Minimum Steps To One](dynamic_programming/minimum_steps_to_one.py)
+ * [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
+ * [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
+ * [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py)
+ * [Tribonacci](dynamic_programming/tribonacci.py)
+ * [Viterbi](dynamic_programming/viterbi.py)
+ * [Word Break](dynamic_programming/word_break.py)
## Electronics
+ * [Apparent Power](electronics/apparent_power.py)
+ * [Builtin Voltage](electronics/builtin_voltage.py)
* [Carrier Concentration](electronics/carrier_concentration.py)
+ * [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py)
+ * [Electric Conductivity](electronics/electric_conductivity.py)
* [Electric Power](electronics/electric_power.py)
+ * [Electrical Impedance](electronics/electrical_impedance.py)
+ * [Ind Reactance](electronics/ind_reactance.py)
* [Ohms Law](electronics/ohms_law.py)
+ * [Real And Reactive Power](electronics/real_and_reactive_power.py)
+ * [Resistor Equivalence](electronics/resistor_equivalence.py)
+ * [Resonant Frequency](electronics/resonant_frequency.py)
## File Transfer
* [Receive File](file_transfer/receive_file.py)
@@ -310,6 +368,8 @@
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Interest](financial/interest.py)
+ * [Present Value](financial/present_value.py)
+ * [Price Plus Tax](financial/price_plus_tax.py)
## Fractals
* [Julia Sets](fractals/julia_sets.py)
@@ -336,14 +396,15 @@
* [Articulation Points](graphs/articulation_points.py)
* [Basic Graphs](graphs/basic_graphs.py)
* [Bellman Ford](graphs/bellman_ford.py)
- * [Bfs Shortest Path](graphs/bfs_shortest_path.py)
- * [Bfs Zero One Shortest Path](graphs/bfs_zero_one_shortest_path.py)
+ * [Bi Directional Dijkstra](graphs/bi_directional_dijkstra.py)
* [Bidirectional A Star](graphs/bidirectional_a_star.py)
* [Bidirectional Breadth First Search](graphs/bidirectional_breadth_first_search.py)
* [Boruvka](graphs/boruvka.py)
* [Breadth First Search](graphs/breadth_first_search.py)
* [Breadth First Search 2](graphs/breadth_first_search_2.py)
* [Breadth First Search Shortest Path](graphs/breadth_first_search_shortest_path.py)
+ * [Breadth First Search Shortest Path 2](graphs/breadth_first_search_shortest_path_2.py)
+ * [Breadth First Search Zero One Shortest Path](graphs/breadth_first_search_zero_one_shortest_path.py)
* [Check Bipartite Graph Bfs](graphs/check_bipartite_graph_bfs.py)
* [Check Bipartite Graph Dfs](graphs/check_bipartite_graph_dfs.py)
* [Check Cycle](graphs/check_cycle.py)
@@ -353,6 +414,8 @@
* [Dijkstra](graphs/dijkstra.py)
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
+ * [Dijkstra Alternate](graphs/dijkstra_alternate.py)
+ * [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
@@ -362,8 +425,9 @@
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
+ * [Graph Adjacency List](graphs/graph_adjacency_list.py)
+ * [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
- * [Graph Matrix](graphs/graph_matrix.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
@@ -390,12 +454,16 @@
* [Test Min Spanning Tree Prim](graphs/tests/test_min_spanning_tree_prim.py)
## Greedy Methods
+ * [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
+ * [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
+ * [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
* [Adler32](hashes/adler32.py)
* [Chaos Machine](hashes/chaos_machine.py)
* [Djb2](hashes/djb2.py)
+ * [Elf](hashes/elf.py)
* [Enigma Machine](hashes/enigma_machine.py)
* [Hamming Code](hashes/hamming_code.py)
* [Luhn](hashes/luhn.py)
@@ -407,6 +475,7 @@
## Knapsack
* [Greedy Knapsack](knapsack/greedy_knapsack.py)
* [Knapsack](knapsack/knapsack.py)
+ * [Recursive Approach Knapsack](knapsack/recursive_approach_knapsack.py)
* Tests
* [Test Greedy Knapsack](knapsack/tests/test_greedy_knapsack.py)
* [Test Knapsack](knapsack/tests/test_knapsack.py)
@@ -417,19 +486,22 @@
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
+ * [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
+## Linear Programming
+ * [Simplex](linear_programming/simplex.py)
+
## Machine Learning
* [Astar](machine_learning/astar.py)
* [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py)
+ * [Dimensionality Reduction](machine_learning/dimensionality_reduction.py)
* Forecasting
* [Run](machine_learning/forecasting/run.py)
- * [Gaussian Naive Bayes](machine_learning/gaussian_naive_bayes.py)
- * [Gradient Boosting Regressor](machine_learning/gradient_boosting_regressor.py)
* [Gradient Descent](machine_learning/gradient_descent.py)
* [K Means Clust](machine_learning/k_means_clust.py)
* [K Nearest Neighbours](machine_learning/k_nearest_neighbours.py)
@@ -442,26 +514,27 @@
* Lstm
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
- * [Polymonial Regression](machine_learning/polymonial_regression.py)
- * [Random Forest Classifier](machine_learning/random_forest_classifier.py)
- * [Random Forest Regressor](machine_learning/random_forest_regressor.py)
+ * [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
+ * [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
+ * [Xgboost Classifier](machine_learning/xgboost_classifier.py)
+ * [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
- * [3N Plus 1](maths/3n_plus_1.py)
* [Abs](maths/abs.py)
- * [Abs Max](maths/abs_max.py)
- * [Abs Min](maths/abs_min.py)
* [Add](maths/add.py)
+ * [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
* [Aliquot Sum](maths/aliquot_sum.py)
* [Allocation Number](maths/allocation_number.py)
+ * [Arc Length](maths/arc_length.py)
* [Area](maths/area.py)
* [Area Under Curve](maths/area_under_curve.py)
* [Armstrong Numbers](maths/armstrong_numbers.py)
+ * [Automorphic Number](maths/automorphic_number.py)
* [Average Absolute Deviation](maths/average_absolute_deviation.py)
* [Average Mean](maths/average_mean.py)
* [Average Median](maths/average_median.py)
@@ -475,6 +548,8 @@
* [Binomial Coefficient](maths/binomial_coefficient.py)
* [Binomial Distribution](maths/binomial_distribution.py)
* [Bisection](maths/bisection.py)
+ * [Carmichael Number](maths/carmichael_number.py)
+ * [Catalan Number](maths/catalan_number.py)
* [Ceil](maths/ceil.py)
* [Check Polygon](maths/check_polygon.py)
* [Chudnovsky Algorithm](maths/chudnovsky_algorithm.py)
@@ -482,8 +557,11 @@
* [Combinations](maths/combinations.py)
* [Continued Fraction](maths/continued_fraction.py)
* [Decimal Isolate](maths/decimal_isolate.py)
+ * [Decimal To Fraction](maths/decimal_to_fraction.py)
+ * [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial Iterative](maths/double_factorial_iterative.py)
* [Double Factorial Recursive](maths/double_factorial_recursive.py)
+ * [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euclidean Gcd](maths/euclidean_gcd.py)
@@ -491,37 +569,41 @@
* [Euler Modified](maths/euler_modified.py)
* [Eulers Totient](maths/eulers_totient.py)
* [Extended Euclidean Algorithm](maths/extended_euclidean_algorithm.py)
- * [Factorial Iterative](maths/factorial_iterative.py)
- * [Factorial Recursive](maths/factorial_recursive.py)
+ * [Factorial](maths/factorial.py)
* [Factors](maths/factors.py)
* [Fermat Little Theorem](maths/fermat_little_theorem.py)
* [Fibonacci](maths/fibonacci.py)
* [Find Max](maths/find_max.py)
- * [Find Max Recursion](maths/find_max_recursion.py)
* [Find Min](maths/find_min.py)
- * [Find Min Recursion](maths/find_min_recursion.py)
* [Floor](maths/floor.py)
* [Gamma](maths/gamma.py)
* [Gamma Recursive](maths/gamma_recursive.py)
* [Gaussian](maths/gaussian.py)
+ * [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
+ * [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Greedy Coin Change](maths/greedy_coin_change.py)
* [Hamming Numbers](maths/hamming_numbers.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
+ * [Hexagonal Number](maths/hexagonal_number.py)
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
+ * [Interquartile Range](maths/interquartile_range.py)
+ * [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
- * [Kadanes](maths/kadanes.py)
+ * [Juggler Sequence](maths/juggler_sequence.py)
* [Karatsuba](maths/karatsuba.py)
* [Krishnamurthy Number](maths/krishnamurthy_number.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
- * [Largest Subarray Sum](maths/largest_subarray_sum.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
+ * [Liouville Lambda](maths/liouville_lambda.py)
* [Lucas Lehmer Primality Test](maths/lucas_lehmer_primality_test.py)
* [Lucas Series](maths/lucas_series.py)
+ * [Maclaurin Series](maths/maclaurin_series.py)
+ * [Manhattan Distance](maths/manhattan_distance.py)
* [Matrix Exponentiation](maths/matrix_exponentiation.py)
* [Max Sum Sliding Window](maths/max_sum_sliding_window.py)
* [Median Of Two Arrays](maths/median_of_two_arrays.py)
@@ -534,20 +616,26 @@
* [Newton Raphson](maths/newton_raphson.py)
* [Number Of Digits](maths/number_of_digits.py)
* [Numerical Integration](maths/numerical_integration.py)
+ * [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
* [Persistence](maths/persistence.py)
+ * [Pi Generator](maths/pi_generator.py)
* [Pi Monte Carlo Estimation](maths/pi_monte_carlo_estimation.py)
* [Points Are Collinear 3D](maths/points_are_collinear_3d.py)
* [Pollard Rho](maths/pollard_rho.py)
* [Polynomial Evaluation](maths/polynomial_evaluation.py)
+ * Polynomials
+ * [Single Indeterminate Operations](maths/polynomials/single_indeterminate_operations.py)
* [Power Using Recursion](maths/power_using_recursion.py)
* [Prime Check](maths/prime_check.py)
* [Prime Factors](maths/prime_factors.py)
* [Prime Numbers](maths/prime_numbers.py)
* [Prime Sieve Eratosthenes](maths/prime_sieve_eratosthenes.py)
* [Primelib](maths/primelib.py)
+ * [Print Multiplication Table](maths/print_multiplication_table.py)
+ * [Pronic Number](maths/pronic_number.py)
* [Proth Number](maths/proth_number.py)
* [Pythagoras](maths/pythagoras.py)
* [Qr Decomposition](maths/qr_decomposition.py)
@@ -555,6 +643,7 @@
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Relu](maths/relu.py)
+ * [Remove Digit](maths/remove_digit.py)
* [Runge Kutta](maths/runge_kutta.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
@@ -567,7 +656,10 @@
* [P Series](maths/series/p_series.py)
* [Sieve Of Eratosthenes](maths/sieve_of_eratosthenes.py)
* [Sigmoid](maths/sigmoid.py)
+ * [Sigmoid Linear Unit](maths/sigmoid_linear_unit.py)
+ * [Signum](maths/signum.py)
* [Simpson Rule](maths/simpson_rule.py)
+ * [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
@@ -575,22 +667,34 @@
* [Sum Of Arithmetic Series](maths/sum_of_arithmetic_series.py)
* [Sum Of Digits](maths/sum_of_digits.py)
* [Sum Of Geometric Progression](maths/sum_of_geometric_progression.py)
+ * [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
+ * [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
+ * [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
+ * [Twin Prime](maths/twin_prime.py)
* [Two Pointer](maths/two_pointer.py)
* [Two Sum](maths/two_sum.py)
* [Ugly Numbers](maths/ugly_numbers.py)
* [Volume](maths/volume.py)
+ * [Weird Number](maths/weird_number.py)
* [Zellers Congruence](maths/zellers_congruence.py)
## Matrix
+ * [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
+ * [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
+ * [Count Paths](matrix/count_paths.py)
+ * [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
+ * [Largest Square Area In Matrix](matrix/largest_square_area_in_matrix.py)
* [Matrix Class](matrix/matrix_class.py)
* [Matrix Operation](matrix/matrix_operation.py)
+ * [Max Area Of Island](matrix/max_area_of_island.py)
* [Nth Fibonacci Using Matrix Exponentiation](matrix/nth_fibonacci_using_matrix_exponentiation.py)
+ * [Pascal Triangle](matrix/pascal_triangle.py)
* [Rotate Matrix](matrix/rotate_matrix.py)
* [Searching In Sorted Matrix](matrix/searching_in_sorted_matrix.py)
* [Sherman Morrison](matrix/sherman_morrison.py)
@@ -604,14 +708,16 @@
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
+ * Activation Functions
+ * [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Perceptron](neural_network/perceptron.py)
+ * [Simple Neural Network](neural_network/simple_neural_network.py)
## Other
* [Activity Selection](other/activity_selection.py)
* [Alternative List Arrange](other/alternative_list_arrange.py)
- * [Check Strong Password](other/check_strong_password.py)
* [Davisb Putnamb Logemannb Loveland](other/davisb_putnamb_logemannb_loveland.py)
* [Dijkstra Bankers Algorithm](other/dijkstra_bankers_algorithm.py)
* [Doomsday](other/doomsday.py)
@@ -619,23 +725,42 @@
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
+ * [Guess The Number Search](other/guess_the_number_search.py)
+ * [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
- * [Maximum Subarray](other/maximum_subarray.py)
+ * [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
- * [Password Generator](other/password_generator.py)
+ * [Number Container System](other/number_container_system.py)
+ * [Password](other/password.py)
+ * [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
* [Sdes](other/sdes.py)
* [Tower Of Hanoi](other/tower_of_hanoi.py)
## Physics
+ * [Altitude Pressure](physics/altitude_pressure.py)
+ * [Archimedes Principle](physics/archimedes_principle.py)
+ * [Basic Orbital Capture](physics/basic_orbital_capture.py)
+ * [Casimir Effect](physics/casimir_effect.py)
+ * [Centripetal Force](physics/centripetal_force.py)
+ * [Grahams Law](physics/grahams_law.py)
* [Horizontal Projectile Motion](physics/horizontal_projectile_motion.py)
- * [Lorenz Transformation Four Vector](physics/lorenz_transformation_four_vector.py)
+ * [Hubble Parameter](physics/hubble_parameter.py)
+ * [Ideal Gas Law](physics/ideal_gas_law.py)
+ * [Kinetic Energy](physics/kinetic_energy.py)
+ * [Lorentz Transformation Four Vector](physics/lorentz_transformation_four_vector.py)
+ * [Malus Law](physics/malus_law.py)
* [N Body Simulation](physics/n_body_simulation.py)
+ * [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
+ * [Potential Energy](physics/potential_energy.py)
+ * [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
+ * [Shear Stress](physics/shear_stress.py)
+ * [Speed Of Sound](physics/speed_of_sound.py)
## Project Euler
* Problem 001
@@ -815,6 +940,8 @@
* Problem 072
* [Sol1](project_euler/problem_072/sol1.py)
* [Sol2](project_euler/problem_072/sol2.py)
+ * Problem 073
+ * [Sol1](project_euler/problem_073/sol1.py)
* Problem 074
* [Sol1](project_euler/problem_074/sol1.py)
* [Sol2](project_euler/problem_074/sol2.py)
@@ -826,10 +953,14 @@
* [Sol1](project_euler/problem_077/sol1.py)
* Problem 078
* [Sol1](project_euler/problem_078/sol1.py)
+ * Problem 079
+ * [Sol1](project_euler/problem_079/sol1.py)
* Problem 080
* [Sol1](project_euler/problem_080/sol1.py)
* Problem 081
* [Sol1](project_euler/problem_081/sol1.py)
+ * Problem 082
+ * [Sol1](project_euler/problem_082/sol1.py)
* Problem 085
* [Sol1](project_euler/problem_085/sol1.py)
* Problem 086
@@ -842,16 +973,20 @@
* [Sol1](project_euler/problem_091/sol1.py)
* Problem 092
* [Sol1](project_euler/problem_092/sol1.py)
+ * Problem 094
+ * [Sol1](project_euler/problem_094/sol1.py)
* Problem 097
* [Sol1](project_euler/problem_097/sol1.py)
* Problem 099
* [Sol1](project_euler/problem_099/sol1.py)
+ * Problem 100
+ * [Sol1](project_euler/problem_100/sol1.py)
* Problem 101
* [Sol1](project_euler/problem_101/sol1.py)
* Problem 102
* [Sol1](project_euler/problem_102/sol1.py)
* Problem 104
- * [Sol](project_euler/problem_104/sol.py)
+ * [Sol1](project_euler/problem_104/sol1.py)
* Problem 107
* [Sol1](project_euler/problem_107/sol1.py)
* Problem 109
@@ -866,6 +1001,8 @@
* [Sol1](project_euler/problem_115/sol1.py)
* Problem 116
* [Sol1](project_euler/problem_116/sol1.py)
+ * Problem 117
+ * [Sol1](project_euler/problem_117/sol1.py)
* Problem 119
* [Sol1](project_euler/problem_119/sol1.py)
* Problem 120
@@ -878,6 +1015,8 @@
* [Sol1](project_euler/problem_125/sol1.py)
* Problem 129
* [Sol1](project_euler/problem_129/sol1.py)
+ * Problem 131
+ * [Sol1](project_euler/problem_131/sol1.py)
* Problem 135
* [Sol1](project_euler/problem_135/sol1.py)
* Problem 144
@@ -890,6 +1029,8 @@
* [Sol1](project_euler/problem_174/sol1.py)
* Problem 180
* [Sol1](project_euler/problem_180/sol1.py)
+ * Problem 187
+ * [Sol1](project_euler/problem_187/sol1.py)
* Problem 188
* [Sol1](project_euler/problem_188/sol1.py)
* Problem 191
@@ -914,18 +1055,26 @@
* [Sol1](project_euler/problem_587/sol1.py)
* Problem 686
* [Sol1](project_euler/problem_686/sol1.py)
+ * Problem 800
+ * [Sol1](project_euler/problem_800/sol1.py)
## Quantum
+ * [Bb84](quantum/bb84.py)
* [Deutsch Jozsa](quantum/deutsch_jozsa.py)
* [Half Adder](quantum/half_adder.py)
* [Not Gate](quantum/not_gate.py)
+ * [Q Fourier Transform](quantum/q_fourier_transform.py)
+ * [Q Full Adder](quantum/q_full_adder.py)
* [Quantum Entanglement](quantum/quantum_entanglement.py)
+ * [Quantum Teleportation](quantum/quantum_teleportation.py)
* [Ripple Adder Classic](quantum/ripple_adder_classic.py)
* [Single Qubit Measure](quantum/single_qubit_measure.py)
+ * [Superdense Coding](quantum/superdense_coding.py)
## Scheduling
* [First Come First Served](scheduling/first_come_first_served.py)
* [Highest Response Ratio Next](scheduling/highest_response_ratio_next.py)
+ * [Job Sequencing With Deadline](scheduling/job_sequencing_with_deadline.py)
* [Multi Level Feedback Queue](scheduling/multi_level_feedback_queue.py)
* [Non Preemptive Shortest Job First](scheduling/non_preemptive_shortest_job_first.py)
* [Round Robin](scheduling/round_robin.py)
@@ -950,6 +1099,7 @@
## Sorts
* [Bead Sort](sorts/bead_sort.py)
+ * [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
@@ -1005,11 +1155,11 @@
* [Alternative String Arrange](strings/alternative_string_arrange.py)
* [Anagrams](strings/anagrams.py)
* [Autocomplete Using Trie](strings/autocomplete_using_trie.py)
+ * [Barcode Validator](strings/barcode_validator.py)
* [Boyer Moore Search](strings/boyer_moore_search.py)
* [Can String Be Rearranged As Palindrome](strings/can_string_be_rearranged_as_palindrome.py)
* [Capitalize](strings/capitalize.py)
* [Check Anagrams](strings/check_anagrams.py)
- * [Check Pangram](strings/check_pangram.py)
* [Credit Card Validator](strings/credit_card_validator.py)
* [Detecting English Programmatically](strings/detecting_english_programmatically.py)
* [Dna](strings/dna.py)
@@ -1017,7 +1167,11 @@
* [Hamming Distance](strings/hamming_distance.py)
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
- * [Is Palindrome](strings/is_palindrome.py)
+ * [Is Isogram](strings/is_isogram.py)
+ * [Is Pangram](strings/is_pangram.py)
+ * [Is Spain National Id](strings/is_spain_national_id.py)
+ * [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
+ * [Is Valid Email Address](strings/is_valid_email_address.py)
* [Jaro Winkler](strings/jaro_winkler.py)
* [Join](strings/join.py)
* [Knuth Morris Pratt](strings/knuth_morris_pratt.py)
@@ -1034,7 +1188,11 @@
* [Reverse Letters](strings/reverse_letters.py)
* [Reverse Long Words](strings/reverse_long_words.py)
* [Reverse Words](strings/reverse_words.py)
+ * [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
+ * [String Switch Case](strings/string_switch_case.py)
+ * [Text Justification](strings/text_justification.py)
+ * [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
@@ -1044,6 +1202,7 @@
## Web Programming
* [Co2 Emission](web_programming/co2_emission.py)
+ * [Convert Number To Words](web_programming/convert_number_to_words.py)
* [Covid Stats Via Xpath](web_programming/covid_stats_via_xpath.py)
* [Crawl Google Results](web_programming/crawl_google_results.py)
* [Crawl Google Scholar Citation](web_programming/crawl_google_scholar_citation.py)
@@ -1053,12 +1212,12 @@
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
- * [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)
* [Fetch Quotes](web_programming/fetch_quotes.py)
* [Fetch Well Rx Price](web_programming/fetch_well_rx_price.py)
+ * [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Imdbtop](web_programming/get_imdbtop.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
@@ -1068,6 +1227,7 @@
* [Instagram Pic](web_programming/instagram_pic.py)
* [Instagram Video](web_programming/instagram_video.py)
* [Nasa Data](web_programming/nasa_data.py)
+ * [Open Google Results](web_programming/open_google_results.py)
* [Random Anime Character](web_programming/random_anime_character.py)
* [Recaptcha Verification](web_programming/recaptcha_verification.py)
* [Reddit](web_programming/reddit.py)
diff --git a/README.md b/README.md
index c78797960..d8eba4e01 100644
--- a/README.md
+++ b/README.md
@@ -13,19 +13,16 @@
-
+
-
+
-
-
-
-
+
@@ -37,7 +34,7 @@
All algorithms implemented in Python - for education
-Implementations are for learning purposes only. As they may be less efficient than the implementations in the Python standard library, use them at your discretion.
+Implementations are for learning purposes only. They may be less efficient than the implementations in the Python standard library. Use them at your discretion.
## Getting Started
@@ -45,8 +42,8 @@ Read through our [Contribution Guidelines](CONTRIBUTING.md) before you contribut
## Community Channels
-We're on [Discord](https://discord.gg/c7MnfGFGa6) and [Gitter](https://gitter.im/TheAlgorithms)! Community channels are great for you to ask questions and get help. Please join us!
+We are on [Discord](https://the-algorithms.com/discord) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
## List of Algorithms
-See our [directory](DIRECTORY.md) for easier navigation and better overview of the project.
+See our [directory](DIRECTORY.md) for easier navigation and a better overview of the project.
diff --git a/arithmetic_analysis/bisection.py b/arithmetic_analysis/bisection.py
index 640913a7a..e359cc170 100644
--- a/arithmetic_analysis/bisection.py
+++ b/arithmetic_analysis/bisection.py
@@ -8,7 +8,7 @@ def bisection(function: Callable[[float], float], a: float, b: float) -> float:
1.0000000149011612
>>> bisection(lambda x: x ** 3 - 1, 2, 1000)
Traceback (most recent call last):
- ...
+ ...
ValueError: could not find root in given interval.
>>> bisection(lambda x: x ** 2 - 4 * x + 3, 0, 2)
1.0
@@ -16,7 +16,7 @@ def bisection(function: Callable[[float], float], a: float, b: float) -> float:
3.0
>>> bisection(lambda x: x ** 2 - 4 * x + 3, 4, 1000)
Traceback (most recent call last):
- ...
+ ...
ValueError: could not find root in given interval.
"""
start: float = a
diff --git a/arithmetic_analysis/gaussian_elimination.py b/arithmetic_analysis/gaussian_elimination.py
index 89ed3b323..f0f20af8e 100644
--- a/arithmetic_analysis/gaussian_elimination.py
+++ b/arithmetic_analysis/gaussian_elimination.py
@@ -33,11 +33,11 @@ def retroactive_resolution(
x: NDArray[float64] = np.zeros((rows, 1), dtype=float)
for row in reversed(range(rows)):
- sum = 0
+ total = 0
for col in range(row + 1, columns):
- sum += coefficients[row, col] * x[col]
+ total += coefficients[row, col] * x[col]
- x[row, 0] = (vector[row] - sum) / coefficients[row, row]
+ x[row, 0] = (vector[row] - total) / coefficients[row, row]
return x
diff --git a/arithmetic_analysis/intersection.py b/arithmetic_analysis/intersection.py
index 49213dd05..826c0ead0 100644
--- a/arithmetic_analysis/intersection.py
+++ b/arithmetic_analysis/intersection.py
@@ -10,7 +10,7 @@ def intersection(function: Callable[[float], float], x0: float, x1: float) -> fl
0.9999999999954654
>>> intersection(lambda x: x ** 3 - 1, 5, 5)
Traceback (most recent call last):
- ...
+ ...
ZeroDivisionError: float division by zero, could not find root
>>> intersection(lambda x: x ** 3 - 1, 100, 200)
1.0000000000003888
@@ -24,7 +24,7 @@ def intersection(function: Callable[[float], float], x0: float, x1: float) -> fl
0.0
>>> intersection(math.cos, -math.pi, math.pi)
Traceback (most recent call last):
- ...
+ ...
ZeroDivisionError: float division by zero, could not find root
"""
x_n: float = x0
diff --git a/arithmetic_analysis/jacobi_iteration_method.py b/arithmetic_analysis/jacobi_iteration_method.py
index 4336aaa91..17edf4bf4 100644
--- a/arithmetic_analysis/jacobi_iteration_method.py
+++ b/arithmetic_analysis/jacobi_iteration_method.py
@@ -42,16 +42,18 @@ def jacobi_iteration_method(
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
- ...
+ ...
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
- >>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
+ >>> jacobi_iteration_method(
+ ... coefficient, constant, init_val, iterations
+ ... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
- ...
+ ...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
received 3x3 and 2x1
@@ -59,9 +61,11 @@ def jacobi_iteration_method(
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
- >>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
+ >>> jacobi_iteration_method(
+ ... coefficient, constant, init_val, iterations
+ ... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
- ...
+ ...
ValueError: Number of initial values must be equal to number of rows in coefficient
matrix but received 2 and 3
@@ -71,7 +75,7 @@ def jacobi_iteration_method(
>>> iterations = 0
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
Traceback (most recent call last):
- ...
+ ...
ValueError: Iterations must be at least 1
"""
@@ -79,24 +83,26 @@ def jacobi_iteration_method(
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
- raise ValueError(
- f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
- )
+ msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
+ raise ValueError(msg)
if cols2 != 1:
- raise ValueError(f"Constant matrix must be nx1 but received {rows2}x{cols2}")
+ msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
+ raise ValueError(msg)
if rows1 != rows2:
- raise ValueError(
- f"""Coefficient and constant matrices dimensions must be nxn and nx1 but
- received {rows1}x{cols1} and {rows2}x{cols2}"""
+ msg = (
+ "Coefficient and constant matrices dimensions must be nxn and nx1 but "
+ f"received {rows1}x{cols1} and {rows2}x{cols2}"
)
+ raise ValueError(msg)
if len(init_val) != rows1:
- raise ValueError(
- f"""Number of initial values must be equal to number of rows in coefficient
- matrix but received {len(init_val)} and {rows1}"""
+ msg = (
+ "Number of initial values must be equal to number of rows in coefficient "
+ f"matrix but received {len(init_val)} and {rows1}"
)
+ raise ValueError(msg)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")
@@ -110,7 +116,7 @@ def jacobi_iteration_method(
strictly_diagonally_dominant(table)
# Iterates the whole matrix for given number of times
- for i in range(iterations):
+ for _ in range(iterations):
new_val = []
for row in range(rows):
temp = 0
@@ -138,7 +144,7 @@ def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
>>> strictly_diagonally_dominant(table)
Traceback (most recent call last):
- ...
+ ...
ValueError: Coefficient matrix is not strictly diagonally dominant
"""
@@ -147,14 +153,14 @@ def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
is_diagonally_dominant = True
for i in range(0, rows):
- sum = 0
+ total = 0
for j in range(0, cols - 1):
if i == j:
continue
else:
- sum += table[i][j]
+ total += table[i][j]
- if table[i][i] <= sum:
+ if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
return is_diagonally_dominant
diff --git a/arithmetic_analysis/lu_decomposition.py b/arithmetic_analysis/lu_decomposition.py
index 371f7b166..eaabce544 100644
--- a/arithmetic_analysis/lu_decomposition.py
+++ b/arithmetic_analysis/lu_decomposition.py
@@ -1,62 +1,102 @@
-"""Lower-Upper (LU) Decomposition.
+"""
+Lower–upper (LU) decomposition factors a matrix as a product of a lower
+triangular matrix and an upper triangular matrix. A square matrix has an LU
+decomposition under the following conditions:
+ - If the matrix is invertible, then it has an LU decomposition if and only
+ if all of its leading principal minors are non-zero (see
+ https://en.wikipedia.org/wiki/Minor_(linear_algebra) for an explanation of
+ leading principal minors of a matrix).
+ - If the matrix is singular (i.e., not invertible) and it has a rank of k
+ (i.e., it has k linearly independent columns), then it has an LU
+ decomposition if its first k leading principal minors are non-zero.
-Reference:
-- https://en.wikipedia.org/wiki/LU_decomposition
+This algorithm will simply attempt to perform LU decomposition on any square
+matrix and raise an error if no such decomposition exists.
+
+Reference: https://en.wikipedia.org/wiki/LU_decomposition
"""
from __future__ import annotations
import numpy as np
-import numpy.typing as NDArray
-from numpy import float64
-def lower_upper_decomposition(
- table: NDArray[float64],
-) -> tuple[NDArray[float64], NDArray[float64]]:
- """Lower-Upper (LU) Decomposition
-
- Example:
-
+def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
+ """
+ Perform LU decomposition on a given matrix and raises an error if the matrix
+ isn't square or if no such decomposition exists
>>> matrix = np.array([[2, -2, 1], [0, 1, 2], [5, 3, 1]])
- >>> outcome = lower_upper_decomposition(matrix)
- >>> outcome[0]
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
+ >>> lower_mat
array([[1. , 0. , 0. ],
[0. , 1. , 0. ],
[2.5, 8. , 1. ]])
- >>> outcome[1]
+ >>> upper_mat
array([[ 2. , -2. , 1. ],
[ 0. , 1. , 2. ],
[ 0. , 0. , -17.5]])
+ >>> matrix = np.array([[4, 3], [6, 3]])
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
+ >>> lower_mat
+ array([[1. , 0. ],
+ [1.5, 1. ]])
+ >>> upper_mat
+ array([[ 4. , 3. ],
+ [ 0. , -1.5]])
+
+ # Matrix is not square
>>> matrix = np.array([[2, -2, 1], [0, 1, 2]])
- >>> lower_upper_decomposition(matrix)
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
Traceback (most recent call last):
- ...
+ ...
ValueError: 'table' has to be of square shaped array but got a 2x3 array:
[[ 2 -2 1]
[ 0 1 2]]
+
+ # Matrix is invertible, but its first leading principal minor is 0
+ >>> matrix = np.array([[0, 1], [1, 0]])
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: No LU decomposition exists
+
+ # Matrix is singular, but its first leading principal minor is 1
+ >>> matrix = np.array([[1, 0], [1, 0]])
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
+ >>> lower_mat
+ array([[1., 0.],
+ [1., 1.]])
+ >>> upper_mat
+ array([[1., 0.],
+ [0., 0.]])
+
+ # Matrix is singular, but its first leading principal minor is 0
+ >>> matrix = np.array([[0, 1], [0, 1]])
+ >>> lower_mat, upper_mat = lower_upper_decomposition(matrix)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: No LU decomposition exists
"""
- # Table that contains our data
- # Table has to be a square array so we need to check first
+ # Ensure that table is a square array
rows, columns = np.shape(table)
if rows != columns:
- raise ValueError(
- f"'table' has to be of square shaped array but got a {rows}x{columns} "
- + f"array:\n{table}"
+ msg = (
+ "'table' has to be of square shaped array but got a "
+ f"{rows}x{columns} array:\n{table}"
)
+ raise ValueError(msg)
+
lower = np.zeros((rows, columns))
upper = np.zeros((rows, columns))
for i in range(columns):
for j in range(i):
- total = 0
- for k in range(j):
- total += lower[i][k] * upper[k][j]
+ total = sum(lower[i][k] * upper[k][j] for k in range(j))
+ if upper[j][j] == 0:
+ raise ArithmeticError("No LU decomposition exists")
lower[i][j] = (table[i][j] - total) / upper[j][j]
lower[i][i] = 1
for j in range(i, columns):
- total = 0
- for k in range(i):
- total += lower[i][k] * upper[k][j]
+ total = sum(lower[i][k] * upper[k][j] for k in range(j))
upper[i][j] = table[i][j] - total
return lower, upper
diff --git a/arithmetic_analysis/newton_forward_interpolation.py b/arithmetic_analysis/newton_forward_interpolation.py
index 490e0687f..466f6c18c 100644
--- a/arithmetic_analysis/newton_forward_interpolation.py
+++ b/arithmetic_analysis/newton_forward_interpolation.py
@@ -23,7 +23,7 @@ def ucal(u: float, p: int) -> float:
def main() -> None:
n = int(input("enter the numbers of values: "))
y: list[list[float]] = []
- for i in range(n):
+ for _ in range(n):
y.append([])
for i in range(n):
for j in range(n):
diff --git a/arithmetic_analysis/newton_method.py b/arithmetic_analysis/newton_method.py
index c4018a0f2..5127bfcaf 100644
--- a/arithmetic_analysis/newton_method.py
+++ b/arithmetic_analysis/newton_method.py
@@ -28,7 +28,7 @@ def newton(
1.5707963267948966
>>> newton(math.cos, lambda x: -math.sin(x), 0)
Traceback (most recent call last):
- ...
+ ...
ZeroDivisionError: Could not find root
"""
prev_guess = float(starting_int)
diff --git a/arithmetic_analysis/newton_raphson.py b/arithmetic_analysis/newton_raphson.py
index 86ff9d350..1b90ad417 100644
--- a/arithmetic_analysis/newton_raphson.py
+++ b/arithmetic_analysis/newton_raphson.py
@@ -5,7 +5,7 @@
from __future__ import annotations
from decimal import Decimal
-from math import * # noqa: F401, F403
+from math import * # noqa: F403
from sympy import diff
@@ -25,9 +25,11 @@ def newton_raphson(
"""
x = a
while True:
- x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func)))))
+ x = Decimal(x) - (
+ Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307
+ )
# This number dictates the accuracy of the answer
- if abs(eval(func)) < precision:
+ if abs(eval(func)) < precision: # noqa: S307
return float(x)
diff --git a/arithmetic_analysis/newton_raphson_new.py b/arithmetic_analysis/newton_raphson_new.py
index 19ea4ce21..f61841e2e 100644
--- a/arithmetic_analysis/newton_raphson_new.py
+++ b/arithmetic_analysis/newton_raphson_new.py
@@ -8,7 +8,7 @@
# Newton's Method - https://en.wikipedia.org/wiki/Newton's_method
from sympy import diff, lambdify, symbols
-from sympy.functions import * # noqa: F401, F403
+from sympy.functions import * # noqa: F403
def newton_raphson(
@@ -32,7 +32,7 @@ def newton_raphson(
1.2186556186174883e-10
>>> newton_raphson('cos(x)', 0)
Traceback (most recent call last):
- ...
+ ...
ZeroDivisionError: Could not find root
"""
@@ -59,7 +59,6 @@ def newton_raphson(
# Let's Execute
if __name__ == "__main__":
-
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
diff --git a/arithmetic_analysis/secant_method.py b/arithmetic_analysis/secant_method.py
index 45bcb185f..d28a46206 100644
--- a/arithmetic_analysis/secant_method.py
+++ b/arithmetic_analysis/secant_method.py
@@ -20,7 +20,7 @@ def secant_method(lower_bound: float, upper_bound: float, repeats: int) -> float
"""
x0 = lower_bound
x1 = upper_bound
- for i in range(0, repeats):
+ for _ in range(0, repeats):
x0, x1 = x1, x1 - (f(x1) * (x1 - x0)) / (f(x1) - f(x0))
return x1
diff --git a/audio_filters/butterworth_filter.py b/audio_filters/butterworth_filter.py
index 409cfeb1d..cffedb7a6 100644
--- a/audio_filters/butterworth_filter.py
+++ b/audio_filters/butterworth_filter.py
@@ -11,7 +11,7 @@ Alternatively you can use scipy.signal.butter, which should yield the same resul
def make_lowpass(
- frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
+ frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
) -> IIRFilter:
"""
Creates a low-pass filter
@@ -39,7 +39,7 @@ def make_lowpass(
def make_highpass(
- frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
+ frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
) -> IIRFilter:
"""
Creates a high-pass filter
@@ -67,7 +67,7 @@ def make_highpass(
def make_bandpass(
- frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
+ frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
) -> IIRFilter:
"""
Creates a band-pass filter
@@ -96,7 +96,7 @@ def make_bandpass(
def make_allpass(
- frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2)
+ frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
) -> IIRFilter:
"""
Creates an all-pass filter
@@ -121,7 +121,10 @@ def make_allpass(
def make_peak(
- frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
+ frequency: int,
+ samplerate: int,
+ gain_db: float,
+ q_factor: float = 1 / sqrt(2), # noqa: B008
) -> IIRFilter:
"""
Creates a peak filter
@@ -150,7 +153,10 @@ def make_peak(
def make_lowshelf(
- frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
+ frequency: int,
+ samplerate: int,
+ gain_db: float,
+ q_factor: float = 1 / sqrt(2), # noqa: B008
) -> IIRFilter:
"""
Creates a low-shelf filter
@@ -184,7 +190,10 @@ def make_lowshelf(
def make_highshelf(
- frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2)
+ frequency: int,
+ samplerate: int,
+ gain_db: float,
+ q_factor: float = 1 / sqrt(2), # noqa: B008
) -> IIRFilter:
"""
Creates a high-shelf filter
diff --git a/audio_filters/equal_loudness_filter.py.broken.txt b/audio_filters/equal_loudness_filter.py.broken.txt
new file mode 100644
index 000000000..88cba8533
--- /dev/null
+++ b/audio_filters/equal_loudness_filter.py.broken.txt
@@ -0,0 +1,61 @@
+from json import loads
+from pathlib import Path
+
+import numpy as np
+from yulewalker import yulewalk
+
+from audio_filters.butterworth_filter import make_highpass
+from audio_filters.iir_filter import IIRFilter
+
+data = loads((Path(__file__).resolve().parent / "loudness_curve.json").read_text())
+
+
+class EqualLoudnessFilter:
+ r"""
+ An equal-loudness filter which compensates for the human ear's non-linear response
+ to sound.
+ This filter corrects this by cascading a yulewalk filter and a butterworth filter.
+
+ Designed for use with samplerate of 44.1kHz and above. If you're using a lower
+ samplerate, use with caution.
+
+ Code based on matlab implementation at https://bit.ly/3eqh2HU
+ (url shortened for ruff)
+
+ Target curve: https://i.imgur.com/3g2VfaM.png
+ Yulewalk response: https://i.imgur.com/J9LnJ4C.png
+ Butterworth and overall response: https://i.imgur.com/3g2VfaM.png
+
+ Images and original matlab implementation by David Robinson, 2001
+ """
+
+ def __init__(self, samplerate: int = 44100) -> None:
+ self.yulewalk_filter = IIRFilter(10)
+ self.butterworth_filter = make_highpass(150, samplerate)
+
+ # pad the data to nyquist
+ curve_freqs = np.array(data["frequencies"] + [max(20000.0, samplerate / 2)])
+ curve_gains = np.array(data["gains"] + [140])
+
+ # Convert to angular frequency
+ freqs_normalized = curve_freqs / samplerate * 2
+ # Invert the curve and normalize to 0dB
+ gains_normalized = np.power(10, (np.min(curve_gains) - curve_gains) / 20)
+
+ # Scipy's `yulewalk` function is a stub, so we're using the
+ # `yulewalker` library instead.
+ # This function computes the coefficients using a least-squares
+ # fit to the specified curve.
+ ya, yb = yulewalk(10, freqs_normalized, gains_normalized)
+ self.yulewalk_filter.set_coefficients(ya, yb)
+
+ def process(self, sample: float) -> float:
+ """
+ Process a single sample through both filters
+
+ >>> filt = EqualLoudnessFilter()
+ >>> filt.process(0.0)
+ 0.0
+ """
+ tmp = self.yulewalk_filter.process(sample)
+ return self.butterworth_filter.process(tmp)
diff --git a/audio_filters/iir_filter.py b/audio_filters/iir_filter.py
index aae320365..f3c1ad43b 100644
--- a/audio_filters/iir_filter.py
+++ b/audio_filters/iir_filter.py
@@ -47,19 +47,21 @@ class IIRFilter:
>>> filt.set_coefficients(a_coeffs, b_coeffs)
"""
if len(a_coeffs) < self.order:
- a_coeffs = [1.0] + a_coeffs
+ a_coeffs = [1.0, *a_coeffs]
if len(a_coeffs) != self.order + 1:
- raise ValueError(
- f"Expected a_coeffs to have {self.order + 1} elements for {self.order}"
- f"-order filter, got {len(a_coeffs)}"
+ msg = (
+ f"Expected a_coeffs to have {self.order + 1} elements "
+ f"for {self.order}-order filter, got {len(a_coeffs)}"
)
+ raise ValueError(msg)
if len(b_coeffs) != self.order + 1:
- raise ValueError(
- f"Expected b_coeffs to have {self.order + 1} elements for {self.order}"
- f"-order filter, got {len(a_coeffs)}"
+ msg = (
+ f"Expected b_coeffs to have {self.order + 1} elements "
+ f"for {self.order}-order filter, got {len(a_coeffs)}"
)
+ raise ValueError(msg)
self.a_coeffs = a_coeffs
self.b_coeffs = b_coeffs
diff --git a/audio_filters/loudness_curve.json b/audio_filters/loudness_curve.json
new file mode 100644
index 000000000..fc066a081
--- /dev/null
+++ b/audio_filters/loudness_curve.json
@@ -0,0 +1,76 @@
+{
+ "_comment": "The following is a representative average of the Equal Loudness Contours as measured by Robinson and Dadson, 1956",
+ "_doi": "10.1088/0508-3443/7/5/302",
+ "frequencies": [
+ 0,
+ 20,
+ 30,
+ 40,
+ 50,
+ 60,
+ 70,
+ 80,
+ 90,
+ 100,
+ 200,
+ 300,
+ 400,
+ 500,
+ 600,
+ 700,
+ 800,
+ 900,
+ 1000,
+ 1500,
+ 2000,
+ 2500,
+ 3000,
+ 3700,
+ 4000,
+ 5000,
+ 6000,
+ 7000,
+ 8000,
+ 9000,
+ 10000,
+ 12000,
+ 15000,
+ 20000
+ ],
+ "gains": [
+ 120,
+ 113,
+ 103,
+ 97,
+ 93,
+ 91,
+ 89,
+ 87,
+ 86,
+ 85,
+ 78,
+ 76,
+ 76,
+ 76,
+ 76,
+ 77,
+ 78,
+ 79.5,
+ 80,
+ 79,
+ 77,
+ 74,
+ 71.5,
+ 70,
+ 70.5,
+ 74,
+ 79,
+ 84,
+ 86,
+ 86,
+ 85,
+ 95,
+ 110,
+ 125
+ ]
+}
diff --git a/audio_filters/show_response.py b/audio_filters/show_response.py
index 6e2731a58..097b8152b 100644
--- a/audio_filters/show_response.py
+++ b/audio_filters/show_response.py
@@ -34,7 +34,7 @@ def get_bounds(
return lowest, highest
-def show_frequency_response(filter: FilterType, samplerate: int) -> None:
+def show_frequency_response(filter_type: FilterType, samplerate: int) -> None:
"""
Show frequency response of a filter
@@ -45,7 +45,7 @@ def show_frequency_response(filter: FilterType, samplerate: int) -> None:
size = 512
inputs = [1] + [0] * (size - 1)
- outputs = [filter.process(item) for item in inputs]
+ outputs = [filter_type.process(item) for item in inputs]
filler = [0] * (samplerate - size) # zero-padding
outputs += filler
@@ -66,7 +66,7 @@ def show_frequency_response(filter: FilterType, samplerate: int) -> None:
plt.show()
-def show_phase_response(filter: FilterType, samplerate: int) -> None:
+def show_phase_response(filter_type: FilterType, samplerate: int) -> None:
"""
Show phase response of a filter
@@ -77,7 +77,7 @@ def show_phase_response(filter: FilterType, samplerate: int) -> None:
size = 512
inputs = [1] + [0] * (size - 1)
- outputs = [filter.process(item) for item in inputs]
+ outputs = [filter_type.process(item) for item in inputs]
filler = [0] * (samplerate - size) # zero-padding
outputs += filler
diff --git a/backtracking/combination_sum.py b/backtracking/combination_sum.py
new file mode 100644
index 000000000..f555adb75
--- /dev/null
+++ b/backtracking/combination_sum.py
@@ -0,0 +1,66 @@
+"""
+In the Combination Sum problem, we are given a list consisting of distinct integers.
+We need to find all the combinations whose sum equals to target given.
+We can use an element more than one.
+
+Time complexity(Average Case): O(n!)
+
+Constraints:
+1 <= candidates.length <= 30
+2 <= candidates[i] <= 40
+All elements of candidates are distinct.
+1 <= target <= 40
+"""
+
+
+def backtrack(
+ candidates: list, path: list, answer: list, target: int, previous_index: int
+) -> None:
+ """
+ A recursive function that searches for possible combinations. Backtracks in case
+ of a bigger current combination value than the target value.
+
+ Parameters
+ ----------
+ previous_index: Last index from the previous search
+ target: The value we need to obtain by summing our integers in the path list.
+ answer: A list of possible combinations
+ path: Current combination
+ candidates: A list of integers we can use.
+ """
+ if target == 0:
+ answer.append(path.copy())
+ else:
+ for index in range(previous_index, len(candidates)):
+ if target >= candidates[index]:
+ path.append(candidates[index])
+ backtrack(candidates, path, answer, target - candidates[index], index)
+ path.pop(len(path) - 1)
+
+
+def combination_sum(candidates: list, target: int) -> list:
+ """
+ >>> combination_sum([2, 3, 5], 8)
+ [[2, 2, 2, 2], [2, 3, 3], [3, 5]]
+ >>> combination_sum([2, 3, 6, 7], 7)
+ [[2, 2, 3], [7]]
+ >>> combination_sum([-8, 2.3, 0], 1)
+ Traceback (most recent call last):
+ ...
+ RecursionError: maximum recursion depth exceeded in comparison
+ """
+ path = [] # type: list[int]
+ answer = [] # type: list[int]
+ backtrack(candidates, path, answer, target, 0)
+ return answer
+
+
+def main() -> None:
+ print(combination_sum([-8, 2.3, 0], 1))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ main()
diff --git a/backtracking/hamiltonian_cycle.py b/backtracking/hamiltonian_cycle.py
index 500e993e5..4a4156d70 100644
--- a/backtracking/hamiltonian_cycle.py
+++ b/backtracking/hamiltonian_cycle.py
@@ -71,7 +71,7 @@ def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int)
>>> curr_ind = 1
>>> util_hamilton_cycle(graph, path, curr_ind)
True
- >>> print(path)
+ >>> path
[0, 1, 2, 4, 3, 0]
Case 2: Use exact graph as in previous case, but in the properties taken from
@@ -85,7 +85,7 @@ def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int)
>>> curr_ind = 3
>>> util_hamilton_cycle(graph, path, curr_ind)
True
- >>> print(path)
+ >>> path
[0, 1, 2, 4, 3, 0]
"""
@@ -95,10 +95,10 @@ def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int)
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
- for next in range(0, len(graph)):
- if valid_connection(graph, next, curr_ind, path):
+ for next_ver in range(0, len(graph)):
+ if valid_connection(graph, next_ver, curr_ind, path):
# Insert current vertex into path as next transition
- path[curr_ind] = next
+ path[curr_ind] = next_ver
# Validate created path
if util_hamilton_cycle(graph, path, curr_ind + 1):
return True
diff --git a/backtracking/knight_tour.py b/backtracking/knight_tour.py
index 6e9b31bd1..cc88307b7 100644
--- a/backtracking/knight_tour.py
+++ b/backtracking/knight_tour.py
@@ -78,7 +78,7 @@ def open_knight_tour(n: int) -> list[list[int]]:
>>> open_knight_tour(2)
Traceback (most recent call last):
- ...
+ ...
ValueError: Open Kight Tour cannot be performed on a board of size 2
"""
@@ -91,7 +91,8 @@ def open_knight_tour(n: int) -> list[list[int]]:
return board
board[i][j] = 0
- raise ValueError(f"Open Kight Tour cannot be performed on a board of size {n}")
+ msg = f"Open Kight Tour cannot be performed on a board of size {n}"
+ raise ValueError(msg)
if __name__ == "__main__":
diff --git a/backtracking/minmax.py b/backtracking/minmax.py
new file mode 100644
index 000000000..9b87183cf
--- /dev/null
+++ b/backtracking/minmax.py
@@ -0,0 +1,69 @@
+"""
+Minimax helps to achieve maximum score in a game by checking all possible moves.
+
+"""
+from __future__ import annotations
+
+import math
+
+
+def minimax(
+ depth: int, node_index: int, is_max: bool, scores: list[int], height: float
+) -> int:
+ """
+ depth is current depth in game tree.
+ node_index is index of current node in scores[].
+ scores[] contains the leaves of game tree.
+ height is maximum height of game tree.
+
+ >>> scores = [90, 23, 6, 33, 21, 65, 123, 34423]
+ >>> height = math.log(len(scores), 2)
+ >>> minimax(0, 0, True, scores, height)
+ 65
+ >>> minimax(-1, 0, True, scores, height)
+ Traceback (most recent call last):
+ ...
+ ValueError: Depth cannot be less than 0
+ >>> minimax(0, 0, True, [], 2)
+ Traceback (most recent call last):
+ ...
+ ValueError: Scores cannot be empty
+ >>> scores = [3, 5, 2, 9, 12, 5, 23, 23]
+ >>> height = math.log(len(scores), 2)
+ >>> minimax(0, 0, True, scores, height)
+ 12
+ """
+
+ if depth < 0:
+ raise ValueError("Depth cannot be less than 0")
+
+ if not scores:
+ raise ValueError("Scores cannot be empty")
+
+ if depth == height:
+ return scores[node_index]
+
+ return (
+ max(
+ minimax(depth + 1, node_index * 2, False, scores, height),
+ minimax(depth + 1, node_index * 2 + 1, False, scores, height),
+ )
+ if is_max
+ else min(
+ minimax(depth + 1, node_index * 2, True, scores, height),
+ minimax(depth + 1, node_index * 2 + 1, True, scores, height),
+ )
+ )
+
+
+def main() -> None:
+ scores = [90, 23, 6, 33, 21, 65, 123, 34423]
+ height = math.log(len(scores), 2)
+ print(f"Optimal value : {minimax(0, 0, True, scores, height)}")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ main()
diff --git a/backtracking/n_queens.py b/backtracking/n_queens.py
index b8ace5978..bbf0ce44f 100644
--- a/backtracking/n_queens.py
+++ b/backtracking/n_queens.py
@@ -12,7 +12,7 @@ from __future__ import annotations
solution = []
-def isSafe(board: list[list[int]], row: int, column: int) -> bool:
+def is_safe(board: list[list[int]], row: int, column: int) -> bool:
"""
This function returns a boolean value True if it is safe to place a queen there
considering the current state of the board.
@@ -63,7 +63,7 @@ def solve(board: list[list[int]], row: int) -> bool:
If all the combinations for that particular branch are successful the board is
reinitialized for the next possible combination.
"""
- if isSafe(board, row, i):
+ if is_safe(board, row, i):
board[row][i] = 1
solve(board, row + 1)
board[row][i] = 0
diff --git a/backtracking/n_queens_math.py b/backtracking/n_queens_math.py
index 2de784ded..f3b08ab0a 100644
--- a/backtracking/n_queens_math.py
+++ b/backtracking/n_queens_math.py
@@ -107,7 +107,6 @@ def depth_first_search(
# We iterate each column in the row to find all possible results in each row
for col in range(n):
-
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
@@ -130,9 +129,9 @@ def depth_first_search(
# If it is False we call dfs function again and we update the inputs
depth_first_search(
- possible_board + [col],
- diagonal_right_collisions + [row - col],
- diagonal_left_collisions + [row + col],
+ [*possible_board, col],
+ [*diagonal_right_collisions, row - col],
+ [*diagonal_left_collisions, row + col],
boards,
n,
)
diff --git a/backtracking/power_sum.py b/backtracking/power_sum.py
new file mode 100644
index 000000000..fcf1429f8
--- /dev/null
+++ b/backtracking/power_sum.py
@@ -0,0 +1,93 @@
+"""
+Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem
+Find the number of ways that a given integer X, can be expressed as the sum
+of the Nth powers of unique, natural numbers. For example, if X=13 and N=2.
+We have to find all combinations of unique squares adding up to 13.
+The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
+"""
+
+from math import pow
+
+
+def backtrack(
+ needed_sum: int,
+ power: int,
+ current_number: int,
+ current_sum: int,
+ solutions_count: int,
+) -> tuple[int, int]:
+ """
+ >>> backtrack(13, 2, 1, 0, 0)
+ (0, 1)
+ >>> backtrack(100, 2, 1, 0, 0)
+ (0, 3)
+ >>> backtrack(100, 3, 1, 0, 0)
+ (0, 1)
+ >>> backtrack(800, 2, 1, 0, 0)
+ (0, 561)
+ >>> backtrack(1000, 10, 1, 0, 0)
+ (0, 0)
+ >>> backtrack(400, 2, 1, 0, 0)
+ (0, 55)
+ >>> backtrack(50, 1, 1, 0, 0)
+ (0, 3658)
+ """
+ if current_sum == needed_sum:
+ # If the sum of the powers is equal to needed_sum, then we have a solution.
+ solutions_count += 1
+ return current_sum, solutions_count
+
+ i_to_n = int(pow(current_number, power))
+ if current_sum + i_to_n <= needed_sum:
+ # If the sum of the powers is less than needed_sum, then continue adding powers.
+ current_sum += i_to_n
+ current_sum, solutions_count = backtrack(
+ needed_sum, power, current_number + 1, current_sum, solutions_count
+ )
+ current_sum -= i_to_n
+ if i_to_n < needed_sum:
+ # If the power of i is less than needed_sum, then try with the next power.
+ current_sum, solutions_count = backtrack(
+ needed_sum, power, current_number + 1, current_sum, solutions_count
+ )
+ return current_sum, solutions_count
+
+
+def solve(needed_sum: int, power: int) -> int:
+ """
+ >>> solve(13, 2)
+ 1
+ >>> solve(100, 2)
+ 3
+ >>> solve(100, 3)
+ 1
+ >>> solve(800, 2)
+ 561
+ >>> solve(1000, 10)
+ 0
+ >>> solve(400, 2)
+ 55
+ >>> solve(50, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Invalid input
+ needed_sum must be between 1 and 1000, power between 2 and 10.
+ >>> solve(-10, 5)
+ Traceback (most recent call last):
+ ...
+ ValueError: Invalid input
+ needed_sum must be between 1 and 1000, power between 2 and 10.
+ """
+ if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
+ raise ValueError(
+ "Invalid input\n"
+ "needed_sum must be between 1 and 1000, power between 2 and 10."
+ )
+
+ return backtrack(needed_sum, power, 1, 0, 0)[1] # Return the solutions_count
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/backtracking/rat_in_maze.py b/backtracking/rat_in_maze.py
index 2860880db..7bde886dd 100644
--- a/backtracking/rat_in_maze.py
+++ b/backtracking/rat_in_maze.py
@@ -88,12 +88,12 @@ def run_maze(maze: list[list[int]], i: int, j: int, solutions: list[list[int]])
solutions[i][j] = 1
return True
- lower_flag = (not (i < 0)) and (not (j < 0)) # Check lower bounds
+ lower_flag = (not i < 0) and (not j < 0) # Check lower bounds
upper_flag = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
- block_flag = (not (solutions[i][j])) and (not (maze[i][j]))
+ block_flag = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
solutions[i][j] = 1
diff --git a/backtracking/sum_of_subsets.py b/backtracking/sum_of_subsets.py
index 8348544c0..c5e23321c 100644
--- a/backtracking/sum_of_subsets.py
+++ b/backtracking/sum_of_subsets.py
@@ -39,14 +39,14 @@ def create_state_space_tree(
if sum(path) == max_sum:
result.append(path)
return
- for num_index in range(num_index, len(nums)):
+ for index in range(num_index, len(nums)):
create_state_space_tree(
nums,
max_sum,
- num_index + 1,
- path + [nums[num_index]],
+ index + 1,
+ [*path, nums[index]],
result,
- remaining_nums_sum - nums[num_index],
+ remaining_nums_sum - nums[index],
)
diff --git a/backtracking/word_search.py b/backtracking/word_search.py
new file mode 100644
index 000000000..c9d52012b
--- /dev/null
+++ b/backtracking/word_search.py
@@ -0,0 +1,168 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 24, 2022
+
+Task:
+Given an m x n grid of characters board and a string word,
+return true if word exists in the grid.
+
+The word can be constructed from letters of sequentially adjacent cells,
+where adjacent cells are horizontally or vertically neighboring.
+The same letter cell may not be used more than once.
+
+Example:
+
+Matrix:
+---------
+|A|B|C|E|
+|S|F|C|S|
+|A|D|E|E|
+---------
+
+Word:
+"ABCCED"
+
+Result:
+True
+
+Implementation notes: Use backtracking approach.
+At each point, check all neighbors to try to find the next letter of the word.
+
+leetcode: https://leetcode.com/problems/word-search/
+
+"""
+
+
+def get_point_key(len_board: int, len_board_column: int, row: int, column: int) -> int:
+ """
+ Returns the hash key of matrix indexes.
+
+ >>> get_point_key(10, 20, 1, 0)
+ 200
+ """
+
+ return len_board * len_board_column * row + column
+
+
+def exits_word(
+ board: list[list[str]],
+ word: str,
+ row: int,
+ column: int,
+ word_index: int,
+ visited_points_set: set[int],
+) -> bool:
+ """
+ Return True if it's possible to search the word suffix
+ starting from the word_index.
+
+ >>> exits_word([["A"]], "B", 0, 0, 0, set())
+ False
+ """
+
+ if board[row][column] != word[word_index]:
+ return False
+
+ if word_index == len(word) - 1:
+ return True
+
+ traverts_directions = [(0, 1), (0, -1), (-1, 0), (1, 0)]
+ len_board = len(board)
+ len_board_column = len(board[0])
+ for direction in traverts_directions:
+ next_i = row + direction[0]
+ next_j = column + direction[1]
+ if not (0 <= next_i < len_board and 0 <= next_j < len_board_column):
+ continue
+
+ key = get_point_key(len_board, len_board_column, next_i, next_j)
+ if key in visited_points_set:
+ continue
+
+ visited_points_set.add(key)
+ if exits_word(board, word, next_i, next_j, word_index + 1, visited_points_set):
+ return True
+
+ visited_points_set.remove(key)
+
+ return False
+
+
+def word_exists(board: list[list[str]], word: str) -> bool:
+ """
+ >>> word_exists([["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], "ABCCED")
+ True
+ >>> word_exists([["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], "SEE")
+ True
+ >>> word_exists([["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], "ABCB")
+ False
+ >>> word_exists([["A"]], "A")
+ True
+ >>> word_exists([["A","A","A","A","A","A"],
+ ... ["A","A","A","A","A","A"],
+ ... ["A","A","A","A","A","A"],
+ ... ["A","A","A","A","A","A"],
+ ... ["A","A","A","A","A","B"],
+ ... ["A","A","A","A","B","A"]],
+ ... "AAAAAAAAAAAAABB")
+ False
+ >>> word_exists([["A"]], 123)
+ Traceback (most recent call last):
+ ...
+ ValueError: The word parameter should be a string of length greater than 0.
+ >>> word_exists([["A"]], "")
+ Traceback (most recent call last):
+ ...
+ ValueError: The word parameter should be a string of length greater than 0.
+ >>> word_exists([[]], "AB")
+ Traceback (most recent call last):
+ ...
+ ValueError: The board should be a non empty matrix of single chars strings.
+ >>> word_exists([], "AB")
+ Traceback (most recent call last):
+ ...
+ ValueError: The board should be a non empty matrix of single chars strings.
+ >>> word_exists([["A"], [21]], "AB")
+ Traceback (most recent call last):
+ ...
+ ValueError: The board should be a non empty matrix of single chars strings.
+ """
+
+ # Validate board
+ board_error_message = (
+ "The board should be a non empty matrix of single chars strings."
+ )
+
+ len_board = len(board)
+ if not isinstance(board, list) or len(board) == 0:
+ raise ValueError(board_error_message)
+
+ for row in board:
+ if not isinstance(row, list) or len(row) == 0:
+ raise ValueError(board_error_message)
+
+ for item in row:
+ if not isinstance(item, str) or len(item) != 1:
+ raise ValueError(board_error_message)
+
+ # Validate word
+ if not isinstance(word, str) or len(word) == 0:
+ raise ValueError(
+ "The word parameter should be a string of length greater than 0."
+ )
+
+ len_board_column = len(board[0])
+ for i in range(len_board):
+ for j in range(len_board_column):
+ if exits_word(
+ board, word, i, j, 0, {get_point_key(len_board, len_board_column, i, j)}
+ ):
+ return True
+
+ return False
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/bit_manipulation/count_1s_brian_kernighan_method.py b/bit_manipulation/count_1s_brian_kernighan_method.py
index d217af90b..2ed81b09d 100644
--- a/bit_manipulation/count_1s_brian_kernighan_method.py
+++ b/bit_manipulation/count_1s_brian_kernighan_method.py
@@ -1,7 +1,7 @@
def get_1s_count(number: int) -> int:
"""
Count the number of set bits in a 32 bit integer using Brian Kernighan's way.
- Ref - http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan
+ Ref - https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan
>>> get_1s_count(25)
3
>>> get_1s_count(37)
@@ -17,16 +17,19 @@ def get_1s_count(number: int) -> int:
>>> get_1s_count(-1)
Traceback (most recent call last):
...
- ValueError: the value of input must be positive
+ ValueError: Input must be a non-negative integer
>>> get_1s_count(0.8)
Traceback (most recent call last):
...
- TypeError: Input value must be an 'int' type
+ ValueError: Input must be a non-negative integer
+ >>> get_1s_count("25")
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a non-negative integer
"""
- if number < 0:
- raise ValueError("the value of input must be positive")
- elif isinstance(number, float):
- raise TypeError("Input value must be an 'int' type")
+ if not isinstance(number, int) or number < 0:
+ raise ValueError("Input must be a non-negative integer")
+
count = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
diff --git a/bit_manipulation/count_number_of_one_bits.py b/bit_manipulation/count_number_of_one_bits.py
index 51fd2b630..a1687503a 100644
--- a/bit_manipulation/count_number_of_one_bits.py
+++ b/bit_manipulation/count_number_of_one_bits.py
@@ -1,34 +1,91 @@
-def get_set_bits_count(number: int) -> int:
+from timeit import timeit
+
+
+def get_set_bits_count_using_brian_kernighans_algorithm(number: int) -> int:
"""
Count the number of set bits in a 32 bit integer
- >>> get_set_bits_count(25)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(25)
3
- >>> get_set_bits_count(37)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(37)
3
- >>> get_set_bits_count(21)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(21)
3
- >>> get_set_bits_count(58)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(58)
4
- >>> get_set_bits_count(0)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(0)
0
- >>> get_set_bits_count(256)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(256)
1
- >>> get_set_bits_count(-1)
+ >>> get_set_bits_count_using_brian_kernighans_algorithm(-1)
Traceback (most recent call last):
...
- ValueError: the value of input must be positive
+ ValueError: the value of input must not be negative
"""
if number < 0:
- raise ValueError("the value of input must be positive")
+ raise ValueError("the value of input must not be negative")
+ result = 0
+ while number:
+ number &= number - 1
+ result += 1
+ return result
+
+
+def get_set_bits_count_using_modulo_operator(number: int) -> int:
+ """
+ Count the number of set bits in a 32 bit integer
+ >>> get_set_bits_count_using_modulo_operator(25)
+ 3
+ >>> get_set_bits_count_using_modulo_operator(37)
+ 3
+ >>> get_set_bits_count_using_modulo_operator(21)
+ 3
+ >>> get_set_bits_count_using_modulo_operator(58)
+ 4
+ >>> get_set_bits_count_using_modulo_operator(0)
+ 0
+ >>> get_set_bits_count_using_modulo_operator(256)
+ 1
+ >>> get_set_bits_count_using_modulo_operator(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: the value of input must not be negative
+ """
+ if number < 0:
+ raise ValueError("the value of input must not be negative")
result = 0
while number:
if number % 2 == 1:
result += 1
- number = number >> 1
+ number >>= 1
return result
+def benchmark() -> None:
+ """
+ Benchmark code for comparing 2 functions, with different length int values.
+ Brian Kernighan's algorithm is consistently faster than using modulo_operator.
+ """
+
+ def do_benchmark(number: int) -> None:
+ setup = "import __main__ as z"
+ print(f"Benchmark when {number = }:")
+ print(f"{get_set_bits_count_using_modulo_operator(number) = }")
+ timing = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=setup)
+ print(f"timeit() runs in {timing} seconds")
+ print(f"{get_set_bits_count_using_brian_kernighans_algorithm(number) = }")
+ timing = timeit(
+ "z.get_set_bits_count_using_brian_kernighans_algorithm(25)",
+ setup=setup,
+ )
+ print(f"timeit() runs in {timing} seconds")
+
+ for number in (25, 37, 58, 0):
+ do_benchmark(number)
+ print()
+
+
if __name__ == "__main__":
import doctest
doctest.testmod()
+ benchmark()
diff --git a/bit_manipulation/highest_set_bit.py b/bit_manipulation/highest_set_bit.py
new file mode 100644
index 000000000..21d92dcb9
--- /dev/null
+++ b/bit_manipulation/highest_set_bit.py
@@ -0,0 +1,34 @@
+def get_highest_set_bit_position(number: int) -> int:
+ """
+ Returns position of the highest set bit of a number.
+ Ref - https://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
+ >>> get_highest_set_bit_position(25)
+ 5
+ >>> get_highest_set_bit_position(37)
+ 6
+ >>> get_highest_set_bit_position(1)
+ 1
+ >>> get_highest_set_bit_position(4)
+ 3
+ >>> get_highest_set_bit_position(0)
+ 0
+ >>> get_highest_set_bit_position(0.8)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value must be an 'int' type
+ """
+ if not isinstance(number, int):
+ raise TypeError("Input value must be an 'int' type")
+
+ position = 0
+ while number:
+ position += 1
+ number >>= 1
+
+ return position
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/bit_manipulation/index_of_rightmost_set_bit.py b/bit_manipulation/index_of_rightmost_set_bit.py
new file mode 100644
index 000000000..c9c911660
--- /dev/null
+++ b/bit_manipulation/index_of_rightmost_set_bit.py
@@ -0,0 +1,51 @@
+# Reference: https://www.geeksforgeeks.org/position-of-rightmost-set-bit/
+
+
+def get_index_of_rightmost_set_bit(number: int) -> int:
+ """
+ Take in a positive integer 'number'.
+ Returns the zero-based index of first set bit in that 'number' from right.
+ Returns -1, If no set bit found.
+
+ >>> get_index_of_rightmost_set_bit(0)
+ -1
+ >>> get_index_of_rightmost_set_bit(5)
+ 0
+ >>> get_index_of_rightmost_set_bit(36)
+ 2
+ >>> get_index_of_rightmost_set_bit(8)
+ 3
+ >>> get_index_of_rightmost_set_bit(-18)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a non-negative integer
+ >>> get_index_of_rightmost_set_bit('test')
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a non-negative integer
+ >>> get_index_of_rightmost_set_bit(1.25)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a non-negative integer
+ """
+
+ if not isinstance(number, int) or number < 0:
+ raise ValueError("Input must be a non-negative integer")
+
+ intermediate = number & ~(number - 1)
+ index = 0
+ while intermediate:
+ intermediate >>= 1
+ index += 1
+ return index - 1
+
+
+if __name__ == "__main__":
+ """
+ Finding the index of rightmost set bit has some very peculiar use-cases,
+ especially in finding missing or/and repeating numbers in a list of
+ positive integers.
+ """
+ import doctest
+
+ doctest.testmod(verbose=True)
diff --git a/bit_manipulation/is_even.py b/bit_manipulation/is_even.py
new file mode 100644
index 000000000..ba036f35a
--- /dev/null
+++ b/bit_manipulation/is_even.py
@@ -0,0 +1,37 @@
+def is_even(number: int) -> bool:
+ """
+ return true if the input integer is even
+ Explanation: Lets take a look at the following deicmal to binary conversions
+ 2 => 10
+ 14 => 1110
+ 100 => 1100100
+ 3 => 11
+ 13 => 1101
+ 101 => 1100101
+ from the above examples we can observe that
+ for all the odd integers there is always 1 set bit at the end
+ also, 1 in binary can be represented as 001, 00001, or 0000001
+ so for any odd integer n => n&1 is always equals 1 else the integer is even
+
+ >>> is_even(1)
+ False
+ >>> is_even(4)
+ True
+ >>> is_even(9)
+ False
+ >>> is_even(15)
+ False
+ >>> is_even(40)
+ True
+ >>> is_even(100)
+ True
+ >>> is_even(101)
+ False
+ """
+ return number & 1 == 0
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/bit_manipulation/is_power_of_two.py b/bit_manipulation/is_power_of_two.py
new file mode 100644
index 000000000..023e979fe
--- /dev/null
+++ b/bit_manipulation/is_power_of_two.py
@@ -0,0 +1,57 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 1, 2022
+
+Task:
+Given a positive int number. Return True if this number is power of 2
+or False otherwise.
+
+Implementation notes: Use bit manipulation.
+For example if the number is the power of two it's bits representation:
+n = 0..100..00
+n - 1 = 0..011..11
+
+n & (n - 1) - no intersections = 0
+"""
+
+
+def is_power_of_two(number: int) -> bool:
+ """
+ Return True if this number is power of 2 or False otherwise.
+
+ >>> is_power_of_two(0)
+ True
+ >>> is_power_of_two(1)
+ True
+ >>> is_power_of_two(2)
+ True
+ >>> is_power_of_two(4)
+ True
+ >>> is_power_of_two(6)
+ False
+ >>> is_power_of_two(8)
+ True
+ >>> is_power_of_two(17)
+ False
+ >>> is_power_of_two(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: number must not be negative
+ >>> is_power_of_two(1.2)
+ Traceback (most recent call last):
+ ...
+ TypeError: unsupported operand type(s) for &: 'float' and 'float'
+
+ # Test all powers of 2 from 0 to 10,000
+ >>> all(is_power_of_two(int(2 ** i)) for i in range(10000))
+ True
+ """
+ if number < 0:
+ raise ValueError("number must not be negative")
+ return number & (number - 1) == 0
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/bit_manipulation/numbers_different_signs.py b/bit_manipulation/numbers_different_signs.py
new file mode 100644
index 000000000..cf8b6d86f
--- /dev/null
+++ b/bit_manipulation/numbers_different_signs.py
@@ -0,0 +1,39 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 30, 2022
+
+Task:
+Given two int numbers. Return True these numbers have opposite signs
+or False otherwise.
+
+Implementation notes: Use bit manipulation.
+Use XOR for two numbers.
+"""
+
+
+def different_signs(num1: int, num2: int) -> bool:
+ """
+ Return True if numbers have opposite signs False otherwise.
+
+ >>> different_signs(1, -1)
+ True
+ >>> different_signs(1, 1)
+ False
+ >>> different_signs(1000000000000000000000000000, -1000000000000000000000000000)
+ True
+ >>> different_signs(-1000000000000000000000000000, 1000000000000000000000000000)
+ True
+ >>> different_signs(50, 278)
+ False
+ >>> different_signs(0, 2)
+ False
+ >>> different_signs(2, 0)
+ False
+ """
+ return num1 ^ num2 < 0
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/bit_manipulation/reverse_bits.py b/bit_manipulation/reverse_bits.py
index 55608ae12..a8c77c11b 100644
--- a/bit_manipulation/reverse_bits.py
+++ b/bit_manipulation/reverse_bits.py
@@ -14,10 +14,11 @@ def get_reverse_bit_string(number: int) -> str:
TypeError: operation can not be conducted on a object of type str
"""
if not isinstance(number, int):
- raise TypeError(
+ msg = (
"operation can not be conducted on a object of type "
f"{type(number).__name__}"
)
+ raise TypeError(msg)
bit_string = ""
for _ in range(0, 32):
bit_string += str(number % 2)
diff --git a/blockchain/README.md b/blockchain/README.md
new file mode 100644
index 000000000..b5fab7b36
--- /dev/null
+++ b/blockchain/README.md
@@ -0,0 +1,45 @@
+# Blockchain
+
+A Blockchain is a type of **distributed ledger** technology (DLT) that consists of growing list of records, called **blocks**, that are securely linked together using **cryptography**.
+
+Let's breakdown the terminologies in the above definition. We find below terminologies,
+
+- Digital Ledger Technology (DLT)
+- Blocks
+- Cryptography
+
+## Digital Ledger Technology
+
+ It is otherwise called as distributed ledger technology. It is simply the opposite of centralized database. Firstly, what is a **ledger**? A ledger is a book or collection of accounts that records account transactions.
+
+ *Why is Blockchain addressed as digital ledger if it can record more than account transactions? What other transaction details and information can it hold?*
+
+Digital Ledger Technology is just a ledger which is shared among multiple nodes. This way there exist no need for central authority to hold the info. Okay, how is it differentiated from central database and what are their benefits?
+
+There is an organization which has 4 branches whose data are stored in a centralized database. So even if one branch needs any data from ledger they need an approval from database in charge. And if one hacks the central database he gets to tamper and control all the data.
+
+Now lets assume every branch has a copy of the ledger and then once anything is added to the ledger by anyone branch it is gonna automatically reflect in all other ledgers available in other branch. This is done using Peer-to-peer network.
+
+So this means even if information is tampered in one branch we can find out. If one branch is hacked we can be alerted ,so we can safeguard other branches. Now, assume these branches as computers or nodes and the ledger is a transaction record or digital receipt. If one ledger is hacked in a node we can detect since there will be a mismatch in comparison with other node information. So this is the concept of Digital Ledger Technology.
+
+*Is it required for all nodes to have access to all information in other nodes? Wouldn't this require enormous storage space in each node?*
+
+## Blocks
+
+In short a block is nothing but collections of records with a labelled header. These are connected cryptographically. Once a new block is added to a chain, the previous block is connected, more precisely said as locked and hence, will remain unaltered. We can understand this concept once we get a clear understanding of working mechanism of blockchain.
+
+## Cryptography
+
+It is the practice and study of secure communication techniques in the midst of adversarial behavior. More broadly, cryptography is the creation and analysis of protocols that prevent third parties or the general public from accessing private messages.
+
+*Which cryptography technology is most widely used in blockchain and why?*
+
+So, in general, blockchain technology is a distributed record holder which records the information about ownership of an asset. To define precisely,
+> Blockchain is a distributed, immutable ledger that makes it easier to record transactions and track assets in a corporate network.
+An asset could be tangible (such as a house, car, cash, or land) or intangible (such as a business) (intellectual property, patents, copyrights, branding). A blockchain network can track and sell almost anything of value, lowering risk and costs for everyone involved.
+
+So this is all about introduction to blockchain technology. To learn more about the topic refer below links....
+*
+*
+*
+*
diff --git a/blockchain/chinese_remainder_theorem.py b/blockchain/chinese_remainder_theorem.py
index 54d861dd9..d3e75e779 100644
--- a/blockchain/chinese_remainder_theorem.py
+++ b/blockchain/chinese_remainder_theorem.py
@@ -53,6 +53,7 @@ def chinese_remainder_theorem(n1: int, r1: int, n2: int, r2: int) -> int:
# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------
+
# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a: int, n: int) -> int:
"""
diff --git a/boolean_algebra/and_gate.py b/boolean_algebra/and_gate.py
new file mode 100644
index 000000000..834116772
--- /dev/null
+++ b/boolean_algebra/and_gate.py
@@ -0,0 +1,50 @@
+"""
+An AND Gate is a logic gate in boolean algebra which results to 1 (True) if both the
+inputs are 1, and 0 (False) otherwise.
+
+Following is the truth table of an AND Gate:
+ ------------------------------
+ | Input 1 | Input 2 | Output |
+ ------------------------------
+ | 0 | 0 | 0 |
+ | 0 | 1 | 0 |
+ | 1 | 0 | 0 |
+ | 1 | 1 | 1 |
+ ------------------------------
+
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def and_gate(input_1: int, input_2: int) -> int:
+ """
+ Calculate AND of the input values
+
+ >>> and_gate(0, 0)
+ 0
+ >>> and_gate(0, 1)
+ 0
+ >>> and_gate(1, 0)
+ 0
+ >>> and_gate(1, 1)
+ 1
+ """
+ return int((input_1, input_2).count(0) == 0)
+
+
+def test_and_gate() -> None:
+ """
+ Tests the and_gate function
+ """
+ assert and_gate(0, 0) == 0
+ assert and_gate(0, 1) == 0
+ assert and_gate(1, 0) == 0
+ assert and_gate(1, 1) == 1
+
+
+if __name__ == "__main__":
+ test_and_gate()
+ print(and_gate(1, 0))
+ print(and_gate(0, 0))
+ print(and_gate(0, 1))
+ print(and_gate(1, 1))
diff --git a/boolean_algebra/nand_gate.py b/boolean_algebra/nand_gate.py
new file mode 100644
index 000000000..ea3303d16
--- /dev/null
+++ b/boolean_algebra/nand_gate.py
@@ -0,0 +1,47 @@
+"""
+A NAND Gate is a logic gate in boolean algebra which results to 0 (False) if both
+the inputs are 1, and 1 (True) otherwise. It's similar to adding
+a NOT gate along with an AND gate.
+Following is the truth table of a NAND Gate:
+ ------------------------------
+ | Input 1 | Input 2 | Output |
+ ------------------------------
+ | 0 | 0 | 1 |
+ | 0 | 1 | 1 |
+ | 1 | 0 | 1 |
+ | 1 | 1 | 0 |
+ ------------------------------
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def nand_gate(input_1: int, input_2: int) -> int:
+ """
+ Calculate NAND of the input values
+ >>> nand_gate(0, 0)
+ 1
+ >>> nand_gate(0, 1)
+ 1
+ >>> nand_gate(1, 0)
+ 1
+ >>> nand_gate(1, 1)
+ 0
+ """
+ return int((input_1, input_2).count(0) != 0)
+
+
+def test_nand_gate() -> None:
+ """
+ Tests the nand_gate function
+ """
+ assert nand_gate(0, 0) == 1
+ assert nand_gate(0, 1) == 1
+ assert nand_gate(1, 0) == 1
+ assert nand_gate(1, 1) == 0
+
+
+if __name__ == "__main__":
+ print(nand_gate(0, 0))
+ print(nand_gate(0, 1))
+ print(nand_gate(1, 0))
+ print(nand_gate(1, 1))
diff --git a/boolean_algebra/norgate.py b/boolean_algebra/norgate.py
new file mode 100644
index 000000000..2c27b80af
--- /dev/null
+++ b/boolean_algebra/norgate.py
@@ -0,0 +1,48 @@
+"""
+A NOR Gate is a logic gate in boolean algebra which results to false(0)
+if any of the input is 1, and True(1) if both the inputs are 0.
+Following is the truth table of a NOR Gate:
+ | Input 1 | Input 2 | Output |
+ | 0 | 0 | 1 |
+ | 0 | 1 | 0 |
+ | 1 | 0 | 0 |
+ | 1 | 1 | 0 |
+
+Following is the code implementation of the NOR Gate
+"""
+
+
+def nor_gate(input_1: int, input_2: int) -> int:
+ """
+ >>> nor_gate(0, 0)
+ 1
+ >>> nor_gate(0, 1)
+ 0
+ >>> nor_gate(1, 0)
+ 0
+ >>> nor_gate(1, 1)
+ 0
+ >>> nor_gate(0.0, 0.0)
+ 1
+ >>> nor_gate(0, -7)
+ 0
+ """
+ return int(input_1 == input_2 == 0)
+
+
+def main() -> None:
+ print("Truth Table of NOR Gate:")
+ print("| Input 1 | Input 2 | Output |")
+ print(f"| 0 | 0 | {nor_gate(0, 0)} |")
+ print(f"| 0 | 1 | {nor_gate(0, 1)} |")
+ print(f"| 1 | 0 | {nor_gate(1, 0)} |")
+ print(f"| 1 | 1 | {nor_gate(1, 1)} |")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ main()
+"""Code provided by Akshaj Vishwanathan"""
+"""Reference: https://www.geeksforgeeks.org/logic-gates-in-python/"""
diff --git a/boolean_algebra/not_gate.py b/boolean_algebra/not_gate.py
new file mode 100644
index 000000000..eb85e9e44
--- /dev/null
+++ b/boolean_algebra/not_gate.py
@@ -0,0 +1,37 @@
+"""
+A NOT Gate is a logic gate in boolean algebra which results to 0 (False) if the
+input is high, and 1 (True) if the input is low.
+Following is the truth table of a XOR Gate:
+ ------------------------------
+ | Input | Output |
+ ------------------------------
+ | 0 | 1 |
+ | 1 | 0 |
+ ------------------------------
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def not_gate(input_1: int) -> int:
+ """
+ Calculate NOT of the input values
+ >>> not_gate(0)
+ 1
+ >>> not_gate(1)
+ 0
+ """
+
+ return 1 if input_1 == 0 else 0
+
+
+def test_not_gate() -> None:
+ """
+ Tests the not_gate function
+ """
+ assert not_gate(0) == 1
+ assert not_gate(1) == 0
+
+
+if __name__ == "__main__":
+ print(not_gate(0))
+ print(not_gate(1))
diff --git a/boolean_algebra/or_gate.py b/boolean_algebra/or_gate.py
new file mode 100644
index 000000000..aa7e6645e
--- /dev/null
+++ b/boolean_algebra/or_gate.py
@@ -0,0 +1,46 @@
+"""
+An OR Gate is a logic gate in boolean algebra which results to 0 (False) if both the
+inputs are 0, and 1 (True) otherwise.
+Following is the truth table of an AND Gate:
+ ------------------------------
+ | Input 1 | Input 2 | Output |
+ ------------------------------
+ | 0 | 0 | 0 |
+ | 0 | 1 | 1 |
+ | 1 | 0 | 1 |
+ | 1 | 1 | 1 |
+ ------------------------------
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def or_gate(input_1: int, input_2: int) -> int:
+ """
+ Calculate OR of the input values
+ >>> or_gate(0, 0)
+ 0
+ >>> or_gate(0, 1)
+ 1
+ >>> or_gate(1, 0)
+ 1
+ >>> or_gate(1, 1)
+ 1
+ """
+ return int((input_1, input_2).count(1) != 0)
+
+
+def test_or_gate() -> None:
+ """
+ Tests the or_gate function
+ """
+ assert or_gate(0, 0) == 0
+ assert or_gate(0, 1) == 1
+ assert or_gate(1, 0) == 1
+ assert or_gate(1, 1) == 1
+
+
+if __name__ == "__main__":
+ print(or_gate(0, 1))
+ print(or_gate(1, 0))
+ print(or_gate(0, 0))
+ print(or_gate(1, 1))
diff --git a/boolean_algebra/quine_mc_cluskey.py b/boolean_algebra/quine_mc_cluskey.py
index 9aa9b10c8..8e22e6672 100644
--- a/boolean_algebra/quine_mc_cluskey.py
+++ b/boolean_algebra/quine_mc_cluskey.py
@@ -1,15 +1,16 @@
from __future__ import annotations
from collections.abc import Sequence
+from typing import Literal
-def compare_string(string1: str, string2: str) -> str:
+def compare_string(string1: str, string2: str) -> str | Literal[False]:
"""
>>> compare_string('0010','0110')
'0_10'
>>> compare_string('0110','1101')
- 'X'
+ False
"""
list1 = list(string1)
list2 = list(string2)
@@ -19,7 +20,7 @@ def compare_string(string1: str, string2: str) -> str:
count += 1
list1[i] = "_"
if count > 1:
- return "X"
+ return False
else:
return "".join(list1)
@@ -36,10 +37,10 @@ def check(binary: list[str]) -> list[str]:
for i in range(len(binary)):
for j in range(i + 1, len(binary)):
k = compare_string(binary[i], binary[j])
- if k != "X":
+ if k is False:
check1[i] = "*"
check1[j] = "*"
- temp.append(k)
+ temp.append("X")
for i in range(len(binary)):
if check1[i] == "$":
pi.append(binary[i])
@@ -56,7 +57,7 @@ def decimal_to_binary(no_of_variable: int, minterms: Sequence[float]) -> list[st
temp = []
for minterm in minterms:
string = ""
- for i in range(no_of_variable):
+ for _ in range(no_of_variable):
string = str(minterm % 2) + string
minterm //= 2
temp.append(string)
@@ -73,10 +74,7 @@ def is_for_table(string1: str, string2: str, count: int) -> bool:
"""
list1 = list(string1)
list2 = list(string2)
- count_n = 0
- for i in range(len(list1)):
- if list1[i] != list2[i]:
- count_n += 1
+ count_n = sum(item1 != item2 for item1, item2 in zip(list1, list2))
return count_n == count
@@ -91,40 +89,34 @@ def selection(chart: list[list[int]], prime_implicants: list[str]) -> list[str]:
temp = []
select = [0] * len(chart)
for i in range(len(chart[0])):
- count = 0
- rem = -1
- for j in range(len(chart)):
- if chart[j][i] == 1:
- count += 1
- rem = j
+ count = sum(row[i] == 1 for row in chart)
if count == 1:
+ rem = max(j for j, row in enumerate(chart) if row[i] == 1)
select[rem] = 1
- for i in range(len(select)):
- if select[i] == 1:
- for j in range(len(chart[0])):
- if chart[i][j] == 1:
- for k in range(len(chart)):
- chart[k][j] = 0
- temp.append(prime_implicants[i])
+ for i, item in enumerate(select):
+ if item != 1:
+ continue
+ for j in range(len(chart[0])):
+ if chart[i][j] != 1:
+ continue
+ for row in chart:
+ row[j] = 0
+ temp.append(prime_implicants[i])
while True:
- max_n = 0
- rem = -1
- count_n = 0
- for i in range(len(chart)):
- count_n = chart[i].count(1)
- if count_n > max_n:
- max_n = count_n
- rem = i
+ counts = [chart[i].count(1) for i in range(len(chart))]
+ max_n = max(counts)
+ rem = counts.index(max_n)
if max_n == 0:
return temp
temp.append(prime_implicants[rem])
- for i in range(len(chart[0])):
- if chart[rem][i] == 1:
- for j in range(len(chart)):
- chart[j][i] = 0
+ for j in range(len(chart[0])):
+ if chart[rem][j] != 1:
+ continue
+ for i in range(len(chart)):
+ chart[i][j] = 0
def prime_implicant_chart(
diff --git a/boolean_algebra/xnor_gate.py b/boolean_algebra/xnor_gate.py
new file mode 100644
index 000000000..45ab2700e
--- /dev/null
+++ b/boolean_algebra/xnor_gate.py
@@ -0,0 +1,48 @@
+"""
+A XNOR Gate is a logic gate in boolean algebra which results to 0 (False) if both the
+inputs are different, and 1 (True), if the inputs are same.
+It's similar to adding a NOT gate to an XOR gate
+
+Following is the truth table of a XNOR Gate:
+ ------------------------------
+ | Input 1 | Input 2 | Output |
+ ------------------------------
+ | 0 | 0 | 1 |
+ | 0 | 1 | 0 |
+ | 1 | 0 | 0 |
+ | 1 | 1 | 1 |
+ ------------------------------
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def xnor_gate(input_1: int, input_2: int) -> int:
+ """
+ Calculate XOR of the input values
+ >>> xnor_gate(0, 0)
+ 1
+ >>> xnor_gate(0, 1)
+ 0
+ >>> xnor_gate(1, 0)
+ 0
+ >>> xnor_gate(1, 1)
+ 1
+ """
+ return 1 if input_1 == input_2 else 0
+
+
+def test_xnor_gate() -> None:
+ """
+ Tests the xnor_gate function
+ """
+ assert xnor_gate(0, 0) == 1
+ assert xnor_gate(0, 1) == 0
+ assert xnor_gate(1, 0) == 0
+ assert xnor_gate(1, 1) == 1
+
+
+if __name__ == "__main__":
+ print(xnor_gate(0, 0))
+ print(xnor_gate(0, 1))
+ print(xnor_gate(1, 0))
+ print(xnor_gate(1, 1))
diff --git a/boolean_algebra/xor_gate.py b/boolean_algebra/xor_gate.py
new file mode 100644
index 000000000..db4f5b45c
--- /dev/null
+++ b/boolean_algebra/xor_gate.py
@@ -0,0 +1,46 @@
+"""
+A XOR Gate is a logic gate in boolean algebra which results to 1 (True) if only one of
+the two inputs is 1, and 0 (False) if an even number of inputs are 1.
+Following is the truth table of a XOR Gate:
+ ------------------------------
+ | Input 1 | Input 2 | Output |
+ ------------------------------
+ | 0 | 0 | 0 |
+ | 0 | 1 | 1 |
+ | 1 | 0 | 1 |
+ | 1 | 1 | 0 |
+ ------------------------------
+
+Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
+"""
+
+
+def xor_gate(input_1: int, input_2: int) -> int:
+ """
+ calculate xor of the input values
+
+ >>> xor_gate(0, 0)
+ 0
+ >>> xor_gate(0, 1)
+ 1
+ >>> xor_gate(1, 0)
+ 1
+ >>> xor_gate(1, 1)
+ 0
+ """
+ return (input_1, input_2).count(0) % 2
+
+
+def test_xor_gate() -> None:
+ """
+ Tests the xor_gate function
+ """
+ assert xor_gate(0, 0) == 0
+ assert xor_gate(0, 1) == 1
+ assert xor_gate(1, 0) == 1
+ assert xor_gate(1, 1) == 0
+
+
+if __name__ == "__main__":
+ print(xor_gate(0, 0))
+ print(xor_gate(0, 1))
diff --git a/cellular_automata/game_of_life.py b/cellular_automata/game_of_life.py
index c5324da73..d691a2b73 100644
--- a/cellular_automata/game_of_life.py
+++ b/cellular_automata/game_of_life.py
@@ -10,7 +10,7 @@ Python:
- 3.5
Usage:
- - $python3 game_o_life
+ - $python3 game_of_life
Game-Of-Life Rules:
@@ -34,7 +34,7 @@ import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
-usage_doc = "Usage of script: script_nama "
+usage_doc = "Usage of script: script_name "
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
@@ -52,7 +52,8 @@ def seed(canvas: list[list[bool]]) -> None:
def run(canvas: list[list[bool]]) -> list[list[bool]]:
- """This function runs the rules of game through all points, and changes their
+ """
+ This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
@Args:
--
@@ -60,21 +61,17 @@ def run(canvas: list[list[bool]]) -> list[list[bool]]:
@returns:
--
- None
+ canvas of population after one step
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
for r, row in enumerate(current_canvas):
for c, pt in enumerate(row):
- # print(r-1,r+2,c-1,c+2)
next_gen_canvas[r][c] = __judge_point(
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
- current_canvas = next_gen_canvas
- del next_gen_canvas # cleaning memory as we move on.
- return_canvas: list[list[bool]] = current_canvas.tolist()
- return return_canvas
+ return next_gen_canvas.tolist()
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
@@ -99,7 +96,7 @@ def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
if pt:
if alive < 2:
state = False
- elif alive == 2 or alive == 3:
+ elif alive in {2, 3}:
state = True
elif alive > 3:
state = False
diff --git a/cellular_automata/nagel_schrekenberg.py b/cellular_automata/nagel_schrekenberg.py
index be44761ec..3fd6afca0 100644
--- a/cellular_automata/nagel_schrekenberg.py
+++ b/cellular_automata/nagel_schrekenberg.py
@@ -45,8 +45,7 @@ def construct_highway(
highway = [[-1] * number_of_cells] # Create a highway without any car
i = 0
- if initial_speed < 0:
- initial_speed = 0
+ initial_speed = max(initial_speed, 0)
while i < number_of_cells:
highway[0][i] = (
randint(0, max_speed) if random_speed else initial_speed
diff --git a/cellular_automata/wa_tor.py b/cellular_automata/wa_tor.py
new file mode 100644
index 000000000..e423d1595
--- /dev/null
+++ b/cellular_automata/wa_tor.py
@@ -0,0 +1,550 @@
+"""
+Wa-Tor algorithm (1984)
+
+@ https://en.wikipedia.org/wiki/Wa-Tor
+@ https://beltoforion.de/en/wator/
+@ https://beltoforion.de/en/wator/images/wator_medium.webm
+
+This solution aims to completely remove any systematic approach
+to the Wa-Tor planet, and utilise fully random methods.
+
+The constants are a working set that allows the Wa-Tor planet
+to result in one of the three possible results.
+"""
+
+from collections.abc import Callable
+from random import randint, shuffle
+from time import sleep
+from typing import Literal
+
+WIDTH = 50 # Width of the Wa-Tor planet
+HEIGHT = 50 # Height of the Wa-Tor planet
+
+PREY_INITIAL_COUNT = 30 # The initial number of prey entities
+PREY_REPRODUCTION_TIME = 5 # The chronons before reproducing
+
+PREDATOR_INITIAL_COUNT = 50 # The initial number of predator entities
+# The initial energy value of predator entities
+PREDATOR_INITIAL_ENERGY_VALUE = 15
+# The energy value provided when consuming prey
+PREDATOR_FOOD_VALUE = 5
+PREDATOR_REPRODUCTION_TIME = 20 # The chronons before reproducing
+
+MAX_ENTITIES = 500 # The max number of organisms on the board
+# The number of entities to delete from the unbalanced side
+DELETE_UNBALANCED_ENTITIES = 50
+
+
+class Entity:
+ """
+ Represents an entity (either prey or predator).
+
+ >>> e = Entity(True, coords=(0, 0))
+ >>> e.prey
+ True
+ >>> e.coords
+ (0, 0)
+ >>> e.alive
+ True
+ """
+
+ def __init__(self, prey: bool, coords: tuple[int, int]) -> None:
+ self.prey = prey
+ # The (row, col) pos of the entity
+ self.coords = coords
+
+ self.remaining_reproduction_time = (
+ PREY_REPRODUCTION_TIME if prey else PREDATOR_REPRODUCTION_TIME
+ )
+ self.energy_value = None if prey is True else PREDATOR_INITIAL_ENERGY_VALUE
+ self.alive = True
+
+ def reset_reproduction_time(self) -> None:
+ """
+ >>> e = Entity(True, coords=(0, 0))
+ >>> e.reset_reproduction_time()
+ >>> e.remaining_reproduction_time == PREY_REPRODUCTION_TIME
+ True
+ >>> e = Entity(False, coords=(0, 0))
+ >>> e.reset_reproduction_time()
+ >>> e.remaining_reproduction_time == PREDATOR_REPRODUCTION_TIME
+ True
+ """
+ self.remaining_reproduction_time = (
+ PREY_REPRODUCTION_TIME if self.prey is True else PREDATOR_REPRODUCTION_TIME
+ )
+
+ def __repr__(self) -> str:
+ """
+ >>> Entity(prey=True, coords=(1, 1))
+ Entity(prey=True, coords=(1, 1), remaining_reproduction_time=5)
+ >>> Entity(prey=False, coords=(2, 1)) # doctest: +NORMALIZE_WHITESPACE
+ Entity(prey=False, coords=(2, 1),
+ remaining_reproduction_time=20, energy_value=15)
+ """
+ repr_ = (
+ f"Entity(prey={self.prey}, coords={self.coords}, "
+ f"remaining_reproduction_time={self.remaining_reproduction_time}"
+ )
+ if self.energy_value is not None:
+ repr_ += f", energy_value={self.energy_value}"
+ return f"{repr_})"
+
+
+class WaTor:
+ """
+ Represents the main Wa-Tor algorithm.
+
+ :attr time_passed: A function that is called every time
+ time passes (a chronon) in order to visually display
+ the new Wa-Tor planet. The time_passed function can block
+ using time.sleep to slow the algorithm progression.
+
+ >>> wt = WaTor(10, 15)
+ >>> wt.width
+ 10
+ >>> wt.height
+ 15
+ >>> len(wt.planet)
+ 15
+ >>> len(wt.planet[0])
+ 10
+ >>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
+ True
+ """
+
+ time_passed: Callable[["WaTor", int], None] | None
+
+ def __init__(self, width: int, height: int) -> None:
+ self.width = width
+ self.height = height
+ self.time_passed = None
+
+ self.planet: list[list[Entity | None]] = [[None] * width for _ in range(height)]
+
+ # Populate planet with predators and prey randomly
+ for _ in range(PREY_INITIAL_COUNT):
+ self.add_entity(prey=True)
+ for _ in range(PREDATOR_INITIAL_COUNT):
+ self.add_entity(prey=False)
+ self.set_planet(self.planet)
+
+ def set_planet(self, planet: list[list[Entity | None]]) -> None:
+ """
+ Ease of access for testing
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> planet = [
+ ... [None, None, None],
+ ... [None, Entity(True, coords=(1, 1)), None]
+ ... ]
+ >>> wt.set_planet(planet)
+ >>> wt.planet == planet
+ True
+ >>> wt.width
+ 3
+ >>> wt.height
+ 2
+ """
+ self.planet = planet
+ self.width = len(planet[0])
+ self.height = len(planet)
+
+ def add_entity(self, prey: bool) -> None:
+ """
+ Adds an entity, making sure the entity does
+ not override another entity
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> wt.set_planet([[None, None], [None, None]])
+ >>> wt.add_entity(True)
+ >>> len(wt.get_entities())
+ 1
+ >>> wt.add_entity(False)
+ >>> len(wt.get_entities())
+ 2
+ """
+ while True:
+ row, col = randint(0, self.height - 1), randint(0, self.width - 1)
+ if self.planet[row][col] is None:
+ self.planet[row][col] = Entity(prey=prey, coords=(row, col))
+ return
+
+ def get_entities(self) -> list[Entity]:
+ """
+ Returns a list of all the entities within the planet.
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> len(wt.get_entities()) == PREDATOR_INITIAL_COUNT + PREY_INITIAL_COUNT
+ True
+ """
+ return [entity for column in self.planet for entity in column if entity]
+
+ def balance_predators_and_prey(self) -> None:
+ """
+ Balances predators and preys so that prey
+ can not dominate the predators, blocking up
+ space for them to reproduce.
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> for i in range(2000):
+ ... row, col = i // HEIGHT, i % WIDTH
+ ... wt.planet[row][col] = Entity(True, coords=(row, col))
+ >>> entities = len(wt.get_entities())
+ >>> wt.balance_predators_and_prey()
+ >>> len(wt.get_entities()) == entities
+ False
+ """
+ entities = self.get_entities()
+ shuffle(entities)
+
+ if len(entities) >= MAX_ENTITIES - MAX_ENTITIES / 10:
+ prey = [entity for entity in entities if entity.prey]
+ predators = [entity for entity in entities if not entity.prey]
+
+ prey_count, predator_count = len(prey), len(predators)
+
+ entities_to_purge = (
+ prey[:DELETE_UNBALANCED_ENTITIES]
+ if prey_count > predator_count
+ else predators[:DELETE_UNBALANCED_ENTITIES]
+ )
+ for entity in entities_to_purge:
+ self.planet[entity.coords[0]][entity.coords[1]] = None
+
+ def get_surrounding_prey(self, entity: Entity) -> list[Entity]:
+ """
+ Returns all the prey entities around (N, S, E, W) a predator entity.
+
+ Subtly different to the try_to_move_to_unoccupied square.
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> wt.set_planet([
+ ... [None, Entity(True, (0, 1)), None],
+ ... [None, Entity(False, (1, 1)), None],
+ ... [None, Entity(True, (2, 1)), None]])
+ >>> wt.get_surrounding_prey(
+ ... Entity(False, (1, 1))) # doctest: +NORMALIZE_WHITESPACE
+ [Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5),
+ Entity(prey=True, coords=(2, 1), remaining_reproduction_time=5)]
+ >>> wt.set_planet([[Entity(False, (0, 0))]])
+ >>> wt.get_surrounding_prey(Entity(False, (0, 0)))
+ []
+ >>> wt.set_planet([
+ ... [Entity(True, (0, 0)), Entity(False, (1, 0)), Entity(False, (2, 0))],
+ ... [None, Entity(False, (1, 1)), Entity(True, (2, 1))],
+ ... [None, None, None]])
+ >>> wt.get_surrounding_prey(Entity(False, (1, 0)))
+ [Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5)]
+ """
+ row, col = entity.coords
+ adjacent: list[tuple[int, int]] = [
+ (row - 1, col), # North
+ (row + 1, col), # South
+ (row, col - 1), # West
+ (row, col + 1), # East
+ ]
+
+ return [
+ ent
+ for r, c in adjacent
+ if 0 <= r < self.height
+ and 0 <= c < self.width
+ and (ent := self.planet[r][c]) is not None
+ and ent.prey
+ ]
+
+ def move_and_reproduce(
+ self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
+ ) -> None:
+ """
+ Attempts to move to an unoccupied neighbouring square
+ in either of the four directions (North, South, East, West).
+ If the move was successful and the remaining_reproduction time is
+ equal to 0, then a new prey or predator can also be created
+ in the previous square.
+
+ :param direction_orders: Ordered list (like priority queue) depicting
+ order to attempt to move. Removes any systematic
+ approach of checking neighbouring squares.
+
+ >>> planet = [
+ ... [None, None, None],
+ ... [None, Entity(True, coords=(1, 1)), None],
+ ... [None, None, None]
+ ... ]
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> wt.set_planet(planet)
+ >>> wt.move_and_reproduce(Entity(True, coords=(1, 1)), direction_orders=["N"])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[None, Entity(prey=True, coords=(0, 1), remaining_reproduction_time=4), None],
+ [None, None, None],
+ [None, None, None]]
+ >>> wt.planet[0][0] = Entity(True, coords=(0, 0))
+ >>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
+ ... direction_orders=["N", "W", "E", "S"])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None,
+ Entity(prey=True, coords=(0, 2), remaining_reproduction_time=4)],
+ [None, None, None],
+ [None, None, None]]
+ >>> wt.planet[0][1] = wt.planet[0][2]
+ >>> wt.planet[0][2] = None
+ >>> wt.move_and_reproduce(Entity(True, coords=(0, 1)),
+ ... direction_orders=["N", "W", "S", "E"])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5), None, None],
+ [None, Entity(prey=True, coords=(1, 1), remaining_reproduction_time=4), None],
+ [None, None, None]]
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> reproducable_entity = Entity(False, coords=(0, 1))
+ >>> reproducable_entity.remaining_reproduction_time = 0
+ >>> wt.planet = [[None, reproducable_entity]]
+ >>> wt.move_and_reproduce(reproducable_entity,
+ ... direction_orders=["N", "W", "S", "E"])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[Entity(prey=False, coords=(0, 0),
+ remaining_reproduction_time=20, energy_value=15),
+ Entity(prey=False, coords=(0, 1), remaining_reproduction_time=20,
+ energy_value=15)]]
+ """
+ row, col = coords = entity.coords
+
+ adjacent_squares: dict[Literal["N", "E", "S", "W"], tuple[int, int]] = {
+ "N": (row - 1, col), # North
+ "S": (row + 1, col), # South
+ "W": (row, col - 1), # West
+ "E": (row, col + 1), # East
+ }
+ # Weight adjacent locations
+ adjacent: list[tuple[int, int]] = []
+ for order in direction_orders:
+ adjacent.append(adjacent_squares[order])
+
+ for r, c in adjacent:
+ if (
+ 0 <= r < self.height
+ and 0 <= c < self.width
+ and self.planet[r][c] is None
+ ):
+ # Move entity to empty adjacent square
+ self.planet[r][c] = entity
+ self.planet[row][col] = None
+ entity.coords = (r, c)
+ break
+
+ # (2.) See if it possible to reproduce in previous square
+ if coords != entity.coords and entity.remaining_reproduction_time <= 0:
+ # Check if the entities on the planet is less than the max limit
+ if len(self.get_entities()) < MAX_ENTITIES:
+ # Reproduce in previous square
+ self.planet[row][col] = Entity(prey=entity.prey, coords=coords)
+ entity.reset_reproduction_time()
+ else:
+ entity.remaining_reproduction_time -= 1
+
+ def perform_prey_actions(
+ self, entity: Entity, direction_orders: list[Literal["N", "E", "S", "W"]]
+ ) -> None:
+ """
+ Performs the actions for a prey entity
+
+ For prey the rules are:
+ 1. At each chronon, a prey moves randomly to one of the adjacent unoccupied
+ squares. If there are no free squares, no movement takes place.
+ 2. Once a prey has survived a certain number of chronons it may reproduce.
+ This is done as it moves to a neighbouring square,
+ leaving behind a new prey in its old position.
+ Its reproduction time is also reset to zero.
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> reproducable_entity = Entity(True, coords=(0, 1))
+ >>> reproducable_entity.remaining_reproduction_time = 0
+ >>> wt.planet = [[None, reproducable_entity]]
+ >>> wt.perform_prey_actions(reproducable_entity,
+ ... direction_orders=["N", "W", "S", "E"])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[Entity(prey=True, coords=(0, 0), remaining_reproduction_time=5),
+ Entity(prey=True, coords=(0, 1), remaining_reproduction_time=5)]]
+ """
+ self.move_and_reproduce(entity, direction_orders)
+
+ def perform_predator_actions(
+ self,
+ entity: Entity,
+ occupied_by_prey_coords: tuple[int, int] | None,
+ direction_orders: list[Literal["N", "E", "S", "W"]],
+ ) -> None:
+ """
+ Performs the actions for a predator entity
+
+ :param occupied_by_prey_coords: Move to this location if there is prey there
+
+ For predators the rules are:
+ 1. At each chronon, a predator moves randomly to an adjacent square occupied
+ by a prey. If there is none, the predator moves to a random adjacent
+ unoccupied square. If there are no free squares, no movement takes place.
+ 2. At each chronon, each predator is deprived of a unit of energy.
+ 3. Upon reaching zero energy, a predator dies.
+ 4. If a predator moves to a square occupied by a prey,
+ it eats the prey and earns a certain amount of energy.
+ 5. Once a predator has survived a certain number of chronons
+ it may reproduce in exactly the same way as the prey.
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> wt.set_planet([[Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1))]])
+ >>> wt.perform_predator_actions(Entity(False, coords=(0, 1)), (0, 0), [])
+ >>> wt.planet # doctest: +NORMALIZE_WHITESPACE
+ [[Entity(prey=False, coords=(0, 0),
+ remaining_reproduction_time=20, energy_value=19), None]]
+ """
+ assert entity.energy_value is not None # [type checking]
+
+ # (3.) If the entity has 0 energy, it will die
+ if entity.energy_value == 0:
+ self.planet[entity.coords[0]][entity.coords[1]] = None
+ return
+
+ # (1.) Move to entity if possible
+ if occupied_by_prey_coords is not None:
+ # Kill the prey
+ prey = self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]]
+ assert prey is not None
+ prey.alive = False
+
+ # Move onto prey
+ self.planet[occupied_by_prey_coords[0]][occupied_by_prey_coords[1]] = entity
+ self.planet[entity.coords[0]][entity.coords[1]] = None
+
+ entity.coords = occupied_by_prey_coords
+ # (4.) Eats the prey and earns energy
+ entity.energy_value += PREDATOR_FOOD_VALUE
+ else:
+ # (5.) If it has survived the certain number of chronons it will also
+ # reproduce in this function
+ self.move_and_reproduce(entity, direction_orders)
+
+ # (2.) Each chronon, the predator is deprived of a unit of energy
+ entity.energy_value -= 1
+
+ def run(self, *, iteration_count: int) -> None:
+ """
+ Emulate time passing by looping iteration_count times
+
+ >>> wt = WaTor(WIDTH, HEIGHT)
+ >>> wt.run(iteration_count=PREDATOR_INITIAL_ENERGY_VALUE - 1)
+ >>> len(list(filter(lambda entity: entity.prey is False,
+ ... wt.get_entities()))) >= PREDATOR_INITIAL_COUNT
+ True
+ """
+ for iter_num in range(iteration_count):
+ # Generate list of all entities in order to randomly
+ # pop an entity at a time to simulate true randomness
+ # This removes the systematic approach of iterating
+ # through each entity width by height
+ all_entities = self.get_entities()
+
+ for __ in range(len(all_entities)):
+ entity = all_entities.pop(randint(0, len(all_entities) - 1))
+ if entity.alive is False:
+ continue
+
+ directions: list[Literal["N", "E", "S", "W"]] = ["N", "E", "S", "W"]
+ shuffle(directions) # Randomly shuffle directions
+
+ if entity.prey:
+ self.perform_prey_actions(entity, directions)
+ else:
+ # Create list of surrounding prey
+ surrounding_prey = self.get_surrounding_prey(entity)
+ surrounding_prey_coords = None
+
+ if surrounding_prey:
+ # Again, randomly shuffle directions
+ shuffle(surrounding_prey)
+ surrounding_prey_coords = surrounding_prey[0].coords
+
+ self.perform_predator_actions(
+ entity, surrounding_prey_coords, directions
+ )
+
+ # Balance out the predators and prey
+ self.balance_predators_and_prey()
+
+ if self.time_passed is not None:
+ # Call time_passed function for Wa-Tor planet
+ # visualisation in a terminal or a graph.
+ self.time_passed(self, iter_num)
+
+
+def visualise(wt: WaTor, iter_number: int, *, colour: bool = True) -> None:
+ """
+ Visually displays the Wa-Tor planet using
+ an ascii code in terminal to clear and re-print
+ the Wa-Tor planet at intervals.
+
+ Uses ascii colour codes to colourfully display
+ the predators and prey.
+
+ (0x60f197) Prey = #
+ (0xfffff) Predator = x
+
+ >>> wt = WaTor(30, 30)
+ >>> wt.set_planet([
+ ... [Entity(True, coords=(0, 0)), Entity(False, coords=(0, 1)), None],
+ ... [Entity(False, coords=(1, 0)), None, Entity(False, coords=(1, 2))],
+ ... [None, Entity(True, coords=(2, 1)), None]
+ ... ])
+ >>> visualise(wt, 0, colour=False) # doctest: +NORMALIZE_WHITESPACE
+ # x .
+ x . x
+ . # .
+
+ Iteration: 0 | Prey count: 2 | Predator count: 3 |
+ """
+ if colour:
+ __import__("os").system("")
+ print("\x1b[0;0H\x1b[2J\x1b[?25l")
+
+ reprint = "\x1b[0;0H" if colour else ""
+ ansi_colour_end = "\x1b[0m " if colour else " "
+
+ planet = wt.planet
+ output = ""
+
+ # Iterate over every entity in the planet
+ for row in planet:
+ for entity in row:
+ if entity is None:
+ output += " . "
+ else:
+ if colour is True:
+ output += (
+ "\x1b[38;2;96;241;151m"
+ if entity.prey
+ else "\x1b[38;2;255;255;15m"
+ )
+ output += f" {'#' if entity.prey else 'x'}{ansi_colour_end}"
+
+ output += "\n"
+
+ entities = wt.get_entities()
+ prey_count = sum(entity.prey for entity in entities)
+
+ print(
+ f"{output}\n Iteration: {iter_number} | Prey count: {prey_count} | "
+ f"Predator count: {len(entities) - prey_count} | {reprint}"
+ )
+ # Block the thread to be able to visualise seeing the algorithm
+ sleep(0.05)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ wt = WaTor(WIDTH, HEIGHT)
+ wt.time_passed = visualise
+ wt.run(iteration_count=100_000)
diff --git a/ciphers/affine_cipher.py b/ciphers/affine_cipher.py
index d3b806ba1..cd1e33b88 100644
--- a/ciphers/affine_cipher.py
+++ b/ciphers/affine_cipher.py
@@ -9,26 +9,26 @@ SYMBOLS = (
)
-def check_keys(keyA: int, keyB: int, mode: str) -> None:
+def check_keys(key_a: int, key_b: int, mode: str) -> None:
if mode == "encrypt":
- if keyA == 1:
+ if key_a == 1:
sys.exit(
"The affine cipher becomes weak when key "
"A is set to 1. Choose different key"
)
- if keyB == 0:
+ if key_b == 0:
sys.exit(
"The affine cipher becomes weak when key "
"B is set to 0. Choose different key"
)
- if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
+ if key_a < 0 or key_b < 0 or key_b > len(SYMBOLS) - 1:
sys.exit(
"Key A must be greater than 0 and key B must "
f"be between 0 and {len(SYMBOLS) - 1}."
)
- if cryptomath.gcd(keyA, len(SYMBOLS)) != 1:
+ if cryptomath.gcd(key_a, len(SYMBOLS)) != 1:
sys.exit(
- f"Key A {keyA} and the symbol set size {len(SYMBOLS)} "
+ f"Key A {key_a} and the symbol set size {len(SYMBOLS)} "
"are not relatively prime. Choose a different key."
)
@@ -39,16 +39,16 @@ def encrypt_message(key: int, message: str) -> str:
... 'substitution cipher.')
'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi'
"""
- keyA, keyB = divmod(key, len(SYMBOLS))
- check_keys(keyA, keyB, "encrypt")
- cipherText = ""
+ key_a, key_b = divmod(key, len(SYMBOLS))
+ check_keys(key_a, key_b, "encrypt")
+ cipher_text = ""
for symbol in message:
if symbol in SYMBOLS:
- symIndex = SYMBOLS.find(symbol)
- cipherText += SYMBOLS[(symIndex * keyA + keyB) % len(SYMBOLS)]
+ sym_index = SYMBOLS.find(symbol)
+ cipher_text += SYMBOLS[(sym_index * key_a + key_b) % len(SYMBOLS)]
else:
- cipherText += symbol
- return cipherText
+ cipher_text += symbol
+ return cipher_text
def decrypt_message(key: int, message: str) -> str:
@@ -57,25 +57,27 @@ def decrypt_message(key: int, message: str) -> str:
... '{xIp~{HL}Gi')
'The affine cipher is a type of monoalphabetic substitution cipher.'
"""
- keyA, keyB = divmod(key, len(SYMBOLS))
- check_keys(keyA, keyB, "decrypt")
- plainText = ""
- modInverseOfkeyA = cryptomath.find_mod_inverse(keyA, len(SYMBOLS))
+ key_a, key_b = divmod(key, len(SYMBOLS))
+ check_keys(key_a, key_b, "decrypt")
+ plain_text = ""
+ mod_inverse_of_key_a = cryptomath.find_mod_inverse(key_a, len(SYMBOLS))
for symbol in message:
if symbol in SYMBOLS:
- symIndex = SYMBOLS.find(symbol)
- plainText += SYMBOLS[(symIndex - keyB) * modInverseOfkeyA % len(SYMBOLS)]
+ sym_index = SYMBOLS.find(symbol)
+ plain_text += SYMBOLS[
+ (sym_index - key_b) * mod_inverse_of_key_a % len(SYMBOLS)
+ ]
else:
- plainText += symbol
- return plainText
+ plain_text += symbol
+ return plain_text
def get_random_key() -> int:
while True:
- keyA = random.randint(2, len(SYMBOLS))
- keyB = random.randint(2, len(SYMBOLS))
- if cryptomath.gcd(keyA, len(SYMBOLS)) == 1 and keyB % len(SYMBOLS) != 0:
- return keyA * len(SYMBOLS) + keyB
+ key_b = random.randint(2, len(SYMBOLS))
+ key_b = random.randint(2, len(SYMBOLS))
+ if cryptomath.gcd(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0:
+ return key_b * len(SYMBOLS) + key_b
def main() -> None:
diff --git a/ciphers/atbash.py b/ciphers/atbash.py
index 5c2aea610..0a86a800c 100644
--- a/ciphers/atbash.py
+++ b/ciphers/atbash.py
@@ -38,26 +38,13 @@ def atbash(sequence: str) -> str:
def benchmark() -> None:
- """Let's benchmark them side-by-side..."""
+ """Let's benchmark our functions side-by-side..."""
from timeit import timeit
print("Running performance benchmarks...")
- print(
- "> atbash_slow()",
- timeit(
- "atbash_slow(printable)",
- setup="from string import printable ; from __main__ import atbash_slow",
- ),
- "seconds",
- )
- print(
- "> atbash()",
- timeit(
- "atbash(printable)",
- setup="from string import printable ; from __main__ import atbash",
- ),
- "seconds",
- )
+ setup = "from string import printable ; from __main__ import atbash, atbash_slow"
+ print(f"> atbash_slow(): {timeit('atbash_slow(printable)', setup=setup)} seconds")
+ print(f"> atbash(): {timeit('atbash(printable)', setup=setup)} seconds")
if __name__ == "__main__":
diff --git a/ciphers/autokey.py b/ciphers/autokey.py
new file mode 100644
index 000000000..8683e6d37
--- /dev/null
+++ b/ciphers/autokey.py
@@ -0,0 +1,131 @@
+"""
+https://en.wikipedia.org/wiki/Autokey_cipher
+An autokey cipher (also known as the autoclave cipher) is a cipher that
+incorporates the message (the plaintext) into the key.
+The key is generated from the message in some automated fashion,
+sometimes by selecting certain letters from the text or, more commonly,
+by adding a short primer key to the front of the message.
+"""
+
+
+def encrypt(plaintext: str, key: str) -> str:
+ """
+ Encrypt a given plaintext (string) and key (string), returning the
+ encrypted ciphertext.
+ >>> encrypt("hello world", "coffee")
+ 'jsqqs avvwo'
+ >>> encrypt("coffee is good as python", "TheAlgorithms")
+ 'vvjfpk wj ohvp su ddylsv'
+ >>> encrypt("coffee is good as python", 2)
+ Traceback (most recent call last):
+ ...
+ TypeError: key must be a string
+ >>> encrypt("", "TheAlgorithms")
+ Traceback (most recent call last):
+ ...
+ ValueError: plaintext is empty
+ """
+ if not isinstance(plaintext, str):
+ raise TypeError("plaintext must be a string")
+ if not isinstance(key, str):
+ raise TypeError("key must be a string")
+
+ if not plaintext:
+ raise ValueError("plaintext is empty")
+ if not key:
+ raise ValueError("key is empty")
+
+ key += plaintext
+ plaintext = plaintext.lower()
+ key = key.lower()
+ plaintext_iterator = 0
+ key_iterator = 0
+ ciphertext = ""
+ while plaintext_iterator < len(plaintext):
+ if (
+ ord(plaintext[plaintext_iterator]) < 97
+ or ord(plaintext[plaintext_iterator]) > 122
+ ):
+ ciphertext += plaintext[plaintext_iterator]
+ plaintext_iterator += 1
+ elif ord(key[key_iterator]) < 97 or ord(key[key_iterator]) > 122:
+ key_iterator += 1
+ else:
+ ciphertext += chr(
+ (
+ (ord(plaintext[plaintext_iterator]) - 97 + ord(key[key_iterator]))
+ - 97
+ )
+ % 26
+ + 97
+ )
+ key_iterator += 1
+ plaintext_iterator += 1
+ return ciphertext
+
+
+def decrypt(ciphertext: str, key: str) -> str:
+ """
+ Decrypt a given ciphertext (string) and key (string), returning the decrypted
+ ciphertext.
+ >>> decrypt("jsqqs avvwo", "coffee")
+ 'hello world'
+ >>> decrypt("vvjfpk wj ohvp su ddylsv", "TheAlgorithms")
+ 'coffee is good as python'
+ >>> decrypt("vvjfpk wj ohvp su ddylsv", "")
+ Traceback (most recent call last):
+ ...
+ ValueError: key is empty
+ >>> decrypt(527.26, "TheAlgorithms")
+ Traceback (most recent call last):
+ ...
+ TypeError: ciphertext must be a string
+ """
+ if not isinstance(ciphertext, str):
+ raise TypeError("ciphertext must be a string")
+ if not isinstance(key, str):
+ raise TypeError("key must be a string")
+
+ if not ciphertext:
+ raise ValueError("ciphertext is empty")
+ if not key:
+ raise ValueError("key is empty")
+
+ key = key.lower()
+ ciphertext_iterator = 0
+ key_iterator = 0
+ plaintext = ""
+ while ciphertext_iterator < len(ciphertext):
+ if (
+ ord(ciphertext[ciphertext_iterator]) < 97
+ or ord(ciphertext[ciphertext_iterator]) > 122
+ ):
+ plaintext += ciphertext[ciphertext_iterator]
+ else:
+ plaintext += chr(
+ (ord(ciphertext[ciphertext_iterator]) - ord(key[key_iterator])) % 26
+ + 97
+ )
+ key += chr(
+ (ord(ciphertext[ciphertext_iterator]) - ord(key[key_iterator])) % 26
+ + 97
+ )
+ key_iterator += 1
+ ciphertext_iterator += 1
+ return plaintext
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ operation = int(input("Type 1 to encrypt or 2 to decrypt:"))
+ if operation == 1:
+ plaintext = input("Typeplaintext to be encrypted:\n")
+ key = input("Type the key:\n")
+ print(encrypt(plaintext, key))
+ elif operation == 2:
+ ciphertext = input("Type the ciphertext to be decrypted:\n")
+ key = input("Type the key:\n")
+ print(decrypt(ciphertext, key))
+ decrypt("jsqqs avvwo", "coffee")
diff --git a/ciphers/base16.py b/ciphers/base16.py
index a149a6d8c..6cd62846f 100644
--- a/ciphers/base16.py
+++ b/ciphers/base16.py
@@ -1,34 +1,63 @@
-import base64
-
-
-def base16_encode(inp: str) -> bytes:
+def base16_encode(data: bytes) -> str:
"""
- Encodes a given utf-8 string into base-16.
+ Encodes the given bytes into base16.
- >>> base16_encode('Hello World!')
- b'48656C6C6F20576F726C6421'
- >>> base16_encode('HELLO WORLD!')
- b'48454C4C4F20574F524C4421'
- >>> base16_encode('')
- b''
- """
- # encode the input into a bytes-like object and then encode b16encode that
- return base64.b16encode(inp.encode("utf-8"))
-
-
-def base16_decode(b16encoded: bytes) -> str:
- """
- Decodes from base-16 to a utf-8 string.
-
- >>> base16_decode(b'48656C6C6F20576F726C6421')
- 'Hello World!'
- >>> base16_decode(b'48454C4C4F20574F524C4421')
- 'HELLO WORLD!'
- >>> base16_decode(b'')
+ >>> base16_encode(b'Hello World!')
+ '48656C6C6F20576F726C6421'
+ >>> base16_encode(b'HELLO WORLD!')
+ '48454C4C4F20574F524C4421'
+ >>> base16_encode(b'')
''
"""
- # b16decode the input into bytes and decode that into a human readable string
- return base64.b16decode(b16encoded).decode("utf-8")
+ # Turn the data into a list of integers (where each integer is a byte),
+ # Then turn each byte into its hexadecimal representation, make sure
+ # it is uppercase, and then join everything together and return it.
+ return "".join([hex(byte)[2:].zfill(2).upper() for byte in list(data)])
+
+
+def base16_decode(data: str) -> bytes:
+ """
+ Decodes the given base16 encoded data into bytes.
+
+ >>> base16_decode('48656C6C6F20576F726C6421')
+ b'Hello World!'
+ >>> base16_decode('48454C4C4F20574F524C4421')
+ b'HELLO WORLD!'
+ >>> base16_decode('')
+ b''
+ >>> base16_decode('486')
+ Traceback (most recent call last):
+ ...
+ ValueError: Base16 encoded data is invalid:
+ Data does not have an even number of hex digits.
+ >>> base16_decode('48656c6c6f20576f726c6421')
+ Traceback (most recent call last):
+ ...
+ ValueError: Base16 encoded data is invalid:
+ Data is not uppercase hex or it contains invalid characters.
+ >>> base16_decode('This is not base64 encoded data.')
+ Traceback (most recent call last):
+ ...
+ ValueError: Base16 encoded data is invalid:
+ Data is not uppercase hex or it contains invalid characters.
+ """
+ # Check data validity, following RFC3548
+ # https://www.ietf.org/rfc/rfc3548.txt
+ if (len(data) % 2) != 0:
+ raise ValueError(
+ """Base16 encoded data is invalid:
+Data does not have an even number of hex digits."""
+ )
+ # Check the character set - the standard base16 alphabet
+ # is uppercase according to RFC3548 section 6
+ if not set(data) <= set("0123456789ABCDEF"):
+ raise ValueError(
+ """Base16 encoded data is invalid:
+Data is not uppercase hex or it contains invalid characters."""
+ )
+ # For every two hexadecimal digits (= a byte), turn it into an integer.
+ # Then, string the result together into bytes, and return it.
+ return bytes(int(data[i] + data[i + 1], 16) for i in range(0, len(data), 2))
if __name__ == "__main__":
diff --git a/ciphers/base64.py b/ciphers/base64.py
index 38a952acc..2b950b1be 100644
--- a/ciphers/base64.py
+++ b/ciphers/base64.py
@@ -34,9 +34,8 @@ def base64_encode(data: bytes) -> bytes:
"""
# Make sure the supplied data is a bytes-like object
if not isinstance(data, bytes):
- raise TypeError(
- f"a bytes-like object is required, not '{data.__class__.__name__}'"
- )
+ msg = f"a bytes-like object is required, not '{data.__class__.__name__}'"
+ raise TypeError(msg)
binary_stream = "".join(bin(byte)[2:].zfill(8) for byte in data)
@@ -88,10 +87,11 @@ def base64_decode(encoded_data: str) -> bytes:
"""
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(encoded_data, bytes) and not isinstance(encoded_data, str):
- raise TypeError(
- "argument should be a bytes-like object or ASCII string, not "
- f"'{encoded_data.__class__.__name__}'"
+ msg = (
+ "argument should be a bytes-like object or ASCII string, "
+ f"not '{encoded_data.__class__.__name__}'"
)
+ raise TypeError(msg)
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
diff --git a/ciphers/beaufort_cipher.py b/ciphers/beaufort_cipher.py
index 8eae847a7..788fc72b8 100644
--- a/ciphers/beaufort_cipher.py
+++ b/ciphers/beaufort_cipher.py
@@ -5,7 +5,7 @@ Author: Mohit Radadiya
from string import ascii_uppercase
dict1 = {char: i for i, char in enumerate(ascii_uppercase)}
-dict2 = {i: char for i, char in enumerate(ascii_uppercase)}
+dict2 = dict(enumerate(ascii_uppercase))
# This function generates the key in
diff --git a/ciphers/bifid.py b/ciphers/bifid.py
index c1b071155..a15b38164 100644
--- a/ciphers/bifid.py
+++ b/ciphers/bifid.py
@@ -9,16 +9,17 @@ https://www.braingle.com/brainteasers/codes/bifid.php
import numpy as np
+SQUARE = [
+ ["a", "b", "c", "d", "e"],
+ ["f", "g", "h", "i", "k"],
+ ["l", "m", "n", "o", "p"],
+ ["q", "r", "s", "t", "u"],
+ ["v", "w", "x", "y", "z"],
+]
+
class BifidCipher:
def __init__(self) -> None:
- SQUARE = [
- ["a", "b", "c", "d", "e"],
- ["f", "g", "h", "i", "k"],
- ["l", "m", "n", "o", "p"],
- ["q", "r", "s", "t", "u"],
- ["v", "w", "x", "y", "z"],
- ]
self.SQUARE = np.array(SQUARE)
def letter_to_numbers(self, letter: str) -> np.ndarray:
@@ -32,7 +33,7 @@ class BifidCipher:
>>> np.array_equal(BifidCipher().letter_to_numbers('u'), [4,5])
True
"""
- index1, index2 = np.where(self.SQUARE == letter)
+ index1, index2 = np.where(letter == self.SQUARE)
indexes = np.concatenate([index1 + 1, index2 + 1])
return indexes
diff --git a/ciphers/brute_force_caesar_cipher.py b/ciphers/brute_force_caesar_cipher.py
index 8ab6e7730..458d08db2 100644
--- a/ciphers/brute_force_caesar_cipher.py
+++ b/ciphers/brute_force_caesar_cipher.py
@@ -1,3 +1,6 @@
+import string
+
+
def decrypt(message: str) -> None:
"""
>>> decrypt('TMDETUX PMDVU')
@@ -28,16 +31,15 @@ def decrypt(message: str) -> None:
Decryption using Key #24: VOFGVWZ ROFXW
Decryption using Key #25: UNEFUVY QNEWV
"""
- LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- for key in range(len(LETTERS)):
+ for key in range(len(string.ascii_uppercase)):
translated = ""
for symbol in message:
- if symbol in LETTERS:
- num = LETTERS.find(symbol)
+ if symbol in string.ascii_uppercase:
+ num = string.ascii_uppercase.find(symbol)
num = num - key
if num < 0:
- num = num + len(LETTERS)
- translated = translated + LETTERS[num]
+ num = num + len(string.ascii_uppercase)
+ translated = translated + string.ascii_uppercase[num]
else:
translated = translated + symbol
print(f"Decryption using Key #{key}: {translated}")
diff --git a/ciphers/caesar_cipher.py b/ciphers/caesar_cipher.py
index 8cd9fab58..d19b9a337 100644
--- a/ciphers/caesar_cipher.py
+++ b/ciphers/caesar_cipher.py
@@ -27,7 +27,7 @@ def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
- where very character in the plain-text is shifted by a certain number known
+ where every character in the plain-text is shifted by a certain number known
as the "key" or "shift".
Example:
diff --git a/ciphers/cryptomath_module.py b/ciphers/cryptomath_module.py
index be8764ff3..6f15f7b73 100644
--- a/ciphers/cryptomath_module.py
+++ b/ciphers/cryptomath_module.py
@@ -6,7 +6,8 @@ def gcd(a: int, b: int) -> int:
def find_mod_inverse(a: int, m: int) -> int:
if gcd(a, m) != 1:
- raise ValueError(f"mod inverse of {a!r} and {m!r} does not exist")
+ msg = f"mod inverse of {a!r} and {m!r} does not exist"
+ raise ValueError(msg)
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:
diff --git a/ciphers/diffie_hellman.py b/ciphers/diffie_hellman.py
index 072f4aaaa..aec7fb3ea 100644
--- a/ciphers/diffie_hellman.py
+++ b/ciphers/diffie_hellman.py
@@ -10,13 +10,13 @@ primes = {
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
- + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
- + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
- + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
- + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
- + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
- + "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -25,16 +25,16 @@ primes = {
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
- + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
- + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
- + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
- + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
- + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
- + "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
- + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
- + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
- + "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -43,21 +43,21 @@ primes = {
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
- + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
- + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
- + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
- + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
- + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
- + "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
- + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
- + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
- + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
- + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
- + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
- + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
- + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
- + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -66,27 +66,27 @@ primes = {
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
- + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
- + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
- + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
- + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
- + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
- + "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
- + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
- + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
- + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
- + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
- + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
- + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
- + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
- + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
- + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
- + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
- + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
- + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
- + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
- + "FFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -95,33 +95,33 @@ primes = {
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
- + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
- + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
- + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
- + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
- + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
- + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
- + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
- + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
- + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
- + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
- + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
- + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
- + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
- + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
- + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
- + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
- + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
- + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
- + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
- + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
- + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
- + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
- + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
- + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
- + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
- + "6DCC4024FFFFFFFFFFFFFFFF",
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -130,48 +130,48 @@ primes = {
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
- + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
- + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
- + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
- + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
- + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
- + "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
- + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
- + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
- + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
- + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
- + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
- + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
- + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
- + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
- + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
- + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
- + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
- + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
- + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
- + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
- + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
- + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
- + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
- + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
- + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
- + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
- + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
- + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
- + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
- + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
- + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
- + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
- + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
- + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
- + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
- + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
- + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
- + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
- + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
- + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
- + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
- + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@@ -228,10 +228,10 @@ class DiffieHellman:
def is_valid_public_key(self, key: int) -> bool:
# check if the other public key is valid based on NIST SP800-56
- if 2 <= key and key <= self.prime - 2:
- if pow(key, (self.prime - 1) // 2, self.prime) == 1:
- return True
- return False
+ return (
+ 2 <= key <= self.prime - 2
+ and pow(key, (self.prime - 1) // 2, self.prime) == 1
+ )
def generate_shared_key(self, other_key_str: str) -> str:
other_key = int(other_key_str, base=16)
@@ -243,10 +243,10 @@ class DiffieHellman:
@staticmethod
def is_valid_public_key_static(remote_public_key_str: int, prime: int) -> bool:
# check if the other public key is valid based on NIST SP800-56
- if 2 <= remote_public_key_str and remote_public_key_str <= prime - 2:
- if pow(remote_public_key_str, (prime - 1) // 2, prime) == 1:
- return True
- return False
+ return (
+ 2 <= remote_public_key_str <= prime - 2
+ and pow(remote_public_key_str, (prime - 1) // 2, prime) == 1
+ )
@staticmethod
def generate_shared_key_static(
diff --git a/ciphers/elgamal_key_generator.py b/ciphers/elgamal_key_generator.py
index 485b77595..17ba55c0d 100644
--- a/ciphers/elgamal_key_generator.py
+++ b/ciphers/elgamal_key_generator.py
@@ -26,7 +26,7 @@ def primitive_root(p_val: int) -> int:
def generate_key(key_size: int) -> tuple[tuple[int, int, int, int], tuple[int, int]]:
print("Generating prime p...")
- p = rabin_miller.generateLargePrime(key_size) # select large prime number.
+ p = rabin_miller.generate_large_prime(key_size) # select large prime number.
e_1 = primitive_root(p) # one primitive root on modulo p.
d = random.randrange(3, p) # private_key -> have to be greater than 2 for safety.
e_2 = cryptomath.find_mod_inverse(pow(e_1, d, p), p)
@@ -37,26 +37,23 @@ def generate_key(key_size: int) -> tuple[tuple[int, int, int, int], tuple[int, i
return public_key, private_key
-def make_key_files(name: str, keySize: int) -> None:
+def make_key_files(name: str, key_size: int) -> None:
if os.path.exists(f"{name}_pubkey.txt") or os.path.exists(f"{name}_privkey.txt"):
print("\nWARNING:")
print(
- '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n'
+ f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"Use a different name or delete these files and re-run this program."
- % (name, name)
)
sys.exit()
- publicKey, privateKey = generate_key(keySize)
+ public_key, private_key = generate_key(key_size)
print(f"\nWriting public key to file {name}_pubkey.txt...")
with open(f"{name}_pubkey.txt", "w") as fo:
- fo.write(
- "%d,%d,%d,%d" % (publicKey[0], publicKey[1], publicKey[2], publicKey[3])
- )
+ fo.write(f"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}")
print(f"Writing private key to file {name}_privkey.txt...")
with open(f"{name}_privkey.txt", "w") as fo:
- fo.write("%d,%d" % (privateKey[0], privateKey[1]))
+ fo.write(f"{private_key[0]},{private_key[1]}")
def main() -> None:
diff --git a/ciphers/enigma_machine2.py b/ciphers/enigma_machine2.py
index 9f9dbe6f7..ec0d44e4a 100644
--- a/ciphers/enigma_machine2.py
+++ b/ciphers/enigma_machine2.py
@@ -86,24 +86,21 @@ def _validator(
"""
# Checks if there are 3 unique rotors
- unique_rotsel = len(set(rotsel))
- if unique_rotsel < 3:
- raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})")
+ if (unique_rotsel := len(set(rotsel))) < 3:
+ msg = f"Please use 3 unique rotors (not {unique_rotsel})"
+ raise Exception(msg)
# Checks if rotor positions are valid
rotorpos1, rotorpos2, rotorpos3 = rotpos
if not 0 < rotorpos1 <= len(abc):
- raise ValueError(
- "First rotor position is not within range of 1..26 (" f"{rotorpos1}"
- )
+ msg = f"First rotor position is not within range of 1..26 ({rotorpos1}"
+ raise ValueError(msg)
if not 0 < rotorpos2 <= len(abc):
- raise ValueError(
- "Second rotor position is not within range of 1..26 (" f"{rotorpos2})"
- )
+ msg = f"Second rotor position is not within range of 1..26 ({rotorpos2})"
+ raise ValueError(msg)
if not 0 < rotorpos3 <= len(abc):
- raise ValueError(
- "Third rotor position is not within range of 1..26 (" f"{rotorpos3})"
- )
+ msg = f"Third rotor position is not within range of 1..26 ({rotorpos3})"
+ raise ValueError(msg)
# Validates string and returns dict
pbdict = _plugboard(pb)
@@ -131,9 +128,11 @@ def _plugboard(pbstring: str) -> dict[str, str]:
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(pbstring, str):
- raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})")
+ msg = f"Plugboard setting isn't type string ({type(pbstring)})"
+ raise TypeError(msg)
elif len(pbstring) % 2 != 0:
- raise Exception(f"Odd number of symbols ({len(pbstring)})")
+ msg = f"Odd number of symbols ({len(pbstring)})"
+ raise Exception(msg)
elif pbstring == "":
return {}
@@ -143,9 +142,11 @@ def _plugboard(pbstring: str) -> dict[str, str]:
tmppbl = set()
for i in pbstring:
if i not in abc:
- raise Exception(f"'{i}' not in list of symbols")
+ msg = f"'{i}' not in list of symbols"
+ raise Exception(msg)
elif i in tmppbl:
- raise Exception(f"Duplicate symbol ({i})")
+ msg = f"Duplicate symbol ({i})"
+ raise Exception(msg)
else:
tmppbl.add(i)
del tmppbl
@@ -231,7 +232,6 @@ def enigma(
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
-
# 1st plugboard --------------------------
if symbol in plugboard:
symbol = plugboard[symbol]
diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py
index d8e436e92..b4424e822 100644
--- a/ciphers/hill_cipher.py
+++ b/ciphers/hill_cipher.py
@@ -104,10 +104,11 @@ class HillCipher:
req_l = len(self.key_string)
if greatest_common_divisor(det, len(self.key_string)) != 1:
- raise ValueError(
- f"determinant modular {req_l} of encryption key({det}) is not co prime "
- f"w.r.t {req_l}.\nTry another key."
+ msg = (
+ f"determinant modular {req_l} of encryption key({det}) "
+ f"is not co prime w.r.t {req_l}.\nTry another key."
)
+ raise ValueError(msg)
def process_text(self, text: str) -> str:
"""
@@ -201,11 +202,11 @@ class HillCipher:
def main() -> None:
- N = int(input("Enter the order of the encryption key: "))
+ n = int(input("Enter the order of the encryption key: "))
hill_matrix = []
print("Enter each row of the encryption key with space separated integers")
- for _ in range(N):
+ for _ in range(n):
row = [int(x) for x in input().split()]
hill_matrix.append(row)
diff --git a/ciphers/mixed_keyword_cypher.py b/ciphers/mixed_keyword_cypher.py
index 178902173..b984808fc 100644
--- a/ciphers/mixed_keyword_cypher.py
+++ b/ciphers/mixed_keyword_cypher.py
@@ -1,7 +1,11 @@
-def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
- """
+from string import ascii_uppercase
- For key:hello
+
+def mixed_keyword(
+ keyword: str, plaintext: str, verbose: bool = False, alphabet: str = ascii_uppercase
+) -> str:
+ """
+ For keyword: hello
H E L O
A B C D
@@ -12,57 +16,60 @@ def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
Y Z
and map vertically
- >>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE
+ >>> mixed_keyword("college", "UNIVERSITY", True) # doctest: +NORMALIZE_WHITESPACE
{'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B',
'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W',
'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N',
'Y': 'T', 'Z': 'Y'}
'XKJGUFMJST'
+
+ >>> mixed_keyword("college", "UNIVERSITY", False) # doctest: +NORMALIZE_WHITESPACE
+ 'XKJGUFMJST'
"""
- key = key.upper()
- pt = pt.upper()
- temp = []
- for i in key:
- if i not in temp:
- temp.append(i)
- len_temp = len(temp)
- # print(temp)
- alpha = []
- modalpha = []
- for j in range(65, 91):
- t = chr(j)
- alpha.append(t)
- if t not in temp:
- temp.append(t)
- # print(temp)
- r = int(26 / 4)
- # print(r)
- k = 0
- for _ in range(r):
- s = []
- for j in range(len_temp):
- s.append(temp[k])
- if not (k < 25):
+ keyword = keyword.upper()
+ plaintext = plaintext.upper()
+ alphabet_set = set(alphabet)
+
+ # create a list of unique characters in the keyword - their order matters
+ # it determines how we will map plaintext characters to the ciphertext
+ unique_chars = []
+ for char in keyword:
+ if char in alphabet_set and char not in unique_chars:
+ unique_chars.append(char)
+ # the number of those unique characters will determine the number of rows
+ num_unique_chars_in_keyword = len(unique_chars)
+
+ # create a shifted version of the alphabet
+ shifted_alphabet = unique_chars + [
+ char for char in alphabet if char not in unique_chars
+ ]
+
+ # create a modified alphabet by splitting the shifted alphabet into rows
+ modified_alphabet = [
+ shifted_alphabet[k : k + num_unique_chars_in_keyword]
+ for k in range(0, 26, num_unique_chars_in_keyword)
+ ]
+
+ # map the alphabet characters to the modified alphabet characters
+ # going 'vertically' through the modified alphabet - consider columns first
+ mapping = {}
+ letter_index = 0
+ for column in range(num_unique_chars_in_keyword):
+ for row in modified_alphabet:
+ # if current row (the last one) is too short, break out of loop
+ if len(row) <= column:
break
- k += 1
- modalpha.append(s)
- # print(modalpha)
- d = {}
- j = 0
- k = 0
- for j in range(len_temp):
- for m in modalpha:
- if not (len(m) - 1 >= j):
- break
- d[alpha[k]] = m[j]
- if not k < 25:
- break
- k += 1
- print(d)
- cypher = ""
- for i in pt:
- cypher += d[i]
- return cypher
+
+ # map current letter to letter in modified alphabet
+ mapping[alphabet[letter_index]] = row[column]
+ letter_index += 1
+
+ if verbose:
+ print(mapping)
+ # create the encrypted text by mapping the plaintext to the modified alphabet
+ return "".join(mapping[char] if char in mapping else char for char in plaintext)
-print(mixed_keyword("college", "UNIVERSITY"))
+if __name__ == "__main__":
+ # example use
+ print(mixed_keyword("college", "UNIVERSITY"))
diff --git a/ciphers/onepad_cipher.py b/ciphers/onepad_cipher.py
index 3ace9b098..4bfe35b71 100644
--- a/ciphers/onepad_cipher.py
+++ b/ciphers/onepad_cipher.py
@@ -22,7 +22,7 @@ class Onepad:
for i in range(len(key)):
p = int((cipher[i] - (key[i]) ** 2) / key[i])
plain.append(chr(p))
- return "".join([i for i in plain])
+ return "".join(plain)
if __name__ == "__main__":
diff --git a/ciphers/playfair_cipher.py b/ciphers/playfair_cipher.py
index 89aedb7af..7279fb23e 100644
--- a/ciphers/playfair_cipher.py
+++ b/ciphers/playfair_cipher.py
@@ -39,7 +39,6 @@ def prepare_input(dirty: str) -> str:
def generate_table(key: str) -> list[str]:
-
# I and J are used interchangeably to allow
# us to use a 5x5 table (25 letters)
alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
diff --git a/ciphers/polybius.py b/ciphers/polybius.py
index 2a45f02a3..d83badf4a 100644
--- a/ciphers/polybius.py
+++ b/ciphers/polybius.py
@@ -8,16 +8,17 @@ https://www.braingle.com/brainteasers/codes/polybius.php
import numpy as np
+SQUARE = [
+ ["a", "b", "c", "d", "e"],
+ ["f", "g", "h", "i", "k"],
+ ["l", "m", "n", "o", "p"],
+ ["q", "r", "s", "t", "u"],
+ ["v", "w", "x", "y", "z"],
+]
+
class PolybiusCipher:
def __init__(self) -> None:
- SQUARE = [
- ["a", "b", "c", "d", "e"],
- ["f", "g", "h", "i", "k"],
- ["l", "m", "n", "o", "p"],
- ["q", "r", "s", "t", "u"],
- ["v", "w", "x", "y", "z"],
- ]
self.SQUARE = np.array(SQUARE)
def letter_to_numbers(self, letter: str) -> np.ndarray:
@@ -30,7 +31,7 @@ class PolybiusCipher:
>>> np.array_equal(PolybiusCipher().letter_to_numbers('u'), [4,5])
True
"""
- index1, index2 = np.where(self.SQUARE == letter)
+ index1, index2 = np.where(letter == self.SQUARE)
indexes = np.concatenate([index1 + 1, index2 + 1])
return indexes
diff --git a/ciphers/rabin_miller.py b/ciphers/rabin_miller.py
index a9b834bfb..410d559d4 100644
--- a/ciphers/rabin_miller.py
+++ b/ciphers/rabin_miller.py
@@ -3,7 +3,7 @@
import random
-def rabinMiller(num: int) -> bool:
+def rabin_miller(num: int) -> bool:
s = num - 1
t = 0
@@ -11,7 +11,7 @@ def rabinMiller(num: int) -> bool:
s = s // 2
t += 1
- for trials in range(5):
+ for _ in range(5):
a = random.randrange(2, num - 1)
v = pow(a, s, num)
if v != 1:
@@ -29,7 +29,7 @@ def is_prime_low_num(num: int) -> bool:
if num < 2:
return False
- lowPrimes = [
+ low_primes = [
2,
3,
5,
@@ -200,17 +200,17 @@ def is_prime_low_num(num: int) -> bool:
997,
]
- if num in lowPrimes:
+ if num in low_primes:
return True
- for prime in lowPrimes:
+ for prime in low_primes:
if (num % prime) == 0:
return False
- return rabinMiller(num)
+ return rabin_miller(num)
-def generateLargePrime(keysize: int = 1024) -> int:
+def generate_large_prime(keysize: int = 1024) -> int:
while True:
num = random.randrange(2 ** (keysize - 1), 2 ** (keysize))
if is_prime_low_num(num):
@@ -218,6 +218,6 @@ def generateLargePrime(keysize: int = 1024) -> int:
if __name__ == "__main__":
- num = generateLargePrime()
+ num = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
diff --git a/ciphers/rail_fence_cipher.py b/ciphers/rail_fence_cipher.py
index cba593ca7..47ee7db89 100644
--- a/ciphers/rail_fence_cipher.py
+++ b/ciphers/rail_fence_cipher.py
@@ -72,7 +72,7 @@ def decrypt(input_string: str, key: int) -> str:
counter = 0
for row in temp_grid: # fills in the characters
splice = input_string[counter : counter + len(row)]
- grid.append([character for character in splice])
+ grid.append(list(splice))
counter += len(row)
output_string = "" # reads as zigzag
diff --git a/ciphers/rsa_cipher.py b/ciphers/rsa_cipher.py
index c6bfaa0fb..9c41cdc5d 100644
--- a/ciphers/rsa_cipher.py
+++ b/ciphers/rsa_cipher.py
@@ -37,12 +37,12 @@ def get_text_from_blocks(
def encrypt_message(
- message: str, key: tuple[int, int], blockSize: int = DEFAULT_BLOCK_SIZE
+ message: str, key: tuple[int, int], block_size: int = DEFAULT_BLOCK_SIZE
) -> list[int]:
encrypted_blocks = []
n, e = key
- for block in get_blocks_from_text(message, blockSize):
+ for block in get_blocks_from_text(message, block_size):
encrypted_blocks.append(pow(block, e, n))
return encrypted_blocks
@@ -63,8 +63,8 @@ def decrypt_message(
def read_key_file(key_filename: str) -> tuple[int, int, int]:
with open(key_filename) as fo:
content = fo.read()
- key_size, n, EorD = content.split(",")
- return (int(key_size), int(n), int(EorD))
+ key_size, n, eor_d = content.split(",")
+ return (int(key_size), int(n), int(eor_d))
def encrypt_and_write_to_file(
@@ -76,10 +76,11 @@ def encrypt_and_write_to_file(
key_size, n, e = read_key_file(key_filename)
if key_size < block_size * 8:
sys.exit(
- "ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
+ "ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
- "Either decrease the block size or use different keys."
- % (block_size * 8, key_size)
+ "Either decrease the block size or use different keys.".format(
+ block_size * 8, key_size
+ )
)
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
@@ -101,10 +102,11 @@ def read_from_file_and_decrypt(message_filename: str, key_filename: str) -> str:
if key_size < block_size * 8:
sys.exit(
- "ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
+ "ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
- "Did you specify the correct key file and encrypted file?"
- % (block_size * 8, key_size)
+ "Did you specify the correct key file and encrypted file?".format(
+ block_size * 8, key_size
+ )
)
encrypted_blocks = []
@@ -125,15 +127,15 @@ def main() -> None:
if mode == "encrypt":
if not os.path.exists("rsa_pubkey.txt"):
- rkg.makeKeyFiles("rsa", 1024)
+ rkg.make_key_files("rsa", 1024)
message = input("\nEnter message: ")
pubkey_filename = "rsa_pubkey.txt"
print(f"Encrypting and writing to {filename}...")
- encryptedText = encrypt_and_write_to_file(filename, pubkey_filename, message)
+ encrypted_text = encrypt_and_write_to_file(filename, pubkey_filename, message)
print("\nEncrypted text:")
- print(encryptedText)
+ print(encrypted_text)
elif mode == "decrypt":
privkey_filename = "rsa_privkey.txt"
diff --git a/ciphers/rsa_factorization.py b/ciphers/rsa_factorization.py
index de4df2777..9ee52777e 100644
--- a/ciphers/rsa_factorization.py
+++ b/ciphers/rsa_factorization.py
@@ -13,7 +13,7 @@ import math
import random
-def rsafactor(d: int, e: int, N: int) -> list[int]:
+def rsafactor(d: int, e: int, n: int) -> list[int]:
"""
This function returns the factors of N, where p*q=N
Return: [p, q]
@@ -35,16 +35,16 @@ def rsafactor(d: int, e: int, N: int) -> list[int]:
p = 0
q = 0
while p == 0:
- g = random.randint(2, N - 1)
+ g = random.randint(2, n - 1)
t = k
while True:
if t % 2 == 0:
t = t // 2
- x = (g**t) % N
- y = math.gcd(x - 1, N)
+ x = (g**t) % n
+ y = math.gcd(x - 1, n)
if x > 1 and y > 1:
p = y
- q = N // y
+ q = n // y
break # find the correct factors
else:
break # t is not divisible by 2, break and choose another g
diff --git a/ciphers/rsa_key_generator.py b/ciphers/rsa_key_generator.py
index d983c14f1..eedc73368 100644
--- a/ciphers/rsa_key_generator.py
+++ b/ciphers/rsa_key_generator.py
@@ -2,55 +2,59 @@ import os
import random
import sys
-from . import cryptomath_module as cryptoMath
-from . import rabin_miller as rabinMiller
+from . import cryptomath_module, rabin_miller
def main() -> None:
print("Making key files...")
- makeKeyFiles("rsa", 1024)
+ make_key_files("rsa", 1024)
print("Key files generation successful.")
-def generateKey(keySize: int) -> tuple[tuple[int, int], tuple[int, int]]:
- print("Generating prime p...")
- p = rabinMiller.generateLargePrime(keySize)
- print("Generating prime q...")
- q = rabinMiller.generateLargePrime(keySize)
+def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
+ """
+ >>> random.seed(0) # for repeatability
+ >>> public_key, private_key = generate_key(8)
+ >>> public_key
+ (26569, 239)
+ >>> private_key
+ (26569, 2855)
+ """
+ p = rabin_miller.generate_large_prime(key_size)
+ q = rabin_miller.generate_large_prime(key_size)
n = p * q
- print("Generating e that is relatively prime to (p - 1) * (q - 1)...")
+ # Generate e that is relatively prime to (p - 1) * (q - 1)
while True:
- e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
- if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
+ e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
+ if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1:
break
- print("Calculating d that is mod inverse of e...")
- d = cryptoMath.find_mod_inverse(e, (p - 1) * (q - 1))
+ # Calculate d that is mod inverse of e
+ d = cryptomath_module.find_mod_inverse(e, (p - 1) * (q - 1))
- publicKey = (n, e)
- privateKey = (n, d)
- return (publicKey, privateKey)
+ public_key = (n, e)
+ private_key = (n, d)
+ return (public_key, private_key)
-def makeKeyFiles(name: str, keySize: int) -> None:
+def make_key_files(name: str, key_size: int) -> None:
if os.path.exists(f"{name}_pubkey.txt") or os.path.exists(f"{name}_privkey.txt"):
print("\nWARNING:")
print(
- '"%s_pubkey.txt" or "%s_privkey.txt" already exists. \n'
+ f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'
"Use a different name or delete these files and re-run this program."
- % (name, name)
)
sys.exit()
- publicKey, privateKey = generateKey(keySize)
+ public_key, private_key = generate_key(key_size)
print(f"\nWriting public key to file {name}_pubkey.txt...")
with open(f"{name}_pubkey.txt", "w") as out_file:
- out_file.write(f"{keySize},{publicKey[0]},{publicKey[1]}")
+ out_file.write(f"{key_size},{public_key[0]},{public_key[1]}")
print(f"Writing private key to file {name}_privkey.txt...")
with open(f"{name}_privkey.txt", "w") as out_file:
- out_file.write(f"{keySize},{privateKey[0]},{privateKey[1]}")
+ out_file.write(f"{key_size},{private_key[0]},{private_key[1]}")
if __name__ == "__main__":
diff --git a/ciphers/shuffled_shift_cipher.py b/ciphers/shuffled_shift_cipher.py
index 714acd4b1..08b2cab97 100644
--- a/ciphers/shuffled_shift_cipher.py
+++ b/ciphers/shuffled_shift_cipher.py
@@ -42,7 +42,7 @@ class ShuffledShiftCipher:
"""
:return: passcode of the cipher object
"""
- return "Passcode is: " + "".join(self.__passcode)
+ return "".join(self.__passcode)
def __neg_pos(self, iterlist: list[int]) -> list[int]:
"""
diff --git a/ciphers/simple_keyword_cypher.py b/ciphers/simple_keyword_cypher.py
index 447bacfc2..1635471ae 100644
--- a/ciphers/simple_keyword_cypher.py
+++ b/ciphers/simple_keyword_cypher.py
@@ -21,7 +21,7 @@ def create_cipher_map(key: str) -> dict[str, str]:
:param key: keyword to use
:return: dictionary cipher map
"""
- # Create alphabet list
+ # Create a list of the letters in the alphabet
alphabet = [chr(i + 65) for i in range(26)]
# Remove duplicate characters from key
key = remove_duplicates(key.upper())
diff --git a/ciphers/simple_substitution_cipher.py b/ciphers/simple_substitution_cipher.py
index a763bd6b6..291a9bccd 100644
--- a/ciphers/simple_substitution_cipher.py
+++ b/ciphers/simple_substitution_cipher.py
@@ -9,66 +9,66 @@ def main() -> None:
key = "LFWOAYUISVKMNXPBDCRJTQEGHZ"
resp = input("Encrypt/Decrypt [e/d]: ")
- checkValidKey(key)
+ check_valid_key(key)
if resp.lower().startswith("e"):
mode = "encrypt"
- translated = encryptMessage(key, message)
+ translated = encrypt_message(key, message)
elif resp.lower().startswith("d"):
mode = "decrypt"
- translated = decryptMessage(key, message)
+ translated = decrypt_message(key, message)
print(f"\n{mode.title()}ion: \n{translated}")
-def checkValidKey(key: str) -> None:
- keyList = list(key)
- lettersList = list(LETTERS)
- keyList.sort()
- lettersList.sort()
+def check_valid_key(key: str) -> None:
+ key_list = list(key)
+ letters_list = list(LETTERS)
+ key_list.sort()
+ letters_list.sort()
- if keyList != lettersList:
+ if key_list != letters_list:
sys.exit("Error in the key or symbol set.")
-def encryptMessage(key: str, message: str) -> str:
+def encrypt_message(key: str, message: str) -> str:
"""
- >>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji')
+ >>> encrypt_message('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji')
'Ilcrism Olcvs'
"""
- return translateMessage(key, message, "encrypt")
+ return translate_message(key, message, "encrypt")
-def decryptMessage(key: str, message: str) -> str:
+def decrypt_message(key: str, message: str) -> str:
"""
- >>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs')
+ >>> decrypt_message('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs')
'Harshil Darji'
"""
- return translateMessage(key, message, "decrypt")
+ return translate_message(key, message, "decrypt")
-def translateMessage(key: str, message: str, mode: str) -> str:
+def translate_message(key: str, message: str, mode: str) -> str:
translated = ""
- charsA = LETTERS
- charsB = key
+ chars_a = LETTERS
+ chars_b = key
if mode == "decrypt":
- charsA, charsB = charsB, charsA
+ chars_a, chars_b = chars_b, chars_a
for symbol in message:
- if symbol.upper() in charsA:
- symIndex = charsA.find(symbol.upper())
+ if symbol.upper() in chars_a:
+ sym_index = chars_a.find(symbol.upper())
if symbol.isupper():
- translated += charsB[symIndex].upper()
+ translated += chars_b[sym_index].upper()
else:
- translated += charsB[symIndex].lower()
+ translated += chars_b[sym_index].lower()
else:
translated += symbol
return translated
-def getRandomKey() -> str:
+def get_random_key() -> str:
key = list(LETTERS)
random.shuffle(key)
return "".join(key)
diff --git a/ciphers/trafid_cipher.py b/ciphers/trafid_cipher.py
index b12ceff72..108ac652f 100644
--- a/ciphers/trafid_cipher.py
+++ b/ciphers/trafid_cipher.py
@@ -2,12 +2,12 @@
from __future__ import annotations
-def __encryptPart(messagePart: str, character2Number: dict[str, str]) -> str:
+def __encrypt_part(message_part: str, character_to_number: dict[str, str]) -> str:
one, two, three = "", "", ""
tmp = []
- for character in messagePart:
- tmp.append(character2Number[character])
+ for character in message_part:
+ tmp.append(character_to_number[character])
for each in tmp:
one += each[0]
@@ -17,18 +17,18 @@ def __encryptPart(messagePart: str, character2Number: dict[str, str]) -> str:
return one + two + three
-def __decryptPart(
- messagePart: str, character2Number: dict[str, str]
+def __decrypt_part(
+ message_part: str, character_to_number: dict[str, str]
) -> tuple[str, str, str]:
- tmp, thisPart = "", ""
+ tmp, this_part = "", ""
result = []
- for character in messagePart:
- thisPart += character2Number[character]
+ for character in message_part:
+ this_part += character_to_number[character]
- for digit in thisPart:
+ for digit in this_part:
tmp += digit
- if len(tmp) == len(messagePart):
+ if len(tmp) == len(message_part):
result.append(tmp)
tmp = ""
@@ -79,51 +79,57 @@ def __prepare(
"332",
"333",
)
- character2Number = {}
- number2Character = {}
+ character_to_number = {}
+ number_to_character = {}
for letter, number in zip(alphabet, numbers):
- character2Number[letter] = number
- number2Character[number] = letter
+ character_to_number[letter] = number
+ number_to_character[number] = letter
- return message, alphabet, character2Number, number2Character
+ return message, alphabet, character_to_number, number_to_character
-def encryptMessage(
+def encrypt_message(
message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5
) -> str:
- message, alphabet, character2Number, number2Character = __prepare(message, alphabet)
+ message, alphabet, character_to_number, number_to_character = __prepare(
+ message, alphabet
+ )
encrypted, encrypted_numeric = "", ""
for i in range(0, len(message) + 1, period):
- encrypted_numeric += __encryptPart(message[i : i + period], character2Number)
+ encrypted_numeric += __encrypt_part(
+ message[i : i + period], character_to_number
+ )
for i in range(0, len(encrypted_numeric), 3):
- encrypted += number2Character[encrypted_numeric[i : i + 3]]
+ encrypted += number_to_character[encrypted_numeric[i : i + 3]]
return encrypted
-def decryptMessage(
+def decrypt_message(
message: str, alphabet: str = "ABCDEFGHIJKLMNOPQRSTUVWXYZ.", period: int = 5
) -> str:
- message, alphabet, character2Number, number2Character = __prepare(message, alphabet)
+ message, alphabet, character_to_number, number_to_character = __prepare(
+ message, alphabet
+ )
decrypted_numeric = []
decrypted = ""
for i in range(0, len(message) + 1, period):
- a, b, c = __decryptPart(message[i : i + period], character2Number)
+ a, b, c = __decrypt_part(message[i : i + period], character_to_number)
for j in range(0, len(a)):
decrypted_numeric.append(a[j] + b[j] + c[j])
for each in decrypted_numeric:
- decrypted += number2Character[each]
+ decrypted += number_to_character[each]
return decrypted
if __name__ == "__main__":
msg = "DEFEND THE EAST WALL OF THE CASTLE."
- encrypted = encryptMessage(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ")
- decrypted = decryptMessage(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ")
+ encrypted = encrypt_message(msg, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ")
+ decrypted = decrypt_message(encrypted, "EPSDUCVWYM.ZLKXNBTFGORIJHAQ")
print(f"Encrypted: {encrypted}\nDecrypted: {decrypted}")
diff --git a/ciphers/transposition_cipher.py b/ciphers/transposition_cipher.py
index ed9923a6b..f1f07ddc3 100644
--- a/ciphers/transposition_cipher.py
+++ b/ciphers/transposition_cipher.py
@@ -14,53 +14,53 @@ def main() -> None:
mode = input("Encryption/Decryption [e/d]: ")
if mode.lower().startswith("e"):
- text = encryptMessage(key, message)
+ text = encrypt_message(key, message)
elif mode.lower().startswith("d"):
- text = decryptMessage(key, message)
+ text = decrypt_message(key, message)
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f"Output:\n{text + '|'}")
-def encryptMessage(key: int, message: str) -> str:
+def encrypt_message(key: int, message: str) -> str:
"""
- >>> encryptMessage(6, 'Harshil Darji')
+ >>> encrypt_message(6, 'Harshil Darji')
'Hlia rDsahrij'
"""
- cipherText = [""] * key
+ cipher_text = [""] * key
for col in range(key):
pointer = col
while pointer < len(message):
- cipherText[col] += message[pointer]
+ cipher_text[col] += message[pointer]
pointer += key
- return "".join(cipherText)
+ return "".join(cipher_text)
-def decryptMessage(key: int, message: str) -> str:
+def decrypt_message(key: int, message: str) -> str:
"""
- >>> decryptMessage(6, 'Hlia rDsahrij')
+ >>> decrypt_message(6, 'Hlia rDsahrij')
'Harshil Darji'
"""
- numCols = math.ceil(len(message) / key)
- numRows = key
- numShadedBoxes = (numCols * numRows) - len(message)
- plainText = [""] * numCols
+ num_cols = math.ceil(len(message) / key)
+ num_rows = key
+ num_shaded_boxes = (num_cols * num_rows) - len(message)
+ plain_text = [""] * num_cols
col = 0
row = 0
for symbol in message:
- plainText[col] += symbol
+ plain_text[col] += symbol
col += 1
if (
- (col == numCols)
- or (col == numCols - 1)
- and (row >= numRows - numShadedBoxes)
+ (col == num_cols)
+ or (col == num_cols - 1)
+ and (row >= num_rows - num_shaded_boxes)
):
col = 0
row += 1
- return "".join(plainText)
+ return "".join(plain_text)
if __name__ == "__main__":
diff --git a/ciphers/transposition_cipher_encrypt_decrypt_file.py b/ciphers/transposition_cipher_encrypt_decrypt_file.py
index 926a1b36a..6296b1e6d 100644
--- a/ciphers/transposition_cipher_encrypt_decrypt_file.py
+++ b/ciphers/transposition_cipher_encrypt_decrypt_file.py
@@ -2,39 +2,39 @@ import os
import sys
import time
-from . import transposition_cipher as transCipher
+from . import transposition_cipher as trans_cipher
def main() -> None:
- inputFile = "Prehistoric Men.txt"
- outputFile = "Output.txt"
+ input_file = "Prehistoric Men.txt"
+ output_file = "Output.txt"
key = int(input("Enter key: "))
mode = input("Encrypt/Decrypt [e/d]: ")
- if not os.path.exists(inputFile):
- print(f"File {inputFile} does not exist. Quitting...")
+ if not os.path.exists(input_file):
+ print(f"File {input_file} does not exist. Quitting...")
sys.exit()
- if os.path.exists(outputFile):
- print(f"Overwrite {outputFile}? [y/n]")
+ if os.path.exists(output_file):
+ print(f"Overwrite {output_file}? [y/n]")
response = input("> ")
if not response.lower().startswith("y"):
sys.exit()
- startTime = time.time()
+ start_time = time.time()
if mode.lower().startswith("e"):
- with open(inputFile) as f:
+ with open(input_file) as f:
content = f.read()
- translated = transCipher.encryptMessage(key, content)
+ translated = trans_cipher.encrypt_message(key, content)
elif mode.lower().startswith("d"):
- with open(outputFile) as f:
+ with open(output_file) as f:
content = f.read()
- translated = transCipher.decryptMessage(key, content)
+ translated = trans_cipher.decrypt_message(key, content)
- with open(outputFile, "w") as outputObj:
- outputObj.write(translated)
+ with open(output_file, "w") as output_obj:
+ output_obj.write(translated)
- totalTime = round(time.time() - startTime, 2)
- print(("Done (", totalTime, "seconds )"))
+ total_time = round(time.time() - start_time, 2)
+ print(("Done (", total_time, "seconds )"))
if __name__ == "__main__":
diff --git a/ciphers/vigenere_cipher.py b/ciphers/vigenere_cipher.py
index 2e3987708..e76161351 100644
--- a/ciphers/vigenere_cipher.py
+++ b/ciphers/vigenere_cipher.py
@@ -8,43 +8,43 @@ def main() -> None:
if mode.lower().startswith("e"):
mode = "encrypt"
- translated = encryptMessage(key, message)
+ translated = encrypt_message(key, message)
elif mode.lower().startswith("d"):
mode = "decrypt"
- translated = decryptMessage(key, message)
+ translated = decrypt_message(key, message)
print(f"\n{mode.title()}ed message:")
print(translated)
-def encryptMessage(key: str, message: str) -> str:
+def encrypt_message(key: str, message: str) -> str:
"""
- >>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.')
+ >>> encrypt_message('HDarji', 'This is Harshil Darji from Dharmaj.')
'Akij ra Odrjqqs Gaisq muod Mphumrs.'
"""
- return translateMessage(key, message, "encrypt")
+ return translate_message(key, message, "encrypt")
-def decryptMessage(key: str, message: str) -> str:
+def decrypt_message(key: str, message: str) -> str:
"""
- >>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
+ >>> decrypt_message('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
'This is Harshil Darji from Dharmaj.'
"""
- return translateMessage(key, message, "decrypt")
+ return translate_message(key, message, "decrypt")
-def translateMessage(key: str, message: str, mode: str) -> str:
+def translate_message(key: str, message: str, mode: str) -> str:
translated = []
- keyIndex = 0
+ key_index = 0
key = key.upper()
for symbol in message:
num = LETTERS.find(symbol.upper())
if num != -1:
if mode == "encrypt":
- num += LETTERS.find(key[keyIndex])
+ num += LETTERS.find(key[key_index])
elif mode == "decrypt":
- num -= LETTERS.find(key[keyIndex])
+ num -= LETTERS.find(key[key_index])
num %= len(LETTERS)
@@ -53,9 +53,9 @@ def translateMessage(key: str, message: str, mode: str) -> str:
elif symbol.islower():
translated.append(LETTERS[num].lower())
- keyIndex += 1
- if keyIndex == len(key):
- keyIndex = 0
+ key_index += 1
+ if key_index == len(key):
+ key_index = 0
else:
translated.append(symbol)
return "".join(translated)
diff --git a/ciphers/xor_cipher.py b/ciphers/xor_cipher.py
index ca9dfe20f..0f369e38f 100644
--- a/ciphers/xor_cipher.py
+++ b/ciphers/xor_cipher.py
@@ -128,12 +128,10 @@ class XORCipher:
assert isinstance(file, str) and isinstance(key, int)
try:
- with open(file) as fin:
- with open("encrypt.out", "w+") as fout:
-
- # actual encrypt-process
- for line in fin:
- fout.write(self.encrypt_string(line, key))
+ with open(file) as fin, open("encrypt.out", "w+") as fout:
+ # actual encrypt-process
+ for line in fin:
+ fout.write(self.encrypt_string(line, key))
except OSError:
return False
@@ -153,12 +151,10 @@ class XORCipher:
assert isinstance(file, str) and isinstance(key, int)
try:
- with open(file) as fin:
- with open("decrypt.out", "w+") as fout:
-
- # actual encrypt-process
- for line in fin:
- fout.write(self.decrypt_string(line, key))
+ with open(file) as fin, open("decrypt.out", "w+") as fout:
+ # actual encrypt-process
+ for line in fin:
+ fout.write(self.decrypt_string(line, key))
except OSError:
return False
diff --git a/compression/burrows_wheeler.py b/compression/burrows_wheeler.py
index 4ad99a642..52bb045d9 100644
--- a/compression/burrows_wheeler.py
+++ b/compression/burrows_wheeler.py
@@ -150,11 +150,11 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str:
raise ValueError("The parameter idx_original_string must not be lower than 0.")
if idx_original_string >= len(bwt_string):
raise ValueError(
- "The parameter idx_original_string must be lower than" " len(bwt_string)."
+ "The parameter idx_original_string must be lower than len(bwt_string)."
)
ordered_rotations = [""] * len(bwt_string)
- for x in range(len(bwt_string)):
+ for _ in range(len(bwt_string)):
for i in range(len(bwt_string)):
ordered_rotations[i] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
diff --git a/compression/huffman.py b/compression/huffman.py
index d5d78b753..65e5c2f25 100644
--- a/compression/huffman.py
+++ b/compression/huffman.py
@@ -31,8 +31,8 @@ def parse_file(file_path: str) -> list[Letter]:
c = f.read(1)
if not c:
break
- chars[c] = chars[c] + 1 if c in chars.keys() else 1
- return sorted((Letter(c, f) for c, f in chars.items()), key=lambda l: l.freq)
+ chars[c] = chars[c] + 1 if c in chars else 1
+ return sorted((Letter(c, f) for c, f in chars.items()), key=lambda x: x.freq)
def build_tree(letters: list[Letter]) -> Letter | TreeNode:
@@ -47,7 +47,7 @@ def build_tree(letters: list[Letter]) -> Letter | TreeNode:
total_freq = left.freq + right.freq
node = TreeNode(total_freq, left, right)
response.append(node)
- response.sort(key=lambda l: l.freq)
+ response.sort(key=lambda x: x.freq)
return response[0]
@@ -56,7 +56,7 @@ def traverse_tree(root: Letter | TreeNode, bitstring: str) -> list[Letter]:
Recursively traverse the Huffman Tree to set each
Letter's bitstring dictionary, and return the list of Letters
"""
- if type(root) is Letter:
+ if isinstance(root, Letter):
root.bitstring[root.letter] = bitstring
return [root]
treenode: TreeNode = root # type: ignore
diff --git a/compression/lempel_ziv_decompress.py b/compression/lempel_ziv_decompress.py
index 4d3c2c0d2..ddedc3d6d 100644
--- a/compression/lempel_ziv_decompress.py
+++ b/compression/lempel_ziv_decompress.py
@@ -43,10 +43,10 @@ def decompress_data(data_bits: str) -> str:
lexicon[curr_string] = last_match_id + "0"
if math.log2(index).is_integer():
- newLex = {}
+ new_lex = {}
for curr_key in list(lexicon):
- newLex["0" + curr_key] = lexicon.pop(curr_key)
- lexicon = newLex
+ new_lex["0" + curr_key] = lexicon.pop(curr_key)
+ lexicon = new_lex
lexicon[bin(index)[2:]] = last_match_id + "1"
index += 1
diff --git a/compression/lz77.py b/compression/lz77.py
new file mode 100644
index 000000000..1b201c59f
--- /dev/null
+++ b/compression/lz77.py
@@ -0,0 +1,226 @@
+"""
+LZ77 compression algorithm
+- lossless data compression published in papers by Abraham Lempel and Jacob Ziv in 1977
+- also known as LZ1 or sliding-window compression
+- form the basis for many variations including LZW, LZSS, LZMA and others
+
+It uses a “sliding window” method. Within the sliding window we have:
+ - search buffer
+ - look ahead buffer
+len(sliding_window) = len(search_buffer) + len(look_ahead_buffer)
+
+LZ77 manages a dictionary that uses triples composed of:
+ - Offset into search buffer, it's the distance between the start of a phrase and
+ the beginning of a file.
+ - Length of the match, it's the number of characters that make up a phrase.
+ - The indicator is represented by a character that is going to be encoded next.
+
+As a file is parsed, the dictionary is dynamically updated to reflect the compressed
+data contents and size.
+
+Examples:
+"cabracadabrarrarrad" <-> [(0, 0, 'c'), (0, 0, 'a'), (0, 0, 'b'), (0, 0, 'r'),
+ (3, 1, 'c'), (2, 1, 'd'), (7, 4, 'r'), (3, 5, 'd')]
+"ababcbababaa" <-> [(0, 0, 'a'), (0, 0, 'b'), (2, 2, 'c'), (4, 3, 'a'), (2, 2, 'a')]
+"aacaacabcabaaac" <-> [(0, 0, 'a'), (1, 1, 'c'), (3, 4, 'b'), (3, 3, 'a'), (1, 2, 'c')]
+
+Sources:
+en.wikipedia.org/wiki/LZ77_and_LZ78
+"""
+
+
+from dataclasses import dataclass
+
+__version__ = "0.1"
+__author__ = "Lucia Harcekova"
+
+
+@dataclass
+class Token:
+ """
+ Dataclass representing triplet called token consisting of length, offset
+ and indicator. This triplet is used during LZ77 compression.
+ """
+
+ offset: int
+ length: int
+ indicator: str
+
+ def __repr__(self) -> str:
+ """
+ >>> token = Token(1, 2, "c")
+ >>> repr(token)
+ '(1, 2, c)'
+ >>> str(token)
+ '(1, 2, c)'
+ """
+ return f"({self.offset}, {self.length}, {self.indicator})"
+
+
+class LZ77Compressor:
+ """
+ Class containing compress and decompress methods using LZ77 compression algorithm.
+ """
+
+ def __init__(self, window_size: int = 13, lookahead_buffer_size: int = 6) -> None:
+ self.window_size = window_size
+ self.lookahead_buffer_size = lookahead_buffer_size
+ self.search_buffer_size = self.window_size - self.lookahead_buffer_size
+
+ def compress(self, text: str) -> list[Token]:
+ """
+ Compress the given string text using LZ77 compression algorithm.
+
+ Args:
+ text: string to be compressed
+
+ Returns:
+ output: the compressed text as a list of Tokens
+
+ >>> lz77_compressor = LZ77Compressor()
+ >>> str(lz77_compressor.compress("ababcbababaa"))
+ '[(0, 0, a), (0, 0, b), (2, 2, c), (4, 3, a), (2, 2, a)]'
+ >>> str(lz77_compressor.compress("aacaacabcabaaac"))
+ '[(0, 0, a), (1, 1, c), (3, 4, b), (3, 3, a), (1, 2, c)]'
+ """
+
+ output = []
+ search_buffer = ""
+
+ # while there are still characters in text to compress
+ while text:
+ # find the next encoding phrase
+ # - triplet with offset, length, indicator (the next encoding character)
+ token = self._find_encoding_token(text, search_buffer)
+
+ # update the search buffer:
+ # - add new characters from text into it
+ # - check if size exceed the max search buffer size, if so, drop the
+ # oldest elements
+ search_buffer += text[: token.length + 1]
+ if len(search_buffer) > self.search_buffer_size:
+ search_buffer = search_buffer[-self.search_buffer_size :]
+
+ # update the text
+ text = text[token.length + 1 :]
+
+ # append the token to output
+ output.append(token)
+
+ return output
+
+ def decompress(self, tokens: list[Token]) -> str:
+ """
+ Convert the list of tokens into an output string.
+
+ Args:
+ tokens: list containing triplets (offset, length, char)
+
+ Returns:
+ output: decompressed text
+
+ Tests:
+ >>> lz77_compressor = LZ77Compressor()
+ >>> lz77_compressor.decompress([Token(0, 0, 'c'), Token(0, 0, 'a'),
+ ... Token(0, 0, 'b'), Token(0, 0, 'r'), Token(3, 1, 'c'),
+ ... Token(2, 1, 'd'), Token(7, 4, 'r'), Token(3, 5, 'd')])
+ 'cabracadabrarrarrad'
+ >>> lz77_compressor.decompress([Token(0, 0, 'a'), Token(0, 0, 'b'),
+ ... Token(2, 2, 'c'), Token(4, 3, 'a'), Token(2, 2, 'a')])
+ 'ababcbababaa'
+ >>> lz77_compressor.decompress([Token(0, 0, 'a'), Token(1, 1, 'c'),
+ ... Token(3, 4, 'b'), Token(3, 3, 'a'), Token(1, 2, 'c')])
+ 'aacaacabcabaaac'
+ """
+
+ output = ""
+
+ for token in tokens:
+ for _ in range(token.length):
+ output += output[-token.offset]
+ output += token.indicator
+
+ return output
+
+ def _find_encoding_token(self, text: str, search_buffer: str) -> Token:
+ """Finds the encoding token for the first character in the text.
+
+ Tests:
+ >>> lz77_compressor = LZ77Compressor()
+ >>> lz77_compressor._find_encoding_token("abrarrarrad", "abracad").offset
+ 7
+ >>> lz77_compressor._find_encoding_token("adabrarrarrad", "cabrac").length
+ 1
+ >>> lz77_compressor._find_encoding_token("abc", "xyz").offset
+ 0
+ >>> lz77_compressor._find_encoding_token("", "xyz").offset
+ Traceback (most recent call last):
+ ...
+ ValueError: We need some text to work with.
+ >>> lz77_compressor._find_encoding_token("abc", "").offset
+ 0
+ """
+
+ if not text:
+ raise ValueError("We need some text to work with.")
+
+ # Initialise result parameters to default values
+ length, offset = 0, 0
+
+ if not search_buffer:
+ return Token(offset, length, text[length])
+
+ for i, character in enumerate(search_buffer):
+ found_offset = len(search_buffer) - i
+ if character == text[0]:
+ found_length = self._match_length_from_index(text, search_buffer, 0, i)
+ # if the found length is bigger than the current or if it's equal,
+ # which means it's offset is smaller: update offset and length
+ if found_length >= length:
+ offset, length = found_offset, found_length
+
+ return Token(offset, length, text[length])
+
+ def _match_length_from_index(
+ self, text: str, window: str, text_index: int, window_index: int
+ ) -> int:
+ """Calculate the longest possible match of text and window characters from
+ text_index in text and window_index in window.
+
+ Args:
+ text: _description_
+ window: sliding window
+ text_index: index of character in text
+ window_index: index of character in sliding window
+
+ Returns:
+ The maximum match between text and window, from given indexes.
+
+ Tests:
+ >>> lz77_compressor = LZ77Compressor(13, 6)
+ >>> lz77_compressor._match_length_from_index("rarrad", "adabrar", 0, 4)
+ 5
+ >>> lz77_compressor._match_length_from_index("adabrarrarrad",
+ ... "cabrac", 0, 1)
+ 1
+ """
+ if not text or text[text_index] != window[window_index]:
+ return 0
+ return 1 + self._match_length_from_index(
+ text, window + text[text_index], text_index + 1, window_index + 1
+ )
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
+ # Initialize compressor class
+ lz77_compressor = LZ77Compressor(window_size=13, lookahead_buffer_size=6)
+
+ # Example
+ TEXT = "cabracadabrarrarrad"
+ compressed_text = lz77_compressor.compress(TEXT)
+ print(lz77_compressor.compress("ababcbababaa"))
+ decompressed_text = lz77_compressor.decompress(compressed_text)
+ assert decompressed_text == TEXT, "The LZ77 algorithm returned the invalid result."
diff --git a/compression/peak_signal_to_noise_ratio.py b/compression/peak_signal_to_noise_ratio.py
index dded2a712..284f2904a 100644
--- a/compression/peak_signal_to_noise_ratio.py
+++ b/compression/peak_signal_to_noise_ratio.py
@@ -11,14 +11,15 @@ import os
import cv2
import numpy as np
+PIXEL_MAX = 255.0
-def psnr(original: float, contrast: float) -> float:
+
+def peak_signal_to_noise_ratio(original: float, contrast: float) -> float:
mse = np.mean((original - contrast) ** 2)
if mse == 0:
return 100
- PIXEL_MAX = 255.0
- PSNR = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
- return PSNR
+
+ return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
def main() -> None:
@@ -34,11 +35,11 @@ def main() -> None:
# Value expected: 29.73dB
print("-- First Test --")
- print(f"PSNR value is {psnr(original, contrast)} dB")
+ print(f"PSNR value is {peak_signal_to_noise_ratio(original, contrast)} dB")
# # Value expected: 31.53dB (Wikipedia Example)
print("\n-- Second Test --")
- print(f"PSNR value is {psnr(original2, contrast2)} dB")
+ print(f"PSNR value is {peak_signal_to_noise_ratio(original2, contrast2)} dB")
if __name__ == "__main__":
diff --git a/computer_vision/cnn_classification.py b/computer_vision/cnn_classification.py
index 6d4f19639..9b5f8c95e 100644
--- a/computer_vision/cnn_classification.py
+++ b/computer_vision/cnn_classification.py
@@ -28,11 +28,13 @@ import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
-
# Initialising the CNN
+ # (Sequential- Building the model layer by layer)
classifier = models.Sequential()
# Step 1 - Convolution
+ # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
+ # (3,3) is the kernel size (filter matrix)
classifier.add(
layers.Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
@@ -91,7 +93,7 @@ if __name__ == "__main__":
test_image = tf.keras.preprocessing.image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
result = classifier.predict(test_image)
- training_set.class_indices
+ # training_set.class_indices
if result[0][0] == 0:
prediction = "Normal"
if result[0][0] == 1:
diff --git a/computer_vision/flip_augmentation.py b/computer_vision/flip_augmentation.py
index 1272357fd..77a8cbd7b 100644
--- a/computer_vision/flip_augmentation.py
+++ b/computer_vision/flip_augmentation.py
@@ -22,7 +22,6 @@ def main() -> None:
Get images list and annotations list from input dir.
Update new images and annotations.
Save images and annotations in output dir.
- >>> pass # A doctest is not possible for this function.
"""
img_paths, annos = get_dataset(LABEL_DIR, IMAGE_DIR)
print("Processing...")
@@ -33,13 +32,13 @@ def main() -> None:
letter_code = random_chars(32)
file_name = paths[index].split(os.sep)[-1].rsplit(".", 1)[0]
file_root = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
- cv2.imwrite(f"/{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
+ cv2.imwrite(f"{file_root}.jpg", image, [cv2.IMWRITE_JPEG_QUALITY, 85])
print(f"Success {index+1}/{len(new_images)} with {file_name}")
annos_list = []
for anno in new_annos[index]:
obj = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(obj)
- with open(f"/{file_root}.txt", "w") as outfile:
+ with open(f"{file_root}.txt", "w") as outfile:
outfile.write("\n".join(line for line in annos_list))
@@ -48,7 +47,6 @@ def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
- label_dir : Path to label include annotation of images
- img_dir : Path to folder contain images
Return : List of images path and labels
- >>> pass # A doctest is not possible for this function.
"""
img_paths = []
labels = []
@@ -88,7 +86,6 @@ def update_image_and_anno(
- new_imgs_list : image after resize
- new_annos_lists : list of new annotation after scale
- path_list : list the name of image file
- >>> pass # A doctest is not possible for this function.
"""
new_annos_lists = []
path_list = []
diff --git a/computer_vision/harris_corner.py b/computer_vision/harris_corner.py
index 886ff52ea..0cc7522bc 100644
--- a/computer_vision/harris_corner.py
+++ b/computer_vision/harris_corner.py
@@ -7,9 +7,8 @@ https://en.wikipedia.org/wiki/Harris_Corner_Detector
"""
-class Harris_Corner:
+class HarrisCorner:
def __init__(self, k: float, window_size: int):
-
"""
k : is an empirically determined constant in [0.04,0.06]
window_size : neighbourhoods considered
@@ -22,11 +21,9 @@ class Harris_Corner:
raise ValueError("invalid k value")
def __str__(self) -> str:
-
- return f"Harris Corner detection with k : {self.k}"
+ return str(self.k)
def detect(self, img_path: str) -> tuple[cv2.Mat, list[list[int]]]:
-
"""
Returns the image with corners identified
img_path : path of the image
@@ -69,7 +66,6 @@ class Harris_Corner:
if __name__ == "__main__":
-
- edge_detect = Harris_Corner(0.04, 3)
+ edge_detect = HarrisCorner(0.04, 3)
color_img, _ = edge_detect.detect("path_to_image")
cv2.imwrite("detect.png", color_img)
diff --git a/computer_vision/horn_schunck.py b/computer_vision/horn_schunck.py
index 2a153d06d..b63e02682 100644
--- a/computer_vision/horn_schunck.py
+++ b/computer_vision/horn_schunck.py
@@ -12,7 +12,7 @@
from typing import SupportsIndex
import numpy as np
-from scipy.ndimage.filters import convolve
+from scipy.ndimage import convolve
def warp(
diff --git a/computer_vision/mosaic_augmentation.py b/computer_vision/mosaic_augmentation.py
index 4fd81957c..c150126d6 100644
--- a/computer_vision/mosaic_augmentation.py
+++ b/computer_vision/mosaic_augmentation.py
@@ -23,7 +23,6 @@ def main() -> None:
Get images list and annotations list from input dir.
Update new images and annotations.
Save images and annotations in output dir.
- >>> pass # A doctest is not possible for this function.
"""
img_paths, annos = get_dataset(LABEL_DIR, IMG_DIR)
for index in range(NUMBER_IMAGES):
@@ -60,7 +59,6 @@ def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
- label_dir : Path to label include annotation of images
- img_dir : Path to folder contain images
Return : List of images path and labels
- >>> pass # A doctest is not possible for this function.
"""
img_paths = []
labels = []
@@ -105,7 +103,6 @@ def update_image_and_anno(
- output_img : image after resize
- new_anno : list of new annotation after scale
- path[0] : get the name of image file
- >>> pass # A doctest is not possible for this function.
"""
output_img = np.zeros([output_size[0], output_size[1], 3], dtype=np.uint8)
scale_x = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
@@ -162,7 +159,7 @@ def update_image_and_anno(
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
# Remove bounding box small than scale of filter
- if 0 < filter_scale:
+ if filter_scale > 0:
new_anno = [
anno
for anno in new_anno
diff --git a/conversions/astronomical_length_scale_conversion.py b/conversions/astronomical_length_scale_conversion.py
new file mode 100644
index 000000000..0f4136449
--- /dev/null
+++ b/conversions/astronomical_length_scale_conversion.py
@@ -0,0 +1,106 @@
+"""
+Conversion of length units.
+Available Units:
+Metre, Kilometre, Megametre, Gigametre,
+Terametre, Petametre, Exametre, Zettametre, Yottametre
+
+USAGE :
+-> Import this file into their respective project.
+-> Use the function length_conversion() for conversion of length units.
+-> Parameters :
+ -> value : The number of from units you want to convert
+ -> from_type : From which type you want to convert
+ -> to_type : To which type you want to convert
+
+REFERENCES :
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Meter
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Kilometer
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Orders_of_magnitude_(length)
+"""
+
+UNIT_SYMBOL = {
+ "meter": "m",
+ "kilometer": "km",
+ "megametre": "Mm",
+ "gigametre": "Gm",
+ "terametre": "Tm",
+ "petametre": "Pm",
+ "exametre": "Em",
+ "zettametre": "Zm",
+ "yottametre": "Ym",
+}
+# Exponent of the factor(meter)
+METRIC_CONVERSION = {
+ "m": 0,
+ "km": 3,
+ "Mm": 6,
+ "Gm": 9,
+ "Tm": 12,
+ "Pm": 15,
+ "Em": 18,
+ "Zm": 21,
+ "Ym": 24,
+}
+
+
+def length_conversion(value: float, from_type: str, to_type: str) -> float:
+ """
+ Conversion between astronomical length units.
+
+ >>> length_conversion(1, "meter", "kilometer")
+ 0.001
+ >>> length_conversion(1, "meter", "megametre")
+ 1e-06
+ >>> length_conversion(1, "gigametre", "meter")
+ 1000000000
+ >>> length_conversion(1, "gigametre", "terametre")
+ 0.001
+ >>> length_conversion(1, "petametre", "terametre")
+ 1000
+ >>> length_conversion(1, "petametre", "exametre")
+ 0.001
+ >>> length_conversion(1, "terametre", "zettametre")
+ 1e-09
+ >>> length_conversion(1, "yottametre", "zettametre")
+ 1000
+ >>> length_conversion(4, "wrongUnit", "inch")
+ Traceback (most recent call last):
+ ...
+ ValueError: Invalid 'from_type' value: 'wrongUnit'.
+ Conversion abbreviations are: m, km, Mm, Gm, Tm, Pm, Em, Zm, Ym
+ """
+
+ from_sanitized = from_type.lower().strip("s")
+ to_sanitized = to_type.lower().strip("s")
+
+ from_sanitized = UNIT_SYMBOL.get(from_sanitized, from_sanitized)
+ to_sanitized = UNIT_SYMBOL.get(to_sanitized, to_sanitized)
+
+ if from_sanitized not in METRIC_CONVERSION:
+ msg = (
+ f"Invalid 'from_type' value: {from_type!r}.\n"
+ f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
+ )
+ raise ValueError(msg)
+ if to_sanitized not in METRIC_CONVERSION:
+ msg = (
+ f"Invalid 'to_type' value: {to_type!r}.\n"
+ f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
+ )
+ raise ValueError(msg)
+ from_exponent = METRIC_CONVERSION[from_sanitized]
+ to_exponent = METRIC_CONVERSION[to_sanitized]
+ exponent = 1
+
+ if from_exponent > to_exponent:
+ exponent = from_exponent - to_exponent
+ else:
+ exponent = -(to_exponent - from_exponent)
+
+ return value * pow(10, exponent)
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
diff --git a/conversions/binary_to_decimal.py b/conversions/binary_to_decimal.py
index a7625e475..914a9318c 100644
--- a/conversions/binary_to_decimal.py
+++ b/conversions/binary_to_decimal.py
@@ -12,15 +12,15 @@ def bin_to_decimal(bin_string: str) -> int:
0
>>> bin_to_decimal("a")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-binary value was passed to the function
>>> bin_to_decimal("")
Traceback (most recent call last):
- ...
+ ...
ValueError: Empty string was passed to the function
>>> bin_to_decimal("39")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-binary value was passed to the function
"""
bin_string = str(bin_string).strip()
diff --git a/conversions/binary_to_hexadecimal.py b/conversions/binary_to_hexadecimal.py
index f94a12390..a3855bb70 100644
--- a/conversions/binary_to_hexadecimal.py
+++ b/conversions/binary_to_hexadecimal.py
@@ -1,3 +1,23 @@
+BITS_TO_HEX = {
+ "0000": "0",
+ "0001": "1",
+ "0010": "2",
+ "0011": "3",
+ "0100": "4",
+ "0101": "5",
+ "0110": "6",
+ "0111": "7",
+ "1000": "8",
+ "1001": "9",
+ "1010": "a",
+ "1011": "b",
+ "1100": "c",
+ "1101": "d",
+ "1110": "e",
+ "1111": "f",
+}
+
+
def bin_to_hexadecimal(binary_str: str) -> str:
"""
Converting a binary string into hexadecimal using Grouping Method
@@ -10,32 +30,13 @@ def bin_to_hexadecimal(binary_str: str) -> str:
'-0x1d'
>>> bin_to_hexadecimal('a')
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-binary value was passed to the function
>>> bin_to_hexadecimal('')
Traceback (most recent call last):
- ...
+ ...
ValueError: Empty string was passed to the function
"""
- BITS_TO_HEX = {
- "0000": "0",
- "0001": "1",
- "0010": "2",
- "0011": "3",
- "0100": "4",
- "0101": "5",
- "0110": "6",
- "0111": "7",
- "1000": "8",
- "1001": "9",
- "1010": "a",
- "1011": "b",
- "1100": "c",
- "1101": "d",
- "1110": "e",
- "1111": "f",
- }
-
# Sanitising parameter
binary_str = str(binary_str).strip()
diff --git a/conversions/binary_to_octal.py b/conversions/binary_to_octal.py
index 35ede95b1..82f81e062 100644
--- a/conversions/binary_to_octal.py
+++ b/conversions/binary_to_octal.py
@@ -9,11 +9,11 @@ The function below will convert any binary string to the octal equivalent.
>>> bin_to_octal("")
Traceback (most recent call last):
-...
+ ...
ValueError: Empty string was passed to the function
>>> bin_to_octal("a-1")
Traceback (most recent call last):
-...
+ ...
ValueError: Non-binary value was passed to the function
"""
diff --git a/conversions/decimal_to_any.py b/conversions/decimal_to_any.py
index 3c72a7732..c9c2e9a5f 100644
--- a/conversions/decimal_to_any.py
+++ b/conversions/decimal_to_any.py
@@ -1,5 +1,9 @@
"""Convert a positive Decimal Number to Any Other Representation"""
+from string import ascii_uppercase
+
+ALPHABET_VALUES = {str(ord(c) - 55): c for c in ascii_uppercase}
+
def decimal_to_any(num: int, base: int) -> str:
"""
@@ -25,32 +29,32 @@ def decimal_to_any(num: int, base: int) -> str:
>>> # negatives will error
>>> decimal_to_any(-45, 8) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
ValueError: parameter must be positive int
>>> # floats will error
>>> decimal_to_any(34.4, 6) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
TypeError: int() can't convert non-string with explicit base
>>> # a float base will error
>>> decimal_to_any(5, 2.5) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
TypeError: 'float' object cannot be interpreted as an integer
>>> # a str base will error
>>> decimal_to_any(10, '16') # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
TypeError: 'str' object cannot be interpreted as an integer
>>> # a base less than 2 will error
>>> decimal_to_any(7, 0) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
ValueError: base must be >= 2
>>> # a base greater than 36 will error
>>> decimal_to_any(34, 37) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
ValueError: base must be <= 36
"""
if isinstance(num, float):
@@ -65,13 +69,6 @@ def decimal_to_any(num: int, base: int) -> str:
raise ValueError("base must be >= 2")
if base > 36:
raise ValueError("base must be <= 36")
- # fmt: off
- ALPHABET_VALUES = {'10': 'A', '11': 'B', '12': 'C', '13': 'D', '14': 'E', '15': 'F',
- '16': 'G', '17': 'H', '18': 'I', '19': 'J', '20': 'K', '21': 'L',
- '22': 'M', '23': 'N', '24': 'O', '25': 'P', '26': 'Q', '27': 'R',
- '28': 'S', '29': 'T', '30': 'U', '31': 'V', '32': 'W', '33': 'X',
- '34': 'Y', '35': 'Z'}
- # fmt: on
new_value = ""
mod = 0
div = 0
@@ -79,8 +76,9 @@ def decimal_to_any(num: int, base: int) -> str:
div, mod = divmod(num, base)
if base >= 11 and 9 < mod < 36:
actual_value = ALPHABET_VALUES[str(mod)]
- mod = actual_value
- new_value += str(mod)
+ else:
+ actual_value = str(mod)
+ new_value += actual_value
div = num // base
num = div
if div == 0:
diff --git a/conversions/decimal_to_binary.py b/conversions/decimal_to_binary.py
index c21cdbcae..973c47c8a 100644
--- a/conversions/decimal_to_binary.py
+++ b/conversions/decimal_to_binary.py
@@ -2,7 +2,6 @@
def decimal_to_binary(num: int) -> str:
-
"""
Convert an Integer Decimal Number to a Binary Number as str.
>>> decimal_to_binary(0)
@@ -19,12 +18,12 @@ def decimal_to_binary(num: int) -> str:
>>> # other floats will error
>>> decimal_to_binary(16.16) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
TypeError: 'float' object cannot be interpreted as an integer
>>> # strings will error as well
>>> decimal_to_binary('0xfffff') # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
TypeError: 'str' object cannot be interpreted as an integer
"""
diff --git a/conversions/decimal_to_binary_recursion.py b/conversions/decimal_to_binary_recursion.py
index c149ea865..05833ca67 100644
--- a/conversions/decimal_to_binary_recursion.py
+++ b/conversions/decimal_to_binary_recursion.py
@@ -7,7 +7,7 @@ def binary_recursive(decimal: int) -> str:
'1001000'
>>> binary_recursive("number")
Traceback (most recent call last):
- ...
+ ...
ValueError: invalid literal for int() with base 10: 'number'
"""
decimal = int(decimal)
@@ -30,11 +30,11 @@ def main(number: str) -> str:
'-0b101000'
>>> main(40.8)
Traceback (most recent call last):
- ...
+ ...
ValueError: Input value is not an integer
>>> main("forty")
Traceback (most recent call last):
- ...
+ ...
ValueError: Input value is not an integer
"""
number = str(number).strip()
diff --git a/conversions/decimal_to_hexadecimal.py b/conversions/decimal_to_hexadecimal.py
index 2389c6d1f..5ea48401f 100644
--- a/conversions/decimal_to_hexadecimal.py
+++ b/conversions/decimal_to_hexadecimal.py
@@ -46,12 +46,12 @@ def decimal_to_hexadecimal(decimal: float) -> str:
>>> # other floats will error
>>> decimal_to_hexadecimal(16.16) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
AssertionError
>>> # strings will error as well
>>> decimal_to_hexadecimal('0xfffff') # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
AssertionError
>>> # results are the same when compared to Python's default hex function
>>> decimal_to_hexadecimal(-256) == hex(-256)
diff --git a/conversions/energy_conversions.py b/conversions/energy_conversions.py
new file mode 100644
index 000000000..51de6b313
--- /dev/null
+++ b/conversions/energy_conversions.py
@@ -0,0 +1,114 @@
+"""
+Conversion of energy units.
+
+Available units: joule, kilojoule, megajoule, gigajoule,\
+ wattsecond, watthour, kilowatthour, newtonmeter, calorie_nutr,\
+ kilocalorie_nutr, electronvolt, britishthermalunit_it, footpound
+
+USAGE :
+-> Import this file into their respective project.
+-> Use the function energy_conversion() for conversion of energy units.
+-> Parameters :
+ -> from_type : From which type you want to convert
+ -> to_type : To which type you want to convert
+ -> value : the value which you want to convert
+
+REFERENCES :
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Units_of_energy
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Joule
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Kilowatt-hour
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Newton-metre
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Calorie
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Electronvolt
+-> Wikipedia reference: https://en.wikipedia.org/wiki/British_thermal_unit
+-> Wikipedia reference: https://en.wikipedia.org/wiki/Foot-pound_(energy)
+-> Unit converter reference: https://www.unitconverters.net/energy-converter.html
+"""
+
+ENERGY_CONVERSION: dict[str, float] = {
+ "joule": 1.0,
+ "kilojoule": 1_000,
+ "megajoule": 1_000_000,
+ "gigajoule": 1_000_000_000,
+ "wattsecond": 1.0,
+ "watthour": 3_600,
+ "kilowatthour": 3_600_000,
+ "newtonmeter": 1.0,
+ "calorie_nutr": 4_186.8,
+ "kilocalorie_nutr": 4_186_800.00,
+ "electronvolt": 1.602_176_634e-19,
+ "britishthermalunit_it": 1_055.055_85,
+ "footpound": 1.355_818,
+}
+
+
+def energy_conversion(from_type: str, to_type: str, value: float) -> float:
+ """
+ Conversion of energy units.
+ >>> energy_conversion("joule", "joule", 1)
+ 1.0
+ >>> energy_conversion("joule", "kilojoule", 1)
+ 0.001
+ >>> energy_conversion("joule", "megajoule", 1)
+ 1e-06
+ >>> energy_conversion("joule", "gigajoule", 1)
+ 1e-09
+ >>> energy_conversion("joule", "wattsecond", 1)
+ 1.0
+ >>> energy_conversion("joule", "watthour", 1)
+ 0.0002777777777777778
+ >>> energy_conversion("joule", "kilowatthour", 1)
+ 2.7777777777777776e-07
+ >>> energy_conversion("joule", "newtonmeter", 1)
+ 1.0
+ >>> energy_conversion("joule", "calorie_nutr", 1)
+ 0.00023884589662749592
+ >>> energy_conversion("joule", "kilocalorie_nutr", 1)
+ 2.388458966274959e-07
+ >>> energy_conversion("joule", "electronvolt", 1)
+ 6.241509074460763e+18
+ >>> energy_conversion("joule", "britishthermalunit_it", 1)
+ 0.0009478171226670134
+ >>> energy_conversion("joule", "footpound", 1)
+ 0.7375621211696556
+ >>> energy_conversion("joule", "megajoule", 1000)
+ 0.001
+ >>> energy_conversion("calorie_nutr", "kilocalorie_nutr", 1000)
+ 1.0
+ >>> energy_conversion("kilowatthour", "joule", 10)
+ 36000000.0
+ >>> energy_conversion("britishthermalunit_it", "footpound", 1)
+ 778.1692306784539
+ >>> energy_conversion("watthour", "joule", "a") # doctest: +ELLIPSIS
+ Traceback (most recent call last):
+ ...
+ TypeError: unsupported operand type(s) for /: 'str' and 'float'
+ >>> energy_conversion("wrongunit", "joule", 1) # doctest: +ELLIPSIS
+ Traceback (most recent call last):
+ ...
+ ValueError: Incorrect 'from_type' or 'to_type' value: 'wrongunit', 'joule'
+ Valid values are: joule, ... footpound
+ >>> energy_conversion("joule", "wrongunit", 1) # doctest: +ELLIPSIS
+ Traceback (most recent call last):
+ ...
+ ValueError: Incorrect 'from_type' or 'to_type' value: 'joule', 'wrongunit'
+ Valid values are: joule, ... footpound
+ >>> energy_conversion("123", "abc", 1) # doctest: +ELLIPSIS
+ Traceback (most recent call last):
+ ...
+ ValueError: Incorrect 'from_type' or 'to_type' value: '123', 'abc'
+ Valid values are: joule, ... footpound
+ """
+ if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
+ msg = (
+ f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
+ f"Valid values are: {', '.join(ENERGY_CONVERSION)}"
+ )
+ raise ValueError(msg)
+ return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/conversions/hex_to_bin.py b/conversions/hex_to_bin.py
index e358d810b..b872ab5cb 100644
--- a/conversions/hex_to_bin.py
+++ b/conversions/hex_to_bin.py
@@ -21,11 +21,11 @@ def hex_to_bin(hex_num: str) -> int:
-1111111111111111
>>> hex_to_bin("F-f")
Traceback (most recent call last):
- ...
+ ...
ValueError: Invalid value was passed to the function
>>> hex_to_bin("")
Traceback (most recent call last):
- ...
+ ...
ValueError: No value was passed to the function
"""
diff --git a/conversions/hexadecimal_to_decimal.py b/conversions/hexadecimal_to_decimal.py
index beb1c2c3d..209e4aebb 100644
--- a/conversions/hexadecimal_to_decimal.py
+++ b/conversions/hexadecimal_to_decimal.py
@@ -18,15 +18,15 @@ def hex_to_decimal(hex_string: str) -> int:
-255
>>> hex_to_decimal("F-f")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-hexadecimal value was passed to the function
>>> hex_to_decimal("")
Traceback (most recent call last):
- ...
+ ...
ValueError: Empty string was passed to the function
>>> hex_to_decimal("12m")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-hexadecimal value was passed to the function
"""
hex_string = hex_string.strip().lower()
diff --git a/conversions/length_conversion.py b/conversions/length_conversion.py
index 790d9c116..07fa93a19 100644
--- a/conversions/length_conversion.py
+++ b/conversions/length_conversion.py
@@ -22,9 +22,13 @@ REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Millimeter
"""
-from collections import namedtuple
+from typing import NamedTuple
+
+
+class FromTo(NamedTuple):
+ from_factor: float
+ to_factor: float
-from_to = namedtuple("from_to", "from_ to")
TYPE_CONVERSION = {
"millimeter": "mm",
@@ -40,14 +44,14 @@ TYPE_CONVERSION = {
}
METRIC_CONVERSION = {
- "mm": from_to(0.001, 1000),
- "cm": from_to(0.01, 100),
- "m": from_to(1, 1),
- "km": from_to(1000, 0.001),
- "in": from_to(0.0254, 39.3701),
- "ft": from_to(0.3048, 3.28084),
- "yd": from_to(0.9144, 1.09361),
- "mi": from_to(1609.34, 0.000621371),
+ "mm": FromTo(0.001, 1000),
+ "cm": FromTo(0.01, 100),
+ "m": FromTo(1, 1),
+ "km": FromTo(1000, 0.001),
+ "in": FromTo(0.0254, 39.3701),
+ "ft": FromTo(0.3048, 3.28084),
+ "yd": FromTo(0.9144, 1.09361),
+ "mi": FromTo(1609.34, 0.000621371),
}
@@ -104,16 +108,22 @@ def length_conversion(value: float, from_type: str, to_type: str) -> float:
new_to = to_type.lower().rstrip("s")
new_to = TYPE_CONVERSION.get(new_to, new_to)
if new_from not in METRIC_CONVERSION:
- raise ValueError(
+ msg = (
f"Invalid 'from_type' value: {from_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
+ raise ValueError(msg)
if new_to not in METRIC_CONVERSION:
- raise ValueError(
+ msg = (
f"Invalid 'to_type' value: {to_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
- return value * METRIC_CONVERSION[new_from].from_ * METRIC_CONVERSION[new_to].to
+ raise ValueError(msg)
+ return (
+ value
+ * METRIC_CONVERSION[new_from].from_factor
+ * METRIC_CONVERSION[new_to].to_factor
+ )
if __name__ == "__main__":
diff --git a/conversions/molecular_chemistry.py b/conversions/molecular_chemistry.py
index 0024eb5cb..51ffe534d 100644
--- a/conversions/molecular_chemistry.py
+++ b/conversions/molecular_chemistry.py
@@ -86,7 +86,6 @@ def pressure_and_volume_to_temperature(
if __name__ == "__main__":
-
import doctest
doctest.testmod()
diff --git a/conversions/octal_to_decimal.py b/conversions/octal_to_decimal.py
index 551311e26..7f006f20e 100644
--- a/conversions/octal_to_decimal.py
+++ b/conversions/octal_to_decimal.py
@@ -4,27 +4,27 @@ def oct_to_decimal(oct_string: str) -> int:
>>> oct_to_decimal("")
Traceback (most recent call last):
- ...
+ ...
ValueError: Empty string was passed to the function
>>> oct_to_decimal("-")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("e")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("8")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("-e")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("-8")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("1")
1
@@ -38,7 +38,7 @@ def oct_to_decimal(oct_string: str) -> int:
-37
>>> oct_to_decimal("-")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("0")
0
@@ -46,15 +46,15 @@ def oct_to_decimal(oct_string: str) -> int:
-2093
>>> oct_to_decimal("2-0Fm")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
>>> oct_to_decimal("")
Traceback (most recent call last):
- ...
+ ...
ValueError: Empty string was passed to the function
>>> oct_to_decimal("19")
Traceback (most recent call last):
- ...
+ ...
ValueError: Non-octal value was passed to the function
"""
oct_string = str(oct_string).strip()
diff --git a/conversions/prefix_conversions.py b/conversions/prefix_conversions.py
index a77556433..06b759e35 100644
--- a/conversions/prefix_conversions.py
+++ b/conversions/prefix_conversions.py
@@ -6,7 +6,7 @@ from __future__ import annotations
from enum import Enum
-class SI_Unit(Enum):
+class SIUnit(Enum):
yotta = 24
zetta = 21
exa = 18
@@ -29,7 +29,7 @@ class SI_Unit(Enum):
yocto = -24
-class Binary_Unit(Enum):
+class BinaryUnit(Enum):
yotta = 8
zetta = 7
exa = 6
@@ -42,17 +42,17 @@ class Binary_Unit(Enum):
def convert_si_prefix(
known_amount: float,
- known_prefix: str | SI_Unit,
- unknown_prefix: str | SI_Unit,
+ known_prefix: str | SIUnit,
+ unknown_prefix: str | SIUnit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix
Wikipedia reference: https://en.wikipedia.org/wiki/International_System_of_Units
- >>> convert_si_prefix(1, SI_Unit.giga, SI_Unit.mega)
+ >>> convert_si_prefix(1, SIUnit.giga, SIUnit.mega)
1000
- >>> convert_si_prefix(1, SI_Unit.mega, SI_Unit.giga)
+ >>> convert_si_prefix(1, SIUnit.mega, SIUnit.giga)
0.001
- >>> convert_si_prefix(1, SI_Unit.kilo, SI_Unit.kilo)
+ >>> convert_si_prefix(1, SIUnit.kilo, SIUnit.kilo)
1
>>> convert_si_prefix(1, 'giga', 'mega')
1000
@@ -60,9 +60,9 @@ def convert_si_prefix(
1000
"""
if isinstance(known_prefix, str):
- known_prefix = SI_Unit[known_prefix.lower()]
+ known_prefix = SIUnit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
- unknown_prefix = SI_Unit[unknown_prefix.lower()]
+ unknown_prefix = SIUnit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
10 ** (known_prefix.value - unknown_prefix.value)
)
@@ -71,16 +71,16 @@ def convert_si_prefix(
def convert_binary_prefix(
known_amount: float,
- known_prefix: str | Binary_Unit,
- unknown_prefix: str | Binary_Unit,
+ known_prefix: str | BinaryUnit,
+ unknown_prefix: str | BinaryUnit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix
- >>> convert_binary_prefix(1, Binary_Unit.giga, Binary_Unit.mega)
+ >>> convert_binary_prefix(1, BinaryUnit.giga, BinaryUnit.mega)
1024
- >>> convert_binary_prefix(1, Binary_Unit.mega, Binary_Unit.giga)
+ >>> convert_binary_prefix(1, BinaryUnit.mega, BinaryUnit.giga)
0.0009765625
- >>> convert_binary_prefix(1, Binary_Unit.kilo, Binary_Unit.kilo)
+ >>> convert_binary_prefix(1, BinaryUnit.kilo, BinaryUnit.kilo)
1
>>> convert_binary_prefix(1, 'giga', 'mega')
1024
@@ -88,9 +88,9 @@ def convert_binary_prefix(
1024
"""
if isinstance(known_prefix, str):
- known_prefix = Binary_Unit[known_prefix.lower()]
+ known_prefix = BinaryUnit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
- unknown_prefix = Binary_Unit[unknown_prefix.lower()]
+ unknown_prefix = BinaryUnit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
2 ** ((known_prefix.value - unknown_prefix.value) * 10)
)
diff --git a/conversions/prefix_conversions_string.py b/conversions/prefix_conversions_string.py
index 3851d7c8b..9344c9672 100644
--- a/conversions/prefix_conversions_string.py
+++ b/conversions/prefix_conversions_string.py
@@ -96,7 +96,7 @@ def add_si_prefix(value: float) -> str:
for name_prefix, value_prefix in prefixes.items():
numerical_part = value / (10**value_prefix)
if numerical_part > 1:
- return f"{str(numerical_part)} {name_prefix}"
+ return f"{numerical_part!s} {name_prefix}"
return str(value)
@@ -111,7 +111,7 @@ def add_binary_prefix(value: float) -> str:
for prefix in BinaryUnit:
numerical_part = value / (2**prefix.value)
if numerical_part > 1:
- return f"{str(numerical_part)} {prefix.name}"
+ return f"{numerical_part!s} {prefix.name}"
return str(value)
diff --git a/conversions/pressure_conversions.py b/conversions/pressure_conversions.py
index 2018080b9..fe78b1382 100644
--- a/conversions/pressure_conversions.py
+++ b/conversions/pressure_conversions.py
@@ -19,19 +19,23 @@ REFERENCES :
-> https://www.unitconverters.net/pressure-converter.html
"""
-from collections import namedtuple
+from typing import NamedTuple
+
+
+class FromTo(NamedTuple):
+ from_factor: float
+ to_factor: float
-from_to = namedtuple("from_to", "from_ to")
PRESSURE_CONVERSION = {
- "atm": from_to(1, 1),
- "pascal": from_to(0.0000098, 101325),
- "bar": from_to(0.986923, 1.01325),
- "kilopascal": from_to(0.00986923, 101.325),
- "megapascal": from_to(9.86923, 0.101325),
- "psi": from_to(0.068046, 14.6959),
- "inHg": from_to(0.0334211, 29.9213),
- "torr": from_to(0.00131579, 760),
+ "atm": FromTo(1, 1),
+ "pascal": FromTo(0.0000098, 101325),
+ "bar": FromTo(0.986923, 1.01325),
+ "kilopascal": FromTo(0.00986923, 101.325),
+ "megapascal": FromTo(9.86923, 0.101325),
+ "psi": FromTo(0.068046, 14.6959),
+ "inHg": FromTo(0.0334211, 29.9213),
+ "torr": FromTo(0.00131579, 760),
}
@@ -56,11 +60,7 @@ def pressure_conversion(value: float, from_type: str, to_type: str) -> float:
0.019336718261000002
>>> pressure_conversion(4, "wrongUnit", "atm")
Traceback (most recent call last):
- File "/usr/lib/python3.8/doctest.py", line 1336, in __run
- exec(compile(example.source, filename, "single",
- File "", line 1, in
- pressure_conversion(4, "wrongUnit", "atm")
- File "", line 67, in pressure_conversion
+ ...
ValueError: Invalid 'from_type' value: 'wrongUnit' Supported values are:
atm, pascal, bar, kilopascal, megapascal, psi, inHg, torr
"""
@@ -75,7 +75,9 @@ def pressure_conversion(value: float, from_type: str, to_type: str) -> float:
+ ", ".join(PRESSURE_CONVERSION)
)
return (
- value * PRESSURE_CONVERSION[from_type].from_ * PRESSURE_CONVERSION[to_type].to
+ value
+ * PRESSURE_CONVERSION[from_type].from_factor
+ * PRESSURE_CONVERSION[to_type].to_factor
)
diff --git a/conversions/rgb_hsv_conversion.py b/conversions/rgb_hsv_conversion.py
index 081cfe1d7..74b3d33e4 100644
--- a/conversions/rgb_hsv_conversion.py
+++ b/conversions/rgb_hsv_conversion.py
@@ -121,8 +121,8 @@ def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]:
float_red = red / 255
float_green = green / 255
float_blue = blue / 255
- value = max(max(float_red, float_green), float_blue)
- chroma = value - min(min(float_red, float_green), float_blue)
+ value = max(float_red, float_green, float_blue)
+ chroma = value - min(float_red, float_green, float_blue)
saturation = 0 if value == 0 else chroma / value
if chroma == 0:
diff --git a/conversions/roman_numerals.py b/conversions/roman_numerals.py
index 9933e6a78..75af2ac72 100644
--- a/conversions/roman_numerals.py
+++ b/conversions/roman_numerals.py
@@ -1,3 +1,20 @@
+ROMAN = [
+ (1000, "M"),
+ (900, "CM"),
+ (500, "D"),
+ (400, "CD"),
+ (100, "C"),
+ (90, "XC"),
+ (50, "L"),
+ (40, "XL"),
+ (10, "X"),
+ (9, "IX"),
+ (5, "V"),
+ (4, "IV"),
+ (1, "I"),
+]
+
+
def roman_to_int(roman: str) -> int:
"""
LeetCode No. 13 Roman to Integer
@@ -29,23 +46,8 @@ def int_to_roman(number: int) -> str:
>>> all(int_to_roman(value) == key for key, value in tests.items())
True
"""
- ROMAN = [
- (1000, "M"),
- (900, "CM"),
- (500, "D"),
- (400, "CD"),
- (100, "C"),
- (90, "XC"),
- (50, "L"),
- (40, "XL"),
- (10, "X"),
- (9, "IX"),
- (5, "V"),
- (4, "IV"),
- (1, "I"),
- ]
result = []
- for (arabic, roman) in ROMAN:
+ for arabic, roman in ROMAN:
(factor, number) = divmod(number, arabic)
result.append(roman * factor)
if number == 0:
diff --git a/conversions/speed_conversions.py b/conversions/speed_conversions.py
new file mode 100644
index 000000000..ba497119d
--- /dev/null
+++ b/conversions/speed_conversions.py
@@ -0,0 +1,71 @@
+"""
+Convert speed units
+
+https://en.wikipedia.org/wiki/Kilometres_per_hour
+https://en.wikipedia.org/wiki/Miles_per_hour
+https://en.wikipedia.org/wiki/Knot_(unit)
+https://en.wikipedia.org/wiki/Metre_per_second
+"""
+
+speed_chart: dict[str, float] = {
+ "km/h": 1.0,
+ "m/s": 3.6,
+ "mph": 1.609344,
+ "knot": 1.852,
+}
+
+speed_chart_inverse: dict[str, float] = {
+ "km/h": 1.0,
+ "m/s": 0.277777778,
+ "mph": 0.621371192,
+ "knot": 0.539956803,
+}
+
+
+def convert_speed(speed: float, unit_from: str, unit_to: str) -> float:
+ """
+ Convert speed from one unit to another using the speed_chart above.
+
+ "km/h": 1.0,
+ "m/s": 3.6,
+ "mph": 1.609344,
+ "knot": 1.852,
+
+ >>> convert_speed(100, "km/h", "m/s")
+ 27.778
+ >>> convert_speed(100, "km/h", "mph")
+ 62.137
+ >>> convert_speed(100, "km/h", "knot")
+ 53.996
+ >>> convert_speed(100, "m/s", "km/h")
+ 360.0
+ >>> convert_speed(100, "m/s", "mph")
+ 223.694
+ >>> convert_speed(100, "m/s", "knot")
+ 194.384
+ >>> convert_speed(100, "mph", "km/h")
+ 160.934
+ >>> convert_speed(100, "mph", "m/s")
+ 44.704
+ >>> convert_speed(100, "mph", "knot")
+ 86.898
+ >>> convert_speed(100, "knot", "km/h")
+ 185.2
+ >>> convert_speed(100, "knot", "m/s")
+ 51.444
+ >>> convert_speed(100, "knot", "mph")
+ 115.078
+ """
+ if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
+ msg = (
+ f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"
+ f"Valid values are: {', '.join(speed_chart_inverse)}"
+ )
+ raise ValueError(msg)
+ return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/conversions/temperature_conversions.py b/conversions/temperature_conversions.py
index 167c9dc64..f7af6c8f1 100644
--- a/conversions/temperature_conversions.py
+++ b/conversions/temperature_conversions.py
@@ -23,7 +23,7 @@ def celsius_to_fahrenheit(celsius: float, ndigits: int = 2) -> float:
104.0
>>> celsius_to_fahrenheit("celsius")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'celsius'
"""
return round((float(celsius) * 9 / 5) + 32, ndigits)
@@ -47,7 +47,7 @@ def celsius_to_kelvin(celsius: float, ndigits: int = 2) -> float:
313.15
>>> celsius_to_kelvin("celsius")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'celsius'
"""
return round(float(celsius) + 273.15, ndigits)
@@ -71,7 +71,7 @@ def celsius_to_rankine(celsius: float, ndigits: int = 2) -> float:
563.67
>>> celsius_to_rankine("celsius")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'celsius'
"""
return round((float(celsius) * 9 / 5) + 491.67, ndigits)
@@ -101,7 +101,7 @@ def fahrenheit_to_celsius(fahrenheit: float, ndigits: int = 2) -> float:
37.78
>>> fahrenheit_to_celsius("fahrenheit")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'fahrenheit'
"""
return round((float(fahrenheit) - 32) * 5 / 9, ndigits)
@@ -131,7 +131,7 @@ def fahrenheit_to_kelvin(fahrenheit: float, ndigits: int = 2) -> float:
310.93
>>> fahrenheit_to_kelvin("fahrenheit")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'fahrenheit'
"""
return round(((float(fahrenheit) - 32) * 5 / 9) + 273.15, ndigits)
@@ -161,7 +161,7 @@ def fahrenheit_to_rankine(fahrenheit: float, ndigits: int = 2) -> float:
559.67
>>> fahrenheit_to_rankine("fahrenheit")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'fahrenheit'
"""
return round(float(fahrenheit) + 459.67, ndigits)
@@ -185,7 +185,7 @@ def kelvin_to_celsius(kelvin: float, ndigits: int = 2) -> float:
42.35
>>> kelvin_to_celsius("kelvin")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'kelvin'
"""
return round(float(kelvin) - 273.15, ndigits)
@@ -209,7 +209,7 @@ def kelvin_to_fahrenheit(kelvin: float, ndigits: int = 2) -> float:
108.23
>>> kelvin_to_fahrenheit("kelvin")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'kelvin'
"""
return round(((float(kelvin) - 273.15) * 9 / 5) + 32, ndigits)
@@ -233,7 +233,7 @@ def kelvin_to_rankine(kelvin: float, ndigits: int = 2) -> float:
72.0
>>> kelvin_to_rankine("kelvin")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'kelvin'
"""
return round((float(kelvin) * 9 / 5), ndigits)
@@ -257,7 +257,7 @@ def rankine_to_celsius(rankine: float, ndigits: int = 2) -> float:
-97.87
>>> rankine_to_celsius("rankine")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'rankine'
"""
return round((float(rankine) - 491.67) * 5 / 9, ndigits)
@@ -277,7 +277,7 @@ def rankine_to_fahrenheit(rankine: float, ndigits: int = 2) -> float:
-144.17
>>> rankine_to_fahrenheit("rankine")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'rankine'
"""
return round(float(rankine) - 459.67, ndigits)
@@ -297,7 +297,7 @@ def rankine_to_kelvin(rankine: float, ndigits: int = 2) -> float:
22.22
>>> rankine_to_kelvin("rankine")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'rankine'
"""
return round((float(rankine) * 5 / 9), ndigits)
@@ -316,7 +316,7 @@ def reaumur_to_kelvin(reaumur: float, ndigits: int = 2) -> float:
323.15
>>> reaumur_to_kelvin("reaumur")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'reaumur'
"""
return round((float(reaumur) * 1.25 + 273.15), ndigits)
@@ -335,7 +335,7 @@ def reaumur_to_fahrenheit(reaumur: float, ndigits: int = 2) -> float:
122.0
>>> reaumur_to_fahrenheit("reaumur")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'reaumur'
"""
return round((float(reaumur) * 2.25 + 32), ndigits)
@@ -354,7 +354,7 @@ def reaumur_to_celsius(reaumur: float, ndigits: int = 2) -> float:
50.0
>>> reaumur_to_celsius("reaumur")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'reaumur'
"""
return round((float(reaumur) * 1.25), ndigits)
@@ -373,14 +373,13 @@ def reaumur_to_rankine(reaumur: float, ndigits: int = 2) -> float:
581.67
>>> reaumur_to_rankine("reaumur")
Traceback (most recent call last):
- ...
+ ...
ValueError: could not convert string to float: 'reaumur'
"""
return round((float(reaumur) * 2.25 + 32 + 459.67), ndigits)
if __name__ == "__main__":
-
import doctest
doctest.testmod()
diff --git a/conversions/volume_conversions.py b/conversions/volume_conversions.py
index de2290196..cb2403805 100644
--- a/conversions/volume_conversions.py
+++ b/conversions/volume_conversions.py
@@ -18,47 +18,47 @@ REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Cup_(unit)
"""
-from collections import namedtuple
+from typing import NamedTuple
+
+
+class FromTo(NamedTuple):
+ from_factor: float
+ to_factor: float
-from_to = namedtuple("from_to", "from_ to")
METRIC_CONVERSION = {
- "cubicmeter": from_to(1, 1),
- "litre": from_to(0.001, 1000),
- "kilolitre": from_to(1, 1),
- "gallon": from_to(0.00454, 264.172),
- "cubicyard": from_to(0.76455, 1.30795),
- "cubicfoot": from_to(0.028, 35.3147),
- "cup": from_to(0.000236588, 4226.75),
+ "cubic meter": FromTo(1, 1),
+ "litre": FromTo(0.001, 1000),
+ "kilolitre": FromTo(1, 1),
+ "gallon": FromTo(0.00454, 264.172),
+ "cubic yard": FromTo(0.76455, 1.30795),
+ "cubic foot": FromTo(0.028, 35.3147),
+ "cup": FromTo(0.000236588, 4226.75),
}
def volume_conversion(value: float, from_type: str, to_type: str) -> float:
"""
Conversion between volume units.
- >>> volume_conversion(4, "cubicmeter", "litre")
+ >>> volume_conversion(4, "cubic meter", "litre")
4000
>>> volume_conversion(1, "litre", "gallon")
0.264172
- >>> volume_conversion(1, "kilolitre", "cubicmeter")
+ >>> volume_conversion(1, "kilolitre", "cubic meter")
1
- >>> volume_conversion(3, "gallon", "cubicyard")
+ >>> volume_conversion(3, "gallon", "cubic yard")
0.017814279
- >>> volume_conversion(2, "cubicyard", "litre")
+ >>> volume_conversion(2, "cubic yard", "litre")
1529.1
- >>> volume_conversion(4, "cubicfoot", "cup")
+ >>> volume_conversion(4, "cubic foot", "cup")
473.396
>>> volume_conversion(1, "cup", "kilolitre")
0.000236588
>>> volume_conversion(4, "wrongUnit", "litre")
Traceback (most recent call last):
- File "/usr/lib/python3.8/doctest.py", line 1336, in __run
- exec(compile(example.source, filename, "single",
- File "", line 1, in
- volume_conversion(4, "wrongUnit", "litre")
- File "", line 62, in volume_conversion
+ ...
ValueError: Invalid 'from_type' value: 'wrongUnit' Supported values are:
- cubicmeter, litre, kilolitre, gallon, cubicyard, cubicfoot, cup
+ cubic meter, litre, kilolitre, gallon, cubic yard, cubic foot, cup
"""
if from_type not in METRIC_CONVERSION:
raise ValueError(
@@ -70,7 +70,11 @@ def volume_conversion(value: float, from_type: str, to_type: str) -> float:
f"Invalid 'to_type' value: {to_type!r}. Supported values are:\n"
+ ", ".join(METRIC_CONVERSION)
)
- return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
+ return (
+ value
+ * METRIC_CONVERSION[from_type].from_factor
+ * METRIC_CONVERSION[to_type].to_factor
+ )
if __name__ == "__main__":
diff --git a/conversions/weight_conversion.py b/conversions/weight_conversion.py
index 18c403731..e8326e0b6 100644
--- a/conversions/weight_conversion.py
+++ b/conversions/weight_conversion.py
@@ -299,15 +299,15 @@ def weight_conversion(from_type: str, to_type: str, value: float) -> float:
1.999999998903455
"""
if to_type not in KILOGRAM_CHART or from_type not in WEIGHT_TYPE_CHART:
- raise ValueError(
+ msg = (
f"Invalid 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Supported values are: {', '.join(WEIGHT_TYPE_CHART)}"
)
+ raise ValueError(msg)
return value * KILOGRAM_CHART[to_type] * WEIGHT_TYPE_CHART[from_type]
if __name__ == "__main__":
-
import doctest
doctest.testmod()
diff --git a/data_structures/arrays/permutations.py b/data_structures/arrays/permutations.py
new file mode 100644
index 000000000..4558bd8d4
--- /dev/null
+++ b/data_structures/arrays/permutations.py
@@ -0,0 +1,50 @@
+def permute(nums: list[int]) -> list[list[int]]:
+ """
+ Return all permutations.
+ >>> from itertools import permutations
+ >>> numbers= [1,2,3]
+ >>> all(list(nums) in permute(numbers) for nums in permutations(numbers))
+ True
+ """
+ result = []
+ if len(nums) == 1:
+ return [nums.copy()]
+ for _ in range(len(nums)):
+ n = nums.pop(0)
+ permutations = permute(nums)
+ for perm in permutations:
+ perm.append(n)
+ result.extend(permutations)
+ nums.append(n)
+ return result
+
+
+def permute2(nums):
+ """
+ Return all permutations of the given list.
+
+ >>> permute2([1, 2, 3])
+ [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]
+ """
+
+ def backtrack(start):
+ if start == len(nums) - 1:
+ output.append(nums[:])
+ else:
+ for i in range(start, len(nums)):
+ nums[start], nums[i] = nums[i], nums[start]
+ backtrack(start + 1)
+ nums[start], nums[i] = nums[i], nums[start] # backtrack
+
+ output = []
+ backtrack(0)
+ return output
+
+
+if __name__ == "__main__":
+ import doctest
+
+ # use res to print the data in permute2 function
+ res = permute2([1, 2, 3])
+ print(res)
+ doctest.testmod()
diff --git a/data_structures/arrays/prefix_sum.py b/data_structures/arrays/prefix_sum.py
new file mode 100644
index 000000000..2243a5308
--- /dev/null
+++ b/data_structures/arrays/prefix_sum.py
@@ -0,0 +1,78 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 3, 2022
+
+Implement the class of prefix sum with useful functions based on it.
+
+"""
+
+
+class PrefixSum:
+ def __init__(self, array: list[int]) -> None:
+ len_array = len(array)
+ self.prefix_sum = [0] * len_array
+
+ if len_array > 0:
+ self.prefix_sum[0] = array[0]
+
+ for i in range(1, len_array):
+ self.prefix_sum[i] = self.prefix_sum[i - 1] + array[i]
+
+ def get_sum(self, start: int, end: int) -> int:
+ """
+ The function returns the sum of array from the start to the end indexes.
+ Runtime : O(1)
+ Space: O(1)
+
+ >>> PrefixSum([1,2,3]).get_sum(0, 2)
+ 6
+ >>> PrefixSum([1,2,3]).get_sum(1, 2)
+ 5
+ >>> PrefixSum([1,2,3]).get_sum(2, 2)
+ 3
+ >>> PrefixSum([1,2,3]).get_sum(2, 3)
+ Traceback (most recent call last):
+ ...
+ IndexError: list index out of range
+ """
+ if start == 0:
+ return self.prefix_sum[end]
+
+ return self.prefix_sum[end] - self.prefix_sum[start - 1]
+
+ def contains_sum(self, target_sum: int) -> bool:
+ """
+ The function returns True if array contains the target_sum,
+ False otherwise.
+
+ Runtime : O(n)
+ Space: O(n)
+
+ >>> PrefixSum([1,2,3]).contains_sum(6)
+ True
+ >>> PrefixSum([1,2,3]).contains_sum(5)
+ True
+ >>> PrefixSum([1,2,3]).contains_sum(3)
+ True
+ >>> PrefixSum([1,2,3]).contains_sum(4)
+ False
+ >>> PrefixSum([1,2,3]).contains_sum(7)
+ False
+ >>> PrefixSum([1,-2,3]).contains_sum(2)
+ True
+ """
+
+ sums = {0}
+ for sum_item in self.prefix_sum:
+ if sum_item - target_sum in sums:
+ return True
+
+ sums.add(sum_item)
+
+ return False
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/arrays/product_sum.py b/data_structures/arrays/product_sum.py
new file mode 100644
index 000000000..4fb906f36
--- /dev/null
+++ b/data_structures/arrays/product_sum.py
@@ -0,0 +1,98 @@
+"""
+Calculate the Product Sum from a Special Array.
+reference: https://dev.to/sfrasica/algorithms-product-sum-from-an-array-dc6
+
+Python doctests can be run with the following command:
+python -m doctest -v product_sum.py
+
+Calculate the product sum of a "special" array which can contain integers or nested
+arrays. The product sum is obtained by adding all elements and multiplying by their
+respective depths.
+
+For example, in the array [x, y], the product sum is (x + y). In the array [x, [y, z]],
+the product sum is x + 2 * (y + z). In the array [x, [y, [z]]],
+the product sum is x + 2 * (y + 3z).
+
+Example Input:
+[5, 2, [-7, 1], 3, [6, [-13, 8], 4]]
+Output: 12
+
+"""
+
+
+def product_sum(arr: list[int | list], depth: int) -> int:
+ """
+ Recursively calculates the product sum of an array.
+
+ The product sum of an array is defined as the sum of its elements multiplied by
+ their respective depths. If an element is a list, its product sum is calculated
+ recursively by multiplying the sum of its elements with its depth plus one.
+
+ Args:
+ arr: The array of integers and nested lists.
+ depth: The current depth level.
+
+ Returns:
+ int: The product sum of the array.
+
+ Examples:
+ >>> product_sum([1, 2, 3], 1)
+ 6
+ >>> product_sum([-1, 2, [-3, 4]], 2)
+ 8
+ >>> product_sum([1, 2, 3], -1)
+ -6
+ >>> product_sum([1, 2, 3], 0)
+ 0
+ >>> product_sum([1, 2, 3], 7)
+ 42
+ >>> product_sum((1, 2, 3), 7)
+ 42
+ >>> product_sum({1, 2, 3}, 7)
+ 42
+ >>> product_sum([1, -1], 1)
+ 0
+ >>> product_sum([1, -2], 1)
+ -1
+ >>> product_sum([-3.5, [1, [0.5]]], 1)
+ 1.5
+
+ """
+ total_sum = 0
+ for ele in arr:
+ total_sum += product_sum(ele, depth + 1) if isinstance(ele, list) else ele
+ return total_sum * depth
+
+
+def product_sum_array(array: list[int | list]) -> int:
+ """
+ Calculates the product sum of an array.
+
+ Args:
+ array (List[Union[int, List]]): The array of integers and nested lists.
+
+ Returns:
+ int: The product sum of the array.
+
+ Examples:
+ >>> product_sum_array([1, 2, 3])
+ 6
+ >>> product_sum_array([1, [2, 3]])
+ 11
+ >>> product_sum_array([1, [2, [3, 4]]])
+ 47
+ >>> product_sum_array([0])
+ 0
+ >>> product_sum_array([-3.5, [1, [0.5]]])
+ 1.5
+ >>> product_sum_array([1, -2])
+ -1
+
+ """
+ return product_sum(array, 1)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/avl_tree.py b/data_structures/binary_tree/avl_tree.py
index 1ab13777b..4c1fb17af 100644
--- a/data_structures/binary_tree/avl_tree.py
+++ b/data_structures/binary_tree/avl_tree.py
@@ -12,7 +12,7 @@ import random
from typing import Any
-class my_queue:
+class MyQueue:
def __init__(self) -> None:
self.data: list[Any] = []
self.head: int = 0
@@ -33,26 +33,26 @@ class my_queue:
def count(self) -> int:
return self.tail - self.head
- def print(self) -> None:
+ def print_queue(self) -> None:
print(self.data)
print("**************")
print(self.data[self.head : self.tail])
-class my_node:
+class MyNode:
def __init__(self, data: Any) -> None:
self.data = data
- self.left: my_node | None = None
- self.right: my_node | None = None
+ self.left: MyNode | None = None
+ self.right: MyNode | None = None
self.height: int = 1
def get_data(self) -> Any:
return self.data
- def get_left(self) -> my_node | None:
+ def get_left(self) -> MyNode | None:
return self.left
- def get_right(self) -> my_node | None:
+ def get_right(self) -> MyNode | None:
return self.right
def get_height(self) -> int:
@@ -60,22 +60,18 @@ class my_node:
def set_data(self, data: Any) -> None:
self.data = data
- return
- def set_left(self, node: my_node | None) -> None:
+ def set_left(self, node: MyNode | None) -> None:
self.left = node
- return
- def set_right(self, node: my_node | None) -> None:
+ def set_right(self, node: MyNode | None) -> None:
self.right = node
- return
def set_height(self, height: int) -> None:
self.height = height
- return
-def get_height(node: my_node | None) -> int:
+def get_height(node: MyNode | None) -> int:
if node is None:
return 0
return node.get_height()
@@ -87,7 +83,7 @@ def my_max(a: int, b: int) -> int:
return b
-def right_rotation(node: my_node) -> my_node:
+def right_rotation(node: MyNode) -> MyNode:
r"""
A B
/ \ / \
@@ -110,7 +106,7 @@ def right_rotation(node: my_node) -> my_node:
return ret
-def left_rotation(node: my_node) -> my_node:
+def left_rotation(node: MyNode) -> MyNode:
"""
a mirror symmetry rotation of the left_rotation
"""
@@ -126,7 +122,7 @@ def left_rotation(node: my_node) -> my_node:
return ret
-def lr_rotation(node: my_node) -> my_node:
+def lr_rotation(node: MyNode) -> MyNode:
r"""
A A Br
/ \ / \ / \
@@ -143,16 +139,16 @@ def lr_rotation(node: my_node) -> my_node:
return right_rotation(node)
-def rl_rotation(node: my_node) -> my_node:
+def rl_rotation(node: MyNode) -> MyNode:
right_child = node.get_right()
assert right_child is not None
node.set_right(right_rotation(right_child))
return left_rotation(node)
-def insert_node(node: my_node | None, data: Any) -> my_node | None:
+def insert_node(node: MyNode | None, data: Any) -> MyNode | None:
if node is None:
- return my_node(data)
+ return MyNode(data)
if data < node.get_data():
node.set_left(insert_node(node.get_left(), data))
if (
@@ -180,7 +176,7 @@ def insert_node(node: my_node | None, data: Any) -> my_node | None:
return node
-def get_rightMost(root: my_node) -> Any:
+def get_right_most(root: MyNode) -> Any:
while True:
right_child = root.get_right()
if right_child is None:
@@ -189,7 +185,7 @@ def get_rightMost(root: my_node) -> Any:
return root.get_data()
-def get_leftMost(root: my_node) -> Any:
+def get_left_most(root: MyNode) -> Any:
while True:
left_child = root.get_left()
if left_child is None:
@@ -198,12 +194,12 @@ def get_leftMost(root: my_node) -> Any:
return root.get_data()
-def del_node(root: my_node, data: Any) -> my_node | None:
+def del_node(root: MyNode, data: Any) -> MyNode | None:
left_child = root.get_left()
right_child = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
- temp_data = get_leftMost(right_child)
+ temp_data = get_left_most(right_child)
root.set_data(temp_data)
root.set_right(del_node(right_child, temp_data))
elif left_child is not None:
@@ -276,7 +272,7 @@ class AVLtree:
"""
def __init__(self) -> None:
- self.root: my_node | None = None
+ self.root: MyNode | None = None
def get_height(self) -> int:
return get_height(self.root)
@@ -296,7 +292,7 @@ class AVLtree:
self,
) -> str: # a level traversale, gives a more intuitive look on the tree
output = ""
- q = my_queue()
+ q = MyQueue()
q.push(self.root)
layer = self.get_height()
if layer == 0:
diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py
index b9af23dc8..a706d21e3 100644
--- a/data_structures/binary_tree/binary_search_tree.py
+++ b/data_structures/binary_tree/binary_search_tree.py
@@ -1,59 +1,122 @@
-"""
+r"""
A binary search Tree
+
+Example
+ 8
+ / \
+ 3 10
+ / \ \
+ 1 6 14
+ / \ /
+ 4 7 13
+
+>>> t = BinarySearchTree()
+>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
+>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
+8 3 1 6 4 7 10 14 13
+>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
+1 4 7 6 3 13 14 10 8
+>>> t.remove(20)
+Traceback (most recent call last):
+ ...
+ValueError: Value 20 not found
+>>> BinarySearchTree().search(6)
+Traceback (most recent call last):
+ ...
+IndexError: Warning: Tree is empty! please use another.
+
+Other example:
+
+>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
+>>> t = BinarySearchTree()
+>>> for i in testlist:
+... t.insert(i)
+
+Prints all the elements of the list in order traversal
+>>> print(t)
+{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
+
+Test existence
+>>> t.search(6) is not None
+True
+>>> t.search(-1) is not None
+False
+
+>>> t.search(6).is_right
+True
+>>> t.search(1).is_right
+False
+
+>>> t.get_max().value
+14
+>>> t.get_min().value
+1
+>>> t.empty()
+False
+>>> for i in testlist:
+... t.remove(i)
+>>> t.empty()
+True
"""
+from collections.abc import Iterable
+from typing import Any
+
class Node:
- def __init__(self, value, parent):
+ def __init__(self, value: int | None = None):
self.value = value
- self.parent = parent # Added in order to delete a node easier
- self.left = None
- self.right = None
+ self.parent: Node | None = None # Added in order to delete a node easier
+ self.left: Node | None = None
+ self.right: Node | None = None
- def __repr__(self):
+ def __repr__(self) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value)
return pformat({f"{self.value}": (self.left, self.right)}, indent=1)
+ @property
+ def is_right(self) -> bool:
+ return self.parent is not None and self is self.parent.right
+
class BinarySearchTree:
- def __init__(self, root=None):
+ def __init__(self, root: Node | None = None):
self.root = root
- def __str__(self):
+ def __str__(self) -> str:
"""
Return a string of all the Nodes using in order traversal
"""
return str(self.root)
- def __reassign_nodes(self, node, new_children):
+ def __reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None: # reset its parent
- if self.is_right(node): # If it is the right children
+ if node.is_right: # If it is the right child
node.parent.right = new_children
else:
node.parent.left = new_children
else:
self.root = new_children
- def is_right(self, node):
- return node == node.parent.right
-
- def empty(self):
+ def empty(self) -> bool:
return self.root is None
- def __insert(self, value):
+ def __insert(self, value) -> None:
"""
Insert a new node in Binary Search Tree with value label
"""
- new_node = Node(value, None) # create a new Node
+ new_node = Node(value) # create a new Node
if self.empty(): # if Tree is empty
self.root = new_node # set its root
else: # Tree is not empty
parent_node = self.root # from root
+ if parent_node is None:
+ return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
@@ -69,12 +132,11 @@ class BinarySearchTree:
parent_node = parent_node.right
new_node.parent = parent_node
- def insert(self, *values):
+ def insert(self, *values) -> None:
for value in values:
self.__insert(value)
- return self
- def search(self, value):
+ def search(self, value) -> Node | None:
if self.empty():
raise IndexError("Warning: Tree is empty! please use another.")
else:
@@ -84,54 +146,63 @@ class BinarySearchTree:
node = node.left if value < node.value else node.right
return node
- def get_max(self, node=None):
+ def get_max(self, node: Node | None = None) -> Node | None:
"""
We go deep on the right branch
"""
if node is None:
+ if self.root is None:
+ return None
node = self.root
+
if not self.empty():
while node.right is not None:
node = node.right
return node
- def get_min(self, node=None):
+ def get_min(self, node: Node | None = None) -> Node | None:
"""
We go deep on the left branch
"""
if node is None:
node = self.root
+ if self.root is None:
+ return None
if not self.empty():
node = self.root
while node.left is not None:
node = node.left
return node
- def remove(self, value):
- node = self.search(value) # Look for the node with that label
- if node is not None:
- if node.left is None and node.right is None: # If it has no children
- self.__reassign_nodes(node, None)
- elif node.left is None: # Has only right children
- self.__reassign_nodes(node, node.right)
- elif node.right is None: # Has only left children
- self.__reassign_nodes(node, node.left)
- else:
- tmp_node = self.get_max(
- node.left
- ) # Gets the max value of the left branch
- self.remove(tmp_node.value)
- node.value = (
- tmp_node.value
- ) # Assigns the value to the node to delete and keep tree structure
+ def remove(self, value: int) -> None:
+ # Look for the node with that label
+ node = self.search(value)
+ if node is None:
+ msg = f"Value {value} not found"
+ raise ValueError(msg)
- def preorder_traverse(self, node):
+ if node.left is None and node.right is None: # If it has no children
+ self.__reassign_nodes(node, None)
+ elif node.left is None: # Has only right children
+ self.__reassign_nodes(node, node.right)
+ elif node.right is None: # Has only left children
+ self.__reassign_nodes(node, node.left)
+ else:
+ predecessor = self.get_max(
+ node.left
+ ) # Gets the max value of the left branch
+ self.remove(predecessor.value) # type: ignore
+ node.value = (
+ predecessor.value # type: ignore
+ ) # Assigns the value to the node to delete and keep tree structure
+
+ def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
- def traversal_tree(self, traversal_function=None):
+ def traversal_tree(self, traversal_function=None) -> Any:
"""
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
@@ -141,7 +212,7 @@ class BinarySearchTree:
else:
return traversal_function(self.root)
- def inorder(self, arr: list, node: Node):
+ def inorder(self, arr: list, node: Node | None) -> None:
"""Perform an inorder traversal and append values of the nodes to
a list named arr"""
if node:
@@ -151,71 +222,22 @@ class BinarySearchTree:
def find_kth_smallest(self, k: int, node: Node) -> int:
"""Return the kth smallest element in a binary search tree"""
- arr: list = []
+ arr: list[int] = []
self.inorder(arr, node) # append all values to list using inorder traversal
return arr[k - 1]
-def postorder(curr_node):
+def postorder(curr_node: Node | None) -> list[Node]:
"""
postOrder (left, right, self)
"""
- node_list = list()
+ node_list = []
if curr_node is not None:
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return node_list
-def binary_search_tree():
- r"""
- Example
- 8
- / \
- 3 10
- / \ \
- 1 6 14
- / \ /
- 4 7 13
-
- >>> t = BinarySearchTree().insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
- >>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
- 8 3 1 6 4 7 10 14 13
- >>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
- 1 4 7 6 3 13 14 10 8
- >>> BinarySearchTree().search(6)
- Traceback (most recent call last):
- ...
- IndexError: Warning: Tree is empty! please use another.
- """
- testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
- t = BinarySearchTree()
- for i in testlist:
- t.insert(i)
-
- # Prints all the elements of the list in order traversal
- print(t)
-
- if t.search(6) is not None:
- print("The value 6 exists")
- else:
- print("The value 6 doesn't exist")
-
- if t.search(-1) is not None:
- print("The value -1 exists")
- else:
- print("The value -1 doesn't exist")
-
- if not t.empty():
- print("Max Value: ", t.get_max().value)
- print("Min Value: ", t.get_min().value)
-
- for i in testlist:
- t.remove(i)
- print(t)
-
-
if __name__ == "__main__":
import doctest
- doctest.testmod()
- # binary_search_tree()
+ doctest.testmod(verbose=True)
diff --git a/data_structures/binary_tree/binary_search_tree_recursive.py b/data_structures/binary_tree/binary_search_tree_recursive.py
index 0d0ac8fd1..b5b983b9b 100644
--- a/data_structures/binary_tree/binary_search_tree_recursive.py
+++ b/data_structures/binary_tree/binary_search_tree_recursive.py
@@ -77,7 +77,8 @@ class BinarySearchTree:
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
- raise Exception(f"Node with label {label} already exists")
+ msg = f"Node with label {label} already exists"
+ raise Exception(msg)
return node
@@ -100,7 +101,8 @@ class BinarySearchTree:
def _search(self, node: Node | None, label: int) -> Node:
if node is None:
- raise Exception(f"Node with label {label} does not exist")
+ msg = f"Node with label {label} does not exist"
+ raise Exception(msg)
else:
if label < node.label:
node = self._search(node.left, label)
@@ -357,7 +359,7 @@ class BinarySearchTreeTest(unittest.TestCase):
assert t.root.left.left.parent == t.root.left
assert t.root.left.left.label == 1
- with self.assertRaises(Exception):
+ with self.assertRaises(Exception): # noqa: B017
t.put(1)
def test_search(self) -> None:
@@ -369,7 +371,7 @@ class BinarySearchTreeTest(unittest.TestCase):
node = t.search(13)
assert node.label == 13
- with self.assertRaises(Exception):
+ with self.assertRaises(Exception): # noqa: B017
t.search(2)
def test_remove(self) -> None:
@@ -515,7 +517,7 @@ class BinarySearchTreeTest(unittest.TestCase):
assert t.get_max_label() == 14
t.empty()
- with self.assertRaises(Exception):
+ with self.assertRaises(Exception): # noqa: B017
t.get_max_label()
def test_get_min_label(self) -> None:
@@ -524,7 +526,7 @@ class BinarySearchTreeTest(unittest.TestCase):
assert t.get_min_label() == 1
t.empty()
- with self.assertRaises(Exception):
+ with self.assertRaises(Exception): # noqa: B017
t.get_min_label()
def test_inorder_traversal(self) -> None:
diff --git a/data_structures/binary_tree/binary_tree_mirror.py b/data_structures/binary_tree/binary_tree_mirror.py
index cdd56e35d..b8548f4ec 100644
--- a/data_structures/binary_tree/binary_tree_mirror.py
+++ b/data_structures/binary_tree/binary_tree_mirror.py
@@ -21,17 +21,18 @@ def binary_tree_mirror(binary_tree: dict, root: int = 1) -> dict:
{1: [3, 2], 2: [5, 4], 3: [7, 6], 4: [11, 10]}
>>> binary_tree_mirror({ 1: [2,3], 2: [4,5], 3: [6,7], 4: [10,11]}, 5)
Traceback (most recent call last):
- ...
+ ...
ValueError: root 5 is not present in the binary_tree
>>> binary_tree_mirror({}, 5)
Traceback (most recent call last):
- ...
+ ...
ValueError: binary tree cannot be empty
"""
if not binary_tree:
raise ValueError("binary tree cannot be empty")
if root not in binary_tree:
- raise ValueError(f"root {root} is not present in the binary_tree")
+ msg = f"root {root} is not present in the binary_tree"
+ raise ValueError(msg)
binary_tree_mirror_dictionary = dict(binary_tree)
binary_tree_mirror_dict(binary_tree_mirror_dictionary, root)
return binary_tree_mirror_dictionary
diff --git a/data_structures/binary_tree/binary_tree_node_sum.py b/data_structures/binary_tree/binary_tree_node_sum.py
new file mode 100644
index 000000000..5a13e74e3
--- /dev/null
+++ b/data_structures/binary_tree/binary_tree_node_sum.py
@@ -0,0 +1,76 @@
+"""
+Sum of all nodes in a binary tree.
+
+Python implementation:
+ O(n) time complexity - Recurses through :meth:`depth_first_search`
+ with each element.
+ O(n) space complexity - At any point in time maximum number of stack
+ frames that could be in memory is `n`
+"""
+
+
+from __future__ import annotations
+
+from collections.abc import Iterator
+
+
+class Node:
+ """
+ A Node has a value variable and pointers to Nodes to its left and right.
+ """
+
+ def __init__(self, value: int) -> None:
+ self.value = value
+ self.left: Node | None = None
+ self.right: Node | None = None
+
+
+class BinaryTreeNodeSum:
+ r"""
+ The below tree looks like this
+ 10
+ / \
+ 5 -3
+ / / \
+ 12 8 0
+
+ >>> tree = Node(10)
+ >>> sum(BinaryTreeNodeSum(tree))
+ 10
+
+ >>> tree.left = Node(5)
+ >>> sum(BinaryTreeNodeSum(tree))
+ 15
+
+ >>> tree.right = Node(-3)
+ >>> sum(BinaryTreeNodeSum(tree))
+ 12
+
+ >>> tree.left.left = Node(12)
+ >>> sum(BinaryTreeNodeSum(tree))
+ 24
+
+ >>> tree.right.left = Node(8)
+ >>> tree.right.right = Node(0)
+ >>> sum(BinaryTreeNodeSum(tree))
+ 32
+ """
+
+ def __init__(self, tree: Node) -> None:
+ self.tree = tree
+
+ def depth_first_search(self, node: Node | None) -> int:
+ if node is None:
+ return 0
+ return node.value + (
+ self.depth_first_search(node.left) + self.depth_first_search(node.right)
+ )
+
+ def __iter__(self) -> Iterator[int]:
+ yield self.depth_first_search(self.tree)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/binary_tree_path_sum.py b/data_structures/binary_tree/binary_tree_path_sum.py
new file mode 100644
index 000000000..a3fe9ca7a
--- /dev/null
+++ b/data_structures/binary_tree/binary_tree_path_sum.py
@@ -0,0 +1,88 @@
+"""
+Given the root of a binary tree and an integer target,
+find the number of paths where the sum of the values
+along the path equals target.
+
+
+Leetcode reference: https://leetcode.com/problems/path-sum-iii/
+"""
+
+from __future__ import annotations
+
+
+class Node:
+ """
+ A Node has value variable and pointers to Nodes to its left and right.
+ """
+
+ def __init__(self, value: int) -> None:
+ self.value = value
+ self.left: Node | None = None
+ self.right: Node | None = None
+
+
+class BinaryTreePathSum:
+ r"""
+ The below tree looks like this
+ 10
+ / \
+ 5 -3
+ / \ \
+ 3 2 11
+ / \ \
+ 3 -2 1
+
+
+ >>> tree = Node(10)
+ >>> tree.left = Node(5)
+ >>> tree.right = Node(-3)
+ >>> tree.left.left = Node(3)
+ >>> tree.left.right = Node(2)
+ >>> tree.right.right = Node(11)
+ >>> tree.left.left.left = Node(3)
+ >>> tree.left.left.right = Node(-2)
+ >>> tree.left.right.right = Node(1)
+
+ >>> BinaryTreePathSum().path_sum(tree, 8)
+ 3
+ >>> BinaryTreePathSum().path_sum(tree, 7)
+ 2
+ >>> tree.right.right = Node(10)
+ >>> BinaryTreePathSum().path_sum(tree, 8)
+ 2
+ """
+
+ target: int
+
+ def __init__(self) -> None:
+ self.paths = 0
+
+ def depth_first_search(self, node: Node | None, path_sum: int) -> None:
+ if node is None:
+ return
+
+ if path_sum == self.target:
+ self.paths += 1
+
+ if node.left:
+ self.depth_first_search(node.left, path_sum + node.left.value)
+ if node.right:
+ self.depth_first_search(node.right, path_sum + node.right.value)
+
+ def path_sum(self, node: Node | None, target: int | None = None) -> int:
+ if node is None:
+ return 0
+ if target is not None:
+ self.target = target
+
+ self.depth_first_search(node, node.value)
+ self.path_sum(node.left)
+ self.path_sum(node.right)
+
+ return self.paths
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/binary_tree_traversals.py b/data_structures/binary_tree/binary_tree_traversals.py
index 378598bb0..2afb7604f 100644
--- a/data_structures/binary_tree/binary_tree_traversals.py
+++ b/data_structures/binary_tree/binary_tree_traversals.py
@@ -15,7 +15,20 @@ class Node:
def make_tree() -> Node | None:
- return Node(1, Node(2, Node(4), Node(5)), Node(3))
+ r"""
+ The below tree
+ 1
+ / \
+ 2 3
+ / \
+ 4 5
+ """
+ tree = Node(1)
+ tree.left = Node(2)
+ tree.right = Node(3)
+ tree.left.left = Node(4)
+ tree.left.right = Node(5)
+ return tree
def preorder(root: Node | None) -> list[int]:
@@ -24,7 +37,7 @@ def preorder(root: Node | None) -> list[int]:
>>> preorder(make_tree())
[1, 2, 4, 5, 3]
"""
- return [root.data] + preorder(root.left) + preorder(root.right) if root else []
+ return [root.data, *preorder(root.left), *preorder(root.right)] if root else []
def postorder(root: Node | None) -> list[int]:
@@ -42,7 +55,20 @@ def inorder(root: Node | None) -> list[int]:
>>> inorder(make_tree())
[4, 2, 5, 1, 3]
"""
- return inorder(root.left) + [root.data] + inorder(root.right) if root else []
+ return [*inorder(root.left), root.data, *inorder(root.right)] if root else []
+
+
+def reverse_inorder(root: Node | None) -> list[int]:
+ """
+ Reverse in-order traversal visits right subtree, root node, left subtree.
+ >>> reverse_inorder(make_tree())
+ [3, 1, 5, 2, 4]
+ """
+ return (
+ [*reverse_inorder(root.right), root.data, *reverse_inorder(root.left)]
+ if root
+ else []
+ )
def height(root: Node | None) -> int:
@@ -92,7 +118,6 @@ def get_nodes_from_left_to_right(
if not root:
return
if level == 1:
-
output.append(root.data)
elif level > 1:
populate_output(root.left, level - 1)
@@ -149,15 +174,12 @@ def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
def main() -> None: # Main function for testing.
- """
- Create binary tree.
- """
+ # Create binary tree.
root = make_tree()
- """
- All Traversals of the binary are as follows:
- """
+ # All Traversals of the binary are as follows:
print(f"In-order Traversal: {inorder(root)}")
+ print(f"Reverse In-order Traversal: {reverse_inorder(root)}")
print(f"Pre-order Traversal: {preorder(root)}")
print(f"Post-order Traversal: {postorder(root)}", "\n")
diff --git a/data_structures/binary_tree/diff_views_of_binary_tree.py b/data_structures/binary_tree/diff_views_of_binary_tree.py
new file mode 100644
index 000000000..3198d8065
--- /dev/null
+++ b/data_structures/binary_tree/diff_views_of_binary_tree.py
@@ -0,0 +1,210 @@
+r"""
+Problem: Given root of a binary tree, return the:
+1. binary-tree-right-side-view
+2. binary-tree-left-side-view
+3. binary-tree-top-side-view
+4. binary-tree-bottom-side-view
+"""
+
+from __future__ import annotations
+
+from collections import defaultdict
+from dataclasses import dataclass
+
+
+@dataclass
+class TreeNode:
+ val: int
+ left: TreeNode | None = None
+ right: TreeNode | None = None
+
+
+def make_tree() -> TreeNode:
+ """
+ >>> make_tree().val
+ 3
+ """
+ return TreeNode(3, TreeNode(9), TreeNode(20, TreeNode(15), TreeNode(7)))
+
+
+def binary_tree_right_side_view(root: TreeNode) -> list[int]:
+ r"""
+ Function returns the right side view of binary tree.
+
+ 3 <- 3
+ / \
+ 9 20 <- 20
+ / \
+ 15 7 <- 7
+
+ >>> binary_tree_right_side_view(make_tree())
+ [3, 20, 7]
+ >>> binary_tree_right_side_view(None)
+ []
+ """
+
+ def depth_first_search(
+ root: TreeNode | None, depth: int, right_view: list[int]
+ ) -> None:
+ """
+ A depth first search preorder traversal to append the values at
+ right side of tree.
+ """
+ if not root:
+ return
+
+ if depth == len(right_view):
+ right_view.append(root.val)
+
+ depth_first_search(root.right, depth + 1, right_view)
+ depth_first_search(root.left, depth + 1, right_view)
+
+ right_view: list = []
+ if not root:
+ return right_view
+
+ depth_first_search(root, 0, right_view)
+ return right_view
+
+
+def binary_tree_left_side_view(root: TreeNode) -> list[int]:
+ r"""
+ Function returns the left side view of binary tree.
+
+ 3 -> 3
+ / \
+ 9 -> 9 20
+ / \
+ 15 -> 15 7
+
+ >>> binary_tree_left_side_view(make_tree())
+ [3, 9, 15]
+ >>> binary_tree_left_side_view(None)
+ []
+ """
+
+ def depth_first_search(
+ root: TreeNode | None, depth: int, left_view: list[int]
+ ) -> None:
+ """
+ A depth first search preorder traversal to append the values
+ at left side of tree.
+ """
+ if not root:
+ return
+
+ if depth == len(left_view):
+ left_view.append(root.val)
+
+ depth_first_search(root.left, depth + 1, left_view)
+ depth_first_search(root.right, depth + 1, left_view)
+
+ left_view: list = []
+ if not root:
+ return left_view
+
+ depth_first_search(root, 0, left_view)
+ return left_view
+
+
+def binary_tree_top_side_view(root: TreeNode) -> list[int]:
+ r"""
+ Function returns the top side view of binary tree.
+
+ 9 3 20 7
+ ⬇ ⬇ ⬇ ⬇
+
+ 3
+ / \
+ 9 20
+ / \
+ 15 7
+
+ >>> binary_tree_top_side_view(make_tree())
+ [9, 3, 20, 7]
+ >>> binary_tree_top_side_view(None)
+ []
+ """
+
+ def breadth_first_search(root: TreeNode, top_view: list[int]) -> None:
+ """
+ A breadth first search traversal with defaultdict ds to append
+ the values of tree from top view
+ """
+ queue = [(root, 0)]
+ lookup = defaultdict(list)
+
+ while queue:
+ first = queue.pop(0)
+ node, hd = first
+
+ lookup[hd].append(node.val)
+
+ if node.left:
+ queue.append((node.left, hd - 1))
+ if node.right:
+ queue.append((node.right, hd + 1))
+
+ for pair in sorted(lookup.items(), key=lambda each: each[0]):
+ top_view.append(pair[1][0])
+
+ top_view: list = []
+ if not root:
+ return top_view
+
+ breadth_first_search(root, top_view)
+ return top_view
+
+
+def binary_tree_bottom_side_view(root: TreeNode) -> list[int]:
+ r"""
+ Function returns the bottom side view of binary tree
+
+ 3
+ / \
+ 9 20
+ / \
+ 15 7
+ ↑ ↑ ↑ ↑
+ 9 15 20 7
+
+ >>> binary_tree_bottom_side_view(make_tree())
+ [9, 15, 20, 7]
+ >>> binary_tree_bottom_side_view(None)
+ []
+ """
+ from collections import defaultdict
+
+ def breadth_first_search(root: TreeNode, bottom_view: list[int]) -> None:
+ """
+ A breadth first search traversal with defaultdict ds to append
+ the values of tree from bottom view
+ """
+ queue = [(root, 0)]
+ lookup = defaultdict(list)
+
+ while queue:
+ first = queue.pop(0)
+ node, hd = first
+ lookup[hd].append(node.val)
+
+ if node.left:
+ queue.append((node.left, hd - 1))
+ if node.right:
+ queue.append((node.right, hd + 1))
+
+ for pair in sorted(lookup.items(), key=lambda each: each[0]):
+ bottom_view.append(pair[1][-1])
+
+ bottom_view: list = []
+ if not root:
+ return bottom_view
+
+ breadth_first_search(root, bottom_view)
+ return bottom_view
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/distribute_coins.py b/data_structures/binary_tree/distribute_coins.py
new file mode 100644
index 000000000..5712604cb
--- /dev/null
+++ b/data_structures/binary_tree/distribute_coins.py
@@ -0,0 +1,137 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 7, 2022
+
+Task:
+You are given a tree root of a binary tree with n nodes, where each node has
+node.data coins. There are exactly n coins in whole tree.
+
+In one move, we may choose two adjacent nodes and move one coin from one node
+to another. A move may be from parent to child, or from child to parent.
+
+Return the minimum number of moves required to make every node have exactly one coin.
+
+Example 1:
+
+ 3
+ / \
+ 0 0
+
+Result: 2
+
+Example 2:
+
+ 0
+ / \
+ 3 0
+
+Result 3
+
+leetcode: https://leetcode.com/problems/distribute-coins-in-binary-tree/
+
+Implementation notes:
+User depth-first search approach.
+
+Let n is the number of nodes in tree
+Runtime: O(n)
+Space: O(1)
+"""
+
+from __future__ import annotations
+
+from dataclasses import dataclass
+from typing import NamedTuple
+
+
+@dataclass
+class TreeNode:
+ data: int
+ left: TreeNode | None = None
+ right: TreeNode | None = None
+
+
+class CoinsDistribResult(NamedTuple):
+ moves: int
+ excess: int
+
+
+def distribute_coins(root: TreeNode | None) -> int:
+ """
+ >>> distribute_coins(TreeNode(3, TreeNode(0), TreeNode(0)))
+ 2
+ >>> distribute_coins(TreeNode(0, TreeNode(3), TreeNode(0)))
+ 3
+ >>> distribute_coins(TreeNode(0, TreeNode(0), TreeNode(3)))
+ 3
+ >>> distribute_coins(None)
+ 0
+ >>> distribute_coins(TreeNode(0, TreeNode(0), TreeNode(0)))
+ Traceback (most recent call last):
+ ...
+ ValueError: The nodes number should be same as the number of coins
+ >>> distribute_coins(TreeNode(0, TreeNode(1), TreeNode(1)))
+ Traceback (most recent call last):
+ ...
+ ValueError: The nodes number should be same as the number of coins
+ """
+
+ if root is None:
+ return 0
+
+ # Validation
+ def count_nodes(node: TreeNode | None) -> int:
+ """
+ >>> count_nodes(None)
+ 0
+ """
+ if node is None:
+ return 0
+
+ return count_nodes(node.left) + count_nodes(node.right) + 1
+
+ def count_coins(node: TreeNode | None) -> int:
+ """
+ >>> count_coins(None)
+ 0
+ """
+ if node is None:
+ return 0
+
+ return count_coins(node.left) + count_coins(node.right) + node.data
+
+ if count_nodes(root) != count_coins(root):
+ raise ValueError("The nodes number should be same as the number of coins")
+
+ # Main calculation
+ def get_distrib(node: TreeNode | None) -> CoinsDistribResult:
+ """
+ >>> get_distrib(None)
+ namedtuple("CoinsDistribResult", "0 2")
+ """
+
+ if node is None:
+ return CoinsDistribResult(0, 1)
+
+ left_distrib_moves, left_distrib_excess = get_distrib(node.left)
+ right_distrib_moves, right_distrib_excess = get_distrib(node.right)
+
+ coins_to_left = 1 - left_distrib_excess
+ coins_to_right = 1 - right_distrib_excess
+
+ result_moves = (
+ left_distrib_moves
+ + right_distrib_moves
+ + abs(coins_to_left)
+ + abs(coins_to_right)
+ )
+ result_excess = node.data - coins_to_left - coins_to_right
+
+ return CoinsDistribResult(result_moves, result_excess)
+
+ return get_distrib(root)[0]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/fenwick_tree.py b/data_structures/binary_tree/fenwick_tree.py
index 96020d142..88b0873a1 100644
--- a/data_structures/binary_tree/fenwick_tree.py
+++ b/data_structures/binary_tree/fenwick_tree.py
@@ -8,7 +8,7 @@ class FenwickTree:
More info: https://en.wikipedia.org/wiki/Fenwick_tree
"""
- def __init__(self, arr: list[int] = None, size: int = None) -> None:
+ def __init__(self, arr: list[int] | None = None, size: int | None = None) -> None:
"""
Constructor for the Fenwick tree
@@ -46,7 +46,7 @@ class FenwickTree:
self.size = len(arr)
self.tree = deepcopy(arr)
for i in range(1, self.size):
- j = self.next(i)
+ j = self.next_(i)
if j < self.size:
self.tree[j] += self.tree[i]
@@ -64,13 +64,13 @@ class FenwickTree:
"""
arr = self.tree[:]
for i in range(self.size - 1, 0, -1):
- j = self.next(i)
+ j = self.next_(i)
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
- def next(index: int) -> int:
+ def next_(index: int) -> int:
return index + (index & (-index))
@staticmethod
@@ -102,7 +102,7 @@ class FenwickTree:
return
while index < self.size:
self.tree[index] += value
- index = self.next(index)
+ index = self.next_(index)
def update(self, index: int, value: int) -> None:
"""
diff --git a/data_structures/binary_tree/inorder_tree_traversal_2022.py b/data_structures/binary_tree/inorder_tree_traversal_2022.py
new file mode 100644
index 000000000..1357527d2
--- /dev/null
+++ b/data_structures/binary_tree/inorder_tree_traversal_2022.py
@@ -0,0 +1,82 @@
+"""
+Illustrate how to implement inorder traversal in binary search tree.
+Author: Gurneet Singh
+https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
+"""
+
+
+class BinaryTreeNode:
+ """Defining the structure of BinaryTreeNode"""
+
+ def __init__(self, data: int) -> None:
+ self.data = data
+ self.left_child: BinaryTreeNode | None = None
+ self.right_child: BinaryTreeNode | None = None
+
+
+def insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None:
+ """
+ If the binary search tree is empty, make a new node and declare it as root.
+ >>> node_a = BinaryTreeNode(12345)
+ >>> node_b = insert(node_a, 67890)
+ >>> node_a.left_child == node_b.left_child
+ True
+ >>> node_a.right_child == node_b.right_child
+ True
+ >>> node_a.data == node_b.data
+ True
+ """
+ if node is None:
+ node = BinaryTreeNode(new_value)
+ return node
+
+ # binary search tree is not empty,
+ # so we will insert it into the tree
+ # if new_value is less than value of data in node,
+ # add it to left subtree and proceed recursively
+ if new_value < node.data:
+ node.left_child = insert(node.left_child, new_value)
+ else:
+ # if new_value is greater than value of data in node,
+ # add it to right subtree and proceed recursively
+ node.right_child = insert(node.right_child, new_value)
+ return node
+
+
+def inorder(node: None | BinaryTreeNode) -> list[int]: # if node is None,return
+ """
+ >>> inorder(make_tree())
+ [6, 10, 14, 15, 20, 25, 60]
+ """
+ if node:
+ inorder_array = inorder(node.left_child)
+ inorder_array = [*inorder_array, node.data]
+ inorder_array = inorder_array + inorder(node.right_child)
+ else:
+ inorder_array = []
+ return inorder_array
+
+
+def make_tree() -> BinaryTreeNode | None:
+ root = insert(None, 15)
+ insert(root, 10)
+ insert(root, 25)
+ insert(root, 6)
+ insert(root, 14)
+ insert(root, 20)
+ insert(root, 60)
+ return root
+
+
+def main() -> None:
+ # main function
+ root = make_tree()
+ print("Printing values of binary search tree in Inorder Traversal.")
+ inorder(root)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ main()
diff --git a/data_structures/binary_tree/is_bst.py b/data_structures/binary_tree/is_bst.py
new file mode 100644
index 000000000..0b2ef8c9f
--- /dev/null
+++ b/data_structures/binary_tree/is_bst.py
@@ -0,0 +1,131 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 2, 2022
+
+Task:
+Given the root of a binary tree, determine if it is a valid binary search
+tree (BST).
+
+A valid binary search tree is defined as follows:
+
+- The left subtree of a node contains only nodes with keys less than the node's key.
+- The right subtree of a node contains only nodes with keys greater than the node's key.
+- Both the left and right subtrees must also be binary search trees.
+
+Implementation notes:
+Depth-first search approach.
+
+leetcode: https://leetcode.com/problems/validate-binary-search-tree/
+
+Let n is the number of nodes in tree
+Runtime: O(n)
+Space: O(1)
+"""
+
+from __future__ import annotations
+
+from dataclasses import dataclass
+
+
+@dataclass
+class TreeNode:
+ data: float
+ left: TreeNode | None = None
+ right: TreeNode | None = None
+
+
+def is_binary_search_tree(root: TreeNode | None) -> bool:
+ """
+ >>> is_binary_search_tree(TreeNode(data=2,
+ ... left=TreeNode(data=1),
+ ... right=TreeNode(data=3))
+ ... )
+ True
+
+ >>> is_binary_search_tree(TreeNode(data=0,
+ ... left=TreeNode(data=-11),
+ ... right=TreeNode(data=3))
+ ... )
+ True
+
+ >>> is_binary_search_tree(TreeNode(data=5,
+ ... left=TreeNode(data=1),
+ ... right=TreeNode(data=4, left=TreeNode(data=3)))
+ ... )
+ False
+
+ >>> is_binary_search_tree(TreeNode(data='a',
+ ... left=TreeNode(data=1),
+ ... right=TreeNode(data=4, left=TreeNode(data=3)))
+ ... )
+ Traceback (most recent call last):
+ ...
+ ValueError: Each node should be type of TreeNode and data should be float.
+
+ >>> is_binary_search_tree(TreeNode(data=2,
+ ... left=TreeNode([]),
+ ... right=TreeNode(data=4, left=TreeNode(data=3)))
+ ... )
+ Traceback (most recent call last):
+ ...
+ ValueError: Each node should be type of TreeNode and data should be float.
+ """
+
+ # Validation
+ def is_valid_tree(node: TreeNode | None) -> bool:
+ """
+ >>> is_valid_tree(None)
+ True
+ >>> is_valid_tree('abc')
+ False
+ >>> is_valid_tree(TreeNode(data='not a float'))
+ False
+ >>> is_valid_tree(TreeNode(data=1, left=TreeNode('123')))
+ False
+ """
+ if node is None:
+ return True
+
+ if not isinstance(node, TreeNode):
+ return False
+
+ try:
+ float(node.data)
+ except (TypeError, ValueError):
+ return False
+
+ return is_valid_tree(node.left) and is_valid_tree(node.right)
+
+ if not is_valid_tree(root):
+ raise ValueError(
+ "Each node should be type of TreeNode and data should be float."
+ )
+
+ def is_binary_search_tree_recursive_check(
+ node: TreeNode | None, left_bound: float, right_bound: float
+ ) -> bool:
+ """
+ >>> is_binary_search_tree_recursive_check(None)
+ True
+ >>> is_binary_search_tree_recursive_check(TreeNode(data=1), 10, 20)
+ False
+ """
+
+ if node is None:
+ return True
+
+ return (
+ left_bound < node.data < right_bound
+ and is_binary_search_tree_recursive_check(node.left, left_bound, node.data)
+ and is_binary_search_tree_recursive_check(
+ node.right, node.data, right_bound
+ )
+ )
+
+ return is_binary_search_tree_recursive_check(root, -float("inf"), float("inf"))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/data_structures/binary_tree/lazy_segment_tree.py b/data_structures/binary_tree/lazy_segment_tree.py
index 94329cb43..050dfe0a6 100644
--- a/data_structures/binary_tree/lazy_segment_tree.py
+++ b/data_structures/binary_tree/lazy_segment_tree.py
@@ -37,14 +37,14 @@ class SegmentTree:
return idx * 2 + 1
def build(
- self, idx: int, left_element: int, right_element: int, A: list[int]
+ self, idx: int, left_element: int, right_element: int, a: list[int]
) -> None:
if left_element == right_element:
- self.segment_tree[idx] = A[left_element - 1]
+ self.segment_tree[idx] = a[left_element - 1]
else:
mid = (left_element + right_element) // 2
- self.build(self.left(idx), left_element, mid, A)
- self.build(self.right(idx), mid + 1, right_element, A)
+ self.build(self.left(idx), left_element, mid, a)
+ self.build(self.right(idx), mid + 1, right_element, a)
self.segment_tree[idx] = max(
self.segment_tree[self.left(idx)], self.segment_tree[self.right(idx)]
)
diff --git a/data_structures/binary_tree/non_recursive_segment_tree.py b/data_structures/binary_tree/non_recursive_segment_tree.py
index c29adefff..04164e5cb 100644
--- a/data_structures/binary_tree/non_recursive_segment_tree.py
+++ b/data_structures/binary_tree/non_recursive_segment_tree.py
@@ -103,10 +103,10 @@ class SegmentTree(Generic[T]):
>>> st.query(2, 3)
7
"""
- l, r = l + self.N, r + self.N # noqa: E741
+ l, r = l + self.N, r + self.N
res: T | None = None
- while l <= r: # noqa: E741
+ while l <= r:
if l % 2 == 1:
res = self.st[l] if res is None else self.fn(res, self.st[l])
if r % 2 == 0:
diff --git a/data_structures/binary_tree/number_of_possible_binary_trees.py b/data_structures/binary_tree/number_of_possible_binary_trees.py
index 1ad8f2ed4..684c518b1 100644
--- a/data_structures/binary_tree/number_of_possible_binary_trees.py
+++ b/data_structures/binary_tree/number_of_possible_binary_trees.py
@@ -67,7 +67,7 @@ def factorial(n: int) -> int:
True
>>> factorial(-5) # doctest: +ELLIPSIS
Traceback (most recent call last):
- ...
+ ...
ValueError: factorial() not defined for negative values
"""
if n < 0:
diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py
index a9dbd699c..4ebe0e927 100644
--- a/data_structures/binary_tree/red_black_tree.py
+++ b/data_structures/binary_tree/red_black_tree.py
@@ -1,6 +1,6 @@
"""
-python/black : true
-flake8 : passed
+psf/black : true
+ruff : passed
"""
from __future__ import annotations
@@ -152,7 +152,7 @@ class RedBlackTree:
self.grandparent.color = 1
self.grandparent._insert_repair()
- def remove(self, label: int) -> RedBlackTree:
+ def remove(self, label: int) -> RedBlackTree: # noqa: PLR0912
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:
@@ -319,9 +319,8 @@ class RedBlackTree:
"""A helper function to recursively check Property 4 of a
Red-Black Tree. See check_color_properties for more info.
"""
- if self.color == 1:
- if color(self.left) == 1 or color(self.right) == 1:
- return False
+ if self.color == 1 and 1 in (color(self.left), color(self.right)):
+ return False
if self.left and not self.left.check_coloring():
return False
if self.right and not self.right.check_coloring():
diff --git a/data_structures/binary_tree/segment_tree.py b/data_structures/binary_tree/segment_tree.py
index 10451ae68..5f822407d 100644
--- a/data_structures/binary_tree/segment_tree.py
+++ b/data_structures/binary_tree/segment_tree.py
@@ -2,12 +2,13 @@ import math
class SegmentTree:
- def __init__(self, A):
- self.N = len(A)
+ def __init__(self, a):
+ self.N = len(a)
self.st = [0] * (
4 * self.N
) # approximate the overall size of segment tree with array N
- self.build(1, 0, self.N - 1)
+ if self.N:
+ self.build(1, 0, self.N - 1)
def left(self, idx):
return idx * 2
@@ -16,7 +17,7 @@ class SegmentTree:
return idx * 2 + 1
def build(self, idx, l, r): # noqa: E741
- if l == r: # noqa: E741
+ if l == r:
self.st[idx] = A[l]
else:
mid = (l + r) // 2
@@ -33,7 +34,7 @@ class SegmentTree:
"""
if r < a or l > b:
return True
- if l == r: # noqa: E741
+ if l == r:
self.st[idx] = val
return True
mid = (l + r) // 2
@@ -51,18 +52,18 @@ class SegmentTree:
"""
if r < a or l > b:
return -math.inf
- if l >= a and r <= b: # noqa: E741
+ if l >= a and r <= b:
return self.st[idx]
mid = (l + r) // 2
q1 = self.query_recursive(self.left(idx), l, mid, a, b)
q2 = self.query_recursive(self.right(idx), mid + 1, r, a, b)
return max(q1, q2)
- def showData(self):
- showList = []
+ def show_data(self):
+ show_list = []
for i in range(1, N + 1):
- showList += [self.query(i, i)]
- print(showList)
+ show_list += [self.query(i, i)]
+ print(show_list)
if __name__ == "__main__":
@@ -75,4 +76,4 @@ if __name__ == "__main__":
segt.update(1, 3, 111)
print(segt.query(1, 15))
segt.update(7, 8, 235)
- segt.showData()
+ segt.show_data()
diff --git a/data_structures/binary_tree/segment_tree_other.py b/data_structures/binary_tree/segment_tree_other.py
index 90afd7ca8..cc77c4951 100644
--- a/data_structures/binary_tree/segment_tree_other.py
+++ b/data_structures/binary_tree/segment_tree_other.py
@@ -16,40 +16,36 @@ class SegmentTreeNode:
self.left = left
self.right = right
- def __str__(self):
- return f"val: {self.val}, start: {self.start}, end: {self.end}"
+ def __repr__(self):
+ return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"
class SegmentTree:
"""
>>> import operator
>>> num_arr = SegmentTree([2, 1, 5, 3, 4], operator.add)
- >>> for node in num_arr.traverse():
- ... print(node)
- ...
- val: 15, start: 0, end: 4
- val: 8, start: 0, end: 2
- val: 7, start: 3, end: 4
- val: 3, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 1, start: 1, end: 1
+ >>> tuple(num_arr.traverse()) # doctest: +NORMALIZE_WHITESPACE
+ (SegmentTreeNode(start=0, end=4, val=15),
+ SegmentTreeNode(start=0, end=2, val=8),
+ SegmentTreeNode(start=3, end=4, val=7),
+ SegmentTreeNode(start=0, end=1, val=3),
+ SegmentTreeNode(start=2, end=2, val=5),
+ SegmentTreeNode(start=3, end=3, val=3),
+ SegmentTreeNode(start=4, end=4, val=4),
+ SegmentTreeNode(start=0, end=0, val=2),
+ SegmentTreeNode(start=1, end=1, val=1))
>>>
>>> num_arr.update(1, 5)
- >>> for node in num_arr.traverse():
- ... print(node)
- ...
- val: 19, start: 0, end: 4
- val: 12, start: 0, end: 2
- val: 7, start: 3, end: 4
- val: 7, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 5, start: 1, end: 1
+ >>> tuple(num_arr.traverse()) # doctest: +NORMALIZE_WHITESPACE
+ (SegmentTreeNode(start=0, end=4, val=19),
+ SegmentTreeNode(start=0, end=2, val=12),
+ SegmentTreeNode(start=3, end=4, val=7),
+ SegmentTreeNode(start=0, end=1, val=7),
+ SegmentTreeNode(start=2, end=2, val=5),
+ SegmentTreeNode(start=3, end=3, val=3),
+ SegmentTreeNode(start=4, end=4, val=4),
+ SegmentTreeNode(start=0, end=0, val=2),
+ SegmentTreeNode(start=1, end=1, val=5))
>>>
>>> num_arr.query_range(3, 4)
7
@@ -62,29 +58,29 @@ class SegmentTree:
>>> for node in max_arr.traverse():
... print(node)
...
- val: 5, start: 0, end: 4
- val: 5, start: 0, end: 2
- val: 4, start: 3, end: 4
- val: 2, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 1, start: 1, end: 1
+ SegmentTreeNode(start=0, end=4, val=5)
+ SegmentTreeNode(start=0, end=2, val=5)
+ SegmentTreeNode(start=3, end=4, val=4)
+ SegmentTreeNode(start=0, end=1, val=2)
+ SegmentTreeNode(start=2, end=2, val=5)
+ SegmentTreeNode(start=3, end=3, val=3)
+ SegmentTreeNode(start=4, end=4, val=4)
+ SegmentTreeNode(start=0, end=0, val=2)
+ SegmentTreeNode(start=1, end=1, val=1)
>>>
>>> max_arr.update(1, 5)
>>> for node in max_arr.traverse():
... print(node)
...
- val: 5, start: 0, end: 4
- val: 5, start: 0, end: 2
- val: 4, start: 3, end: 4
- val: 5, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 5, start: 1, end: 1
+ SegmentTreeNode(start=0, end=4, val=5)
+ SegmentTreeNode(start=0, end=2, val=5)
+ SegmentTreeNode(start=3, end=4, val=4)
+ SegmentTreeNode(start=0, end=1, val=5)
+ SegmentTreeNode(start=2, end=2, val=5)
+ SegmentTreeNode(start=3, end=3, val=3)
+ SegmentTreeNode(start=4, end=4, val=4)
+ SegmentTreeNode(start=0, end=0, val=2)
+ SegmentTreeNode(start=1, end=1, val=5)
>>>
>>> max_arr.query_range(3, 4)
4
@@ -97,29 +93,29 @@ class SegmentTree:
>>> for node in min_arr.traverse():
... print(node)
...
- val: 1, start: 0, end: 4
- val: 1, start: 0, end: 2
- val: 3, start: 3, end: 4
- val: 1, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 1, start: 1, end: 1
+ SegmentTreeNode(start=0, end=4, val=1)
+ SegmentTreeNode(start=0, end=2, val=1)
+ SegmentTreeNode(start=3, end=4, val=3)
+ SegmentTreeNode(start=0, end=1, val=1)
+ SegmentTreeNode(start=2, end=2, val=5)
+ SegmentTreeNode(start=3, end=3, val=3)
+ SegmentTreeNode(start=4, end=4, val=4)
+ SegmentTreeNode(start=0, end=0, val=2)
+ SegmentTreeNode(start=1, end=1, val=1)
>>>
>>> min_arr.update(1, 5)
>>> for node in min_arr.traverse():
... print(node)
...
- val: 2, start: 0, end: 4
- val: 2, start: 0, end: 2
- val: 3, start: 3, end: 4
- val: 2, start: 0, end: 1
- val: 5, start: 2, end: 2
- val: 3, start: 3, end: 3
- val: 4, start: 4, end: 4
- val: 2, start: 0, end: 0
- val: 5, start: 1, end: 1
+ SegmentTreeNode(start=0, end=4, val=2)
+ SegmentTreeNode(start=0, end=2, val=2)
+ SegmentTreeNode(start=3, end=4, val=3)
+ SegmentTreeNode(start=0, end=1, val=2)
+ SegmentTreeNode(start=2, end=2, val=5)
+ SegmentTreeNode(start=3, end=3, val=3)
+ SegmentTreeNode(start=4, end=4, val=4)
+ SegmentTreeNode(start=0, end=0, val=2)
+ SegmentTreeNode(start=1, end=1, val=5)
>>>
>>> min_arr.query_range(3, 4)
3
@@ -128,7 +124,6 @@ class SegmentTree:
>>> min_arr.query_range(1, 3)
3
>>>
-
"""
def __init__(self, collection: Sequence, function):
diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py
index 0526b139b..a53ac566e 100644
--- a/data_structures/binary_tree/treap.py
+++ b/data_structures/binary_tree/treap.py
@@ -121,28 +121,28 @@ def inorder(root: Node | None) -> None:
inorder(root.right)
-def interactTreap(root: Node | None, args: str) -> Node | None:
+def interact_treap(root: Node | None, args: str) -> Node | None:
"""
Commands:
+ value to add value into treap
- value to erase all nodes with value
- >>> root = interactTreap(None, "+1")
+ >>> root = interact_treap(None, "+1")
>>> inorder(root)
1,
- >>> root = interactTreap(root, "+3 +5 +17 +19 +2 +16 +4 +0")
+ >>> root = interact_treap(root, "+3 +5 +17 +19 +2 +16 +4 +0")
>>> inorder(root)
0,1,2,3,4,5,16,17,19,
- >>> root = interactTreap(root, "+4 +4 +4")
+ >>> root = interact_treap(root, "+4 +4 +4")
>>> inorder(root)
0,1,2,3,4,4,4,4,5,16,17,19,
- >>> root = interactTreap(root, "-0")
+ >>> root = interact_treap(root, "-0")
>>> inorder(root)
1,2,3,4,4,4,4,5,16,17,19,
- >>> root = interactTreap(root, "-4")
+ >>> root = interact_treap(root, "-4")
>>> inorder(root)
1,2,3,5,16,17,19,
- >>> root = interactTreap(root, "=0")
+ >>> root = interact_treap(root, "=0")
Unknown command
"""
for arg in args.split():
@@ -168,7 +168,7 @@ def main() -> None:
args = input()
while args != "q":
- root = interactTreap(root, args)
+ root = interact_treap(root, args)
print(root)
args = input()
diff --git a/data_structures/binary_tree/wavelet_tree.py b/data_structures/binary_tree/wavelet_tree.py
index 8d7145189..041e140f5 100644
--- a/data_structures/binary_tree/wavelet_tree.py
+++ b/data_structures/binary_tree/wavelet_tree.py
@@ -24,11 +24,11 @@ class Node:
"""
>>> node = Node(length=27)
>>> repr(node)
- 'min_value: -1, max_value: -1'
+ 'Node(min_value=-1 max_value=-1)'
>>> repr(node) == str(node)
True
"""
- return f"min_value: {self.minn}, max_value: {self.maxx}"
+ return f"Node(min_value={self.minn} max_value={self.maxx})"
def build_tree(arr: list[int]) -> Node | None:
@@ -37,7 +37,7 @@ def build_tree(arr: list[int]) -> Node | None:
of the constructed tree
>>> build_tree(test_array)
- min_value: 0, max_value: 9
+ Node(min_value=0 max_value=9)
"""
root = Node(len(arr))
root.minn, root.maxx = min(arr), max(arr)
diff --git a/data_structures/disjoint_set/disjoint_set.py b/data_structures/disjoint_set/disjoint_set.py
index f8500bf2c..12dafb2d9 100644
--- a/data_structures/disjoint_set/disjoint_set.py
+++ b/data_structures/disjoint_set/disjoint_set.py
@@ -56,7 +56,8 @@ def find_python_set(node: Node) -> set:
for s in sets:
if node.data in s:
return s
- raise ValueError(f"{node.data} is not in {sets}")
+ msg = f"{node.data} is not in {sets}"
+ raise ValueError(msg)
def test_disjoint_set() -> None:
diff --git a/data_structures/hashing/bloom_filter.py b/data_structures/hashing/bloom_filter.py
new file mode 100644
index 000000000..7fd0985bd
--- /dev/null
+++ b/data_structures/hashing/bloom_filter.py
@@ -0,0 +1,105 @@
+"""
+See https://en.wikipedia.org/wiki/Bloom_filter
+
+The use of this data structure is to test membership in a set.
+Compared to Python's built-in set() it is more space-efficient.
+In the following example, only 8 bits of memory will be used:
+>>> bloom = Bloom(size=8)
+
+Initially, the filter contains all zeros:
+>>> bloom.bitstring
+'00000000'
+
+When an element is added, two bits are set to 1
+since there are 2 hash functions in this implementation:
+>>> "Titanic" in bloom
+False
+>>> bloom.add("Titanic")
+>>> bloom.bitstring
+'01100000'
+>>> "Titanic" in bloom
+True
+
+However, sometimes only one bit is added
+because both hash functions return the same value
+>>> bloom.add("Avatar")
+>>> "Avatar" in bloom
+True
+>>> bloom.format_hash("Avatar")
+'00000100'
+>>> bloom.bitstring
+'01100100'
+
+Not added elements should return False ...
+>>> not_present_films = ("The Godfather", "Interstellar", "Parasite", "Pulp Fiction")
+>>> {
+... film: bloom.format_hash(film) for film in not_present_films
+... } # doctest: +NORMALIZE_WHITESPACE
+{'The Godfather': '00000101',
+ 'Interstellar': '00000011',
+ 'Parasite': '00010010',
+ 'Pulp Fiction': '10000100'}
+>>> any(film in bloom for film in not_present_films)
+False
+
+but sometimes there are false positives:
+>>> "Ratatouille" in bloom
+True
+>>> bloom.format_hash("Ratatouille")
+'01100000'
+
+The probability increases with the number of elements added.
+The probability decreases with the number of bits in the bitarray.
+>>> bloom.estimated_error_rate
+0.140625
+>>> bloom.add("The Godfather")
+>>> bloom.estimated_error_rate
+0.25
+>>> bloom.bitstring
+'01100101'
+"""
+from hashlib import md5, sha256
+
+HASH_FUNCTIONS = (sha256, md5)
+
+
+class Bloom:
+ def __init__(self, size: int = 8) -> None:
+ self.bitarray = 0b0
+ self.size = size
+
+ def add(self, value: str) -> None:
+ h = self.hash_(value)
+ self.bitarray |= h
+
+ def exists(self, value: str) -> bool:
+ h = self.hash_(value)
+ return (h & self.bitarray) == h
+
+ def __contains__(self, other: str) -> bool:
+ return self.exists(other)
+
+ def format_bin(self, bitarray: int) -> str:
+ res = bin(bitarray)[2:]
+ return res.zfill(self.size)
+
+ @property
+ def bitstring(self) -> str:
+ return self.format_bin(self.bitarray)
+
+ def hash_(self, value: str) -> int:
+ res = 0b0
+ for func in HASH_FUNCTIONS:
+ position = (
+ int.from_bytes(func(value.encode()).digest(), "little") % self.size
+ )
+ res |= 2**position
+ return res
+
+ def format_hash(self, value: str) -> str:
+ return self.format_bin(self.hash_(value))
+
+ @property
+ def estimated_error_rate(self) -> float:
+ n_ones = bin(self.bitarray).count("1")
+ return (n_ones / self.size) ** len(HASH_FUNCTIONS)
diff --git a/data_structures/hashing/double_hash.py b/data_structures/hashing/double_hash.py
index bd1355fca..be21e74ca 100644
--- a/data_structures/hashing/double_hash.py
+++ b/data_structures/hashing/double_hash.py
@@ -1,4 +1,16 @@
#!/usr/bin/env python3
+"""
+Double hashing is a collision resolving technique in Open Addressed Hash tables.
+Double hashing uses the idea of applying a second hash function to key when a collision
+occurs. The advantage of Double hashing is that it is one of the best form of probing,
+producing a uniform distribution of records throughout a hash table. This technique
+does not yield any clusters. It is one of effective method for resolving collisions.
+
+Double hashing can be done using: (hash1(key) + i * hash2(key)) % TABLE_SIZE
+Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash table.
+
+Reference: https://en.wikipedia.org/wiki/Double_hashing
+"""
from .hash_table import HashTable
from .number_theory.prime_numbers import is_prime, next_prime
@@ -12,7 +24,6 @@ class DoubleHash(HashTable):
super().__init__(*args, **kwargs)
def __hash_function_2(self, value, data):
-
next_prime_gt = (
next_prime(value % self.size_table)
if not is_prime(value % self.size_table)
diff --git a/data_structures/hashing/hash_map.py b/data_structures/hashing/hash_map.py
new file mode 100644
index 000000000..1dfcc8bbf
--- /dev/null
+++ b/data_structures/hashing/hash_map.py
@@ -0,0 +1,162 @@
+"""
+Hash map with open addressing.
+
+https://en.wikipedia.org/wiki/Hash_table
+
+Another hash map implementation, with a good explanation.
+Modern Dictionaries by Raymond Hettinger
+https://www.youtube.com/watch?v=p33CVV29OG8
+"""
+from collections.abc import Iterator, MutableMapping
+from dataclasses import dataclass
+from typing import Generic, TypeVar
+
+KEY = TypeVar("KEY")
+VAL = TypeVar("VAL")
+
+
+@dataclass(frozen=True, slots=True)
+class _Item(Generic[KEY, VAL]):
+ key: KEY
+ val: VAL
+
+
+class _DeletedItem(_Item):
+ def __init__(self) -> None:
+ super().__init__(None, None)
+
+ def __bool__(self) -> bool:
+ return False
+
+
+_deleted = _DeletedItem()
+
+
+class HashMap(MutableMapping[KEY, VAL]):
+ """
+ Hash map with open addressing.
+ """
+
+ def __init__(
+ self, initial_block_size: int = 8, capacity_factor: float = 0.75
+ ) -> None:
+ self._initial_block_size = initial_block_size
+ self._buckets: list[_Item | None] = [None] * initial_block_size
+ assert 0.0 < capacity_factor < 1.0
+ self._capacity_factor = capacity_factor
+ self._len = 0
+
+ def _get_bucket_index(self, key: KEY) -> int:
+ return hash(key) % len(self._buckets)
+
+ def _get_next_ind(self, ind: int) -> int:
+ """
+ Get next index.
+
+ Implements linear open addressing.
+ """
+ return (ind + 1) % len(self._buckets)
+
+ def _try_set(self, ind: int, key: KEY, val: VAL) -> bool:
+ """
+ Try to add value to the bucket.
+
+ If bucket is empty or key is the same, does insert and return True.
+
+ If bucket has another key or deleted placeholder,
+ that means that we need to check next bucket.
+ """
+ stored = self._buckets[ind]
+ if not stored:
+ self._buckets[ind] = _Item(key, val)
+ self._len += 1
+ return True
+ elif stored.key == key:
+ self._buckets[ind] = _Item(key, val)
+ return True
+ else:
+ return False
+
+ def _is_full(self) -> bool:
+ """
+ Return true if we have reached safe capacity.
+
+ So we need to increase the number of buckets to avoid collisions.
+ """
+ limit = len(self._buckets) * self._capacity_factor
+ return len(self) >= int(limit)
+
+ def _is_sparse(self) -> bool:
+ """Return true if we need twice fewer buckets when we have now."""
+ if len(self._buckets) <= self._initial_block_size:
+ return False
+ limit = len(self._buckets) * self._capacity_factor / 2
+ return len(self) < limit
+
+ def _resize(self, new_size: int) -> None:
+ old_buckets = self._buckets
+ self._buckets = [None] * new_size
+ self._len = 0
+ for item in old_buckets:
+ if item:
+ self._add_item(item.key, item.val)
+
+ def _size_up(self) -> None:
+ self._resize(len(self._buckets) * 2)
+
+ def _size_down(self) -> None:
+ self._resize(len(self._buckets) // 2)
+
+ def _iterate_buckets(self, key: KEY) -> Iterator[int]:
+ ind = self._get_bucket_index(key)
+ for _ in range(len(self._buckets)):
+ yield ind
+ ind = self._get_next_ind(ind)
+
+ def _add_item(self, key: KEY, val: VAL) -> None:
+ for ind in self._iterate_buckets(key):
+ if self._try_set(ind, key, val):
+ break
+
+ def __setitem__(self, key: KEY, val: VAL) -> None:
+ if self._is_full():
+ self._size_up()
+
+ self._add_item(key, val)
+
+ def __delitem__(self, key: KEY) -> None:
+ for ind in self._iterate_buckets(key):
+ item = self._buckets[ind]
+ if item is None:
+ raise KeyError(key)
+ if item is _deleted:
+ continue
+ if item.key == key:
+ self._buckets[ind] = _deleted
+ self._len -= 1
+ break
+ if self._is_sparse():
+ self._size_down()
+
+ def __getitem__(self, key: KEY) -> VAL:
+ for ind in self._iterate_buckets(key):
+ item = self._buckets[ind]
+ if item is None:
+ break
+ if item is _deleted:
+ continue
+ if item.key == key:
+ return item.val
+ raise KeyError(key)
+
+ def __len__(self) -> int:
+ return self._len
+
+ def __iter__(self) -> Iterator[KEY]:
+ yield from (item.key for item in self._buckets if item)
+
+ def __repr__(self) -> str:
+ val_string = " ,".join(
+ f"{item.key}: {item.val}" for item in self._buckets if item
+ )
+ return f"HashMap({val_string})"
diff --git a/data_structures/hashing/hash_table.py b/data_structures/hashing/hash_table.py
index f4422de53..7ca2f7c40 100644
--- a/data_structures/hashing/hash_table.py
+++ b/data_structures/hashing/hash_table.py
@@ -7,13 +7,18 @@ class HashTable:
Basic Hash Table example with open addressing and linear probing
"""
- def __init__(self, size_table, charge_factor=None, lim_charge=None):
+ def __init__(
+ self,
+ size_table: int,
+ charge_factor: int | None = None,
+ lim_charge: float | None = None,
+ ) -> None:
self.size_table = size_table
self.values = [None] * self.size_table
self.lim_charge = 0.75 if lim_charge is None else lim_charge
self.charge_factor = 1 if charge_factor is None else charge_factor
- self.__aux_list = []
- self._keys = {}
+ self.__aux_list: list = []
+ self._keys: dict = {}
def keys(self):
return self._keys
@@ -27,9 +32,8 @@ class HashTable:
return key % self.size_table
def _step_by_step(self, step_ord):
-
print(f"step {step_ord}")
- print([i for i in range(len(self.values))])
+ print(list(range(len(self.values))))
print(self.values)
def bulk_insert(self, values):
@@ -48,7 +52,6 @@ class HashTable:
new_key = self.hash_function(key + 1)
while self.values[new_key] is not None and self.values[new_key] != key:
-
if self.values.count(None) > 0:
new_key = self.hash_function(new_key + 1)
else:
diff --git a/data_structures/hashing/number_theory/prime_numbers.py b/data_structures/hashing/number_theory/prime_numbers.py
index b88ab76ec..0c25896f9 100644
--- a/data_structures/hashing/number_theory/prime_numbers.py
+++ b/data_structures/hashing/number_theory/prime_numbers.py
@@ -52,7 +52,7 @@ def next_prime(value, factor=1, **kwargs):
first_value_val = value
while not is_prime(value):
- value += 1 if not ("desc" in kwargs.keys() and kwargs["desc"] is True) else -1
+ value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1, **kwargs)
diff --git a/data_structures/hashing/tests/test_hash_map.py b/data_structures/hashing/tests/test_hash_map.py
new file mode 100644
index 000000000..929e67311
--- /dev/null
+++ b/data_structures/hashing/tests/test_hash_map.py
@@ -0,0 +1,97 @@
+from operator import delitem, getitem, setitem
+
+import pytest
+
+from data_structures.hashing.hash_map import HashMap
+
+
+def _get(k):
+ return getitem, k
+
+
+def _set(k, v):
+ return setitem, k, v
+
+
+def _del(k):
+ return delitem, k
+
+
+def _run_operation(obj, fun, *args):
+ try:
+ return fun(obj, *args), None
+ except Exception as e:
+ return None, e
+
+
+_add_items = (
+ _set("key_a", "val_a"),
+ _set("key_b", "val_b"),
+)
+
+_overwrite_items = [
+ _set("key_a", "val_a"),
+ _set("key_a", "val_b"),
+]
+
+_delete_items = [
+ _set("key_a", "val_a"),
+ _set("key_b", "val_b"),
+ _del("key_a"),
+ _del("key_b"),
+ _set("key_a", "val_a"),
+ _del("key_a"),
+]
+
+_access_absent_items = [
+ _get("key_a"),
+ _del("key_a"),
+ _set("key_a", "val_a"),
+ _del("key_a"),
+ _del("key_a"),
+ _get("key_a"),
+]
+
+_add_with_resize_up = [
+ *[_set(x, x) for x in range(5)], # guaranteed upsize
+]
+
+_add_with_resize_down = [
+ *[_set(x, x) for x in range(5)], # guaranteed upsize
+ *[_del(x) for x in range(5)],
+ _set("key_a", "val_b"),
+]
+
+
+@pytest.mark.parametrize(
+ "operations",
+ (
+ pytest.param(_add_items, id="add items"),
+ pytest.param(_overwrite_items, id="overwrite items"),
+ pytest.param(_delete_items, id="delete items"),
+ pytest.param(_access_absent_items, id="access absent items"),
+ pytest.param(_add_with_resize_up, id="add with resize up"),
+ pytest.param(_add_with_resize_down, id="add with resize down"),
+ ),
+)
+def test_hash_map_is_the_same_as_dict(operations):
+ my = HashMap(initial_block_size=4)
+ py = {}
+ for _, (fun, *args) in enumerate(operations):
+ my_res, my_exc = _run_operation(my, fun, *args)
+ py_res, py_exc = _run_operation(py, fun, *args)
+ assert my_res == py_res
+ assert str(my_exc) == str(py_exc)
+ assert set(py) == set(my)
+ assert len(py) == len(my)
+ assert set(my.items()) == set(py.items())
+
+
+def test_no_new_methods_was_added_to_api():
+ def is_public(name: str) -> bool:
+ return not name.startswith("_")
+
+ dict_public_names = {name for name in dir({}) if is_public(name)}
+ hash_public_names = {name for name in dir(HashMap()) if is_public(name)}
+
+ assert dict_public_names > hash_public_names
diff --git a/data_structures/heap/binomial_heap.py b/data_structures/heap/binomial_heap.py
index 334b444ea..099bd2871 100644
--- a/data_structures/heap/binomial_heap.py
+++ b/data_structures/heap/binomial_heap.py
@@ -1,5 +1,3 @@
-# flake8: noqa
-
"""
Binomial Heap
Reference: Advanced Data Structures, Peter Brass
@@ -22,7 +20,7 @@ class Node:
self.right = None
self.parent = None
- def mergeTrees(self, other):
+ def merge_trees(self, other):
"""
In-place merge of two binomial trees of equal size.
Returns the root of the resulting tree
@@ -71,13 +69,12 @@ class BinomialHeap:
... first_heap.insert(number)
Size test
- >>> print(first_heap.size)
+ >>> first_heap.size
30
Deleting - delete() test
- >>> for i in range(25):
- ... print(first_heap.deleteMin(), end=" ")
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
+ >>> [first_heap.delete_min() for _ in range(20)]
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Create a new Heap
>>> second_heap = BinomialHeap()
@@ -97,8 +94,8 @@ class BinomialHeap:
# # # #
preOrder() test
- >>> print(second_heap.preOrder())
- [(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)]
+ >>> " ".join(str(x) for x in second_heap.pre_order())
+ "(17, 0) ('#', 1) (31, 1) (20, 2) ('#', 3) ('#', 3) (34, 2) ('#', 3) ('#', 3)"
printing Heap - __str__() test
>>> print(second_heap)
@@ -113,14 +110,17 @@ class BinomialHeap:
---#
mergeHeaps() test
- >>> merged = second_heap.mergeHeaps(first_heap)
+ >>>
+ >>> merged = second_heap.merge_heaps(first_heap)
>>> merged.peek()
17
values in merged heap; (merge is inplace)
- >>> while not first_heap.isEmpty():
- ... print(first_heap.deleteMin(), end=" ")
- 17 20 25 26 27 28 29 31 34
+ >>> results = []
+ >>> while not first_heap.is_empty():
+ ... results.append(first_heap.delete_min())
+ >>> results
+ [17, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34]
"""
def __init__(self, bottom_root=None, min_node=None, heap_size=0):
@@ -128,7 +128,7 @@ class BinomialHeap:
self.bottom_root = bottom_root
self.min_node = min_node
- def mergeHeaps(self, other):
+ def merge_heaps(self, other):
"""
In-place merge of two binomial heaps.
Both of them become the resulting merged heap
@@ -136,12 +136,12 @@ class BinomialHeap:
# Empty heaps corner cases
if other.size == 0:
- return
+ return None
if self.size == 0:
self.size = other.size
self.bottom_root = other.bottom_root
self.min_node = other.min_node
- return
+ return None
# Update size
self.size = self.size + other.size
@@ -174,13 +174,12 @@ class BinomialHeap:
i.left_tree_size == i.parent.left_tree_size
and i.left_tree_size != i.parent.parent.left_tree_size
):
-
# Neighbouring Nodes
previous_node = i.left
next_node = i.parent.parent
# Merging trees
- i = i.mergeTrees(i.parent)
+ i = i.merge_trees(i.parent)
# Updating links
i.left = previous_node
@@ -233,12 +232,11 @@ class BinomialHeap:
and self.bottom_root.left_tree_size
== self.bottom_root.parent.left_tree_size
):
-
# Next node
next_node = self.bottom_root.parent.parent
# Merge
- self.bottom_root = self.bottom_root.mergeTrees(self.bottom_root.parent)
+ self.bottom_root = self.bottom_root.merge_trees(self.bottom_root.parent)
# Update Links
self.bottom_root.parent = next_node
@@ -252,10 +250,10 @@ class BinomialHeap:
"""
return self.min_node.val
- def isEmpty(self):
+ def is_empty(self):
return self.size == 0
- def deleteMin(self):
+ def delete_min(self):
"""
delete min element and return it
"""
@@ -317,7 +315,7 @@ class BinomialHeap:
return min_value
# Remaining cases
# Construct heap of right subtree
- newHeap = BinomialHeap(
+ new_heap = BinomialHeap(
bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new
)
@@ -354,11 +352,11 @@ class BinomialHeap:
self.min_node = i
i = i.parent
# Merge heaps
- self.mergeHeaps(newHeap)
+ self.merge_heaps(new_heap)
return min_value
- def preOrder(self):
+ def pre_order(self):
"""
Returns the Pre-order representation of the heap including
values of nodes plus their level distance from the root;
@@ -369,9 +367,9 @@ class BinomialHeap:
while top_root.parent:
top_root = top_root.parent
# preorder
- heap_preOrder = []
- self.__traversal(top_root, heap_preOrder)
- return heap_preOrder
+ heap_pre_order = []
+ self.__traversal(top_root, heap_pre_order)
+ return heap_pre_order
def __traversal(self, curr_node, preorder, level=0):
"""
@@ -389,9 +387,9 @@ class BinomialHeap:
Overwriting str for a pre-order print of nodes in heap;
Performance is poor, so use only for small examples
"""
- if self.isEmpty():
+ if self.is_empty():
return ""
- preorder_heap = self.preOrder()
+ preorder_heap = self.pre_order()
return "\n".join(("-" * level + str(value)) for value, level in preorder_heap)
diff --git a/data_structures/heap/heap.py b/data_structures/heap/heap.py
index 4c19747ec..c1004f349 100644
--- a/data_structures/heap/heap.py
+++ b/data_structures/heap/heap.py
@@ -1,33 +1,52 @@
from __future__ import annotations
+from abc import abstractmethod
from collections.abc import Iterable
+from typing import Generic, Protocol, TypeVar
-class Heap:
+class Comparable(Protocol):
+ @abstractmethod
+ def __lt__(self: T, other: T) -> bool:
+ pass
+
+ @abstractmethod
+ def __gt__(self: T, other: T) -> bool:
+ pass
+
+ @abstractmethod
+ def __eq__(self: T, other: object) -> bool:
+ pass
+
+
+T = TypeVar("T", bound=Comparable)
+
+
+class Heap(Generic[T]):
"""A Max Heap Implementation
>>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5]
>>> h = Heap()
>>> h.build_max_heap(unsorted)
- >>> print(h)
+ >>> h
[209, 201, 25, 103, 107, 15, 1, 9, 7, 11, 5]
>>>
>>> h.extract_max()
209
- >>> print(h)
+ >>> h
[201, 107, 25, 103, 11, 15, 1, 9, 7, 5]
>>>
>>> h.insert(100)
- >>> print(h)
+ >>> h
[201, 107, 25, 103, 100, 15, 1, 9, 7, 5, 11]
>>>
>>> h.heap_sort()
- >>> print(h)
+ >>> h
[1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201]
"""
def __init__(self) -> None:
- self.h: list[float] = []
+ self.h: list[T] = []
self.heap_size: int = 0
def __repr__(self) -> str:
@@ -79,7 +98,7 @@ class Heap:
# fix the subsequent violation recursively if any
self.max_heapify(violation)
- def build_max_heap(self, collection: Iterable[float]) -> None:
+ def build_max_heap(self, collection: Iterable[T]) -> None:
"""build max heap from an unsorted array"""
self.h = list(collection)
self.heap_size = len(self.h)
@@ -88,14 +107,7 @@ class Heap:
for i in range(self.heap_size // 2 - 1, -1, -1):
self.max_heapify(i)
- def max(self) -> float:
- """return the max in the heap"""
- if self.heap_size >= 1:
- return self.h[0]
- else:
- raise Exception("Empty heap")
-
- def extract_max(self) -> float:
+ def extract_max(self) -> T:
"""get and remove max from heap"""
if self.heap_size >= 2:
me = self.h[0]
@@ -109,7 +121,7 @@ class Heap:
else:
raise Exception("Empty heap")
- def insert(self, value: float) -> None:
+ def insert(self, value: T) -> None:
"""insert a new value into the max heap"""
self.h.append(value)
idx = (self.heap_size - 1) // 2
@@ -151,7 +163,7 @@ if __name__ == "__main__":
]:
print(f"unsorted array: {unsorted}")
- heap = Heap()
+ heap: Heap[int] = Heap()
heap.build_max_heap(unsorted)
print(f"after build heap: {heap}")
diff --git a/data_structures/heap/heap_generic.py b/data_structures/heap/heap_generic.py
index 553cb9451..ee92149e2 100644
--- a/data_structures/heap/heap_generic.py
+++ b/data_structures/heap/heap_generic.py
@@ -1,35 +1,38 @@
+from collections.abc import Callable
+
+
class Heap:
"""
A generic Heap class, can be used as min or max by passing the key function
accordingly.
"""
- def __init__(self, key=None):
+ def __init__(self, key: Callable | None = None) -> None:
# Stores actual heap items.
- self.arr = list()
+ self.arr: list = []
# Stores indexes of each item for supporting updates and deletion.
- self.pos_map = {}
+ self.pos_map: dict = {}
# Stores current size of heap.
self.size = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
self.key = key or (lambda x: x)
- def _parent(self, i):
+ def _parent(self, i: int) -> int | None:
"""Returns parent index of given index if exists else None"""
return int((i - 1) / 2) if i > 0 else None
- def _left(self, i):
+ def _left(self, i: int) -> int | None:
"""Returns left-child-index of given index if exists else None"""
left = int(2 * i + 1)
return left if 0 < left < self.size else None
- def _right(self, i):
+ def _right(self, i: int) -> int | None:
"""Returns right-child-index of given index if exists else None"""
right = int(2 * i + 2)
return right if 0 < right < self.size else None
- def _swap(self, i, j):
+ def _swap(self, i: int, j: int) -> None:
"""Performs changes required for swapping two elements in the heap"""
# First update the indexes of the items in index map.
self.pos_map[self.arr[i][0]], self.pos_map[self.arr[j][0]] = (
@@ -39,11 +42,11 @@ class Heap:
# Then swap the items in the list.
self.arr[i], self.arr[j] = self.arr[j], self.arr[i]
- def _cmp(self, i, j):
+ def _cmp(self, i: int, j: int) -> bool:
"""Compares the two items using default comparison"""
return self.arr[i][1] < self.arr[j][1]
- def _get_valid_parent(self, i):
+ def _get_valid_parent(self, i: int) -> int:
"""
Returns index of valid parent as per desired ordering among given index and
both it's children
@@ -59,21 +62,21 @@ class Heap:
return valid_parent
- def _heapify_up(self, index):
+ def _heapify_up(self, index: int) -> None:
"""Fixes the heap in upward direction of given index"""
parent = self._parent(index)
while parent is not None and not self._cmp(index, parent):
self._swap(index, parent)
index, parent = parent, self._parent(parent)
- def _heapify_down(self, index):
+ def _heapify_down(self, index: int) -> None:
"""Fixes the heap in downward direction of given index"""
valid_parent = self._get_valid_parent(index)
while valid_parent != index:
self._swap(index, valid_parent)
index, valid_parent = valid_parent, self._get_valid_parent(valid_parent)
- def update_item(self, item, item_value):
+ def update_item(self, item: int, item_value: int) -> None:
"""Updates given item value in heap if present"""
if item not in self.pos_map:
return
@@ -84,7 +87,7 @@ class Heap:
self._heapify_up(index)
self._heapify_down(index)
- def delete_item(self, item):
+ def delete_item(self, item: int) -> None:
"""Deletes given item from heap if present"""
if item not in self.pos_map:
return
@@ -99,7 +102,7 @@ class Heap:
self._heapify_up(index)
self._heapify_down(index)
- def insert_item(self, item, item_value):
+ def insert_item(self, item: int, item_value: int) -> None:
"""Inserts given item with given value in heap"""
arr_len = len(self.arr)
if arr_len == self.size:
@@ -110,11 +113,11 @@ class Heap:
self.size += 1
self._heapify_up(self.size - 1)
- def get_top(self):
+ def get_top(self) -> tuple | None:
"""Returns top item tuple (Calculated value, item) from heap if present"""
return self.arr[0] if self.size else None
- def extract_top(self):
+ def extract_top(self) -> tuple | None:
"""
Return top item tuple (Calculated value, item) from heap and removes it as well
if present
@@ -163,7 +166,6 @@ def test_heap() -> None:
>>> h.get_top()
[9, -40]
"""
- pass
if __name__ == "__main__":
diff --git a/data_structures/heap/min_heap.py b/data_structures/heap/min_heap.py
index 9265c4839..ecb187649 100644
--- a/data_structures/heap/min_heap.py
+++ b/data_structures/heap/min_heap.py
@@ -27,7 +27,7 @@ class MinHeap:
>>> myMinHeap.decrease_key(b, -17)
>>> print(b)
Node(B, -17)
- >>> print(myMinHeap["B"])
+ >>> myMinHeap["B"]
-17
"""
@@ -52,14 +52,14 @@ class MinHeap:
return self.heap_dict[key]
def build_heap(self, array):
- lastIdx = len(array) - 1
- startFrom = self.get_parent_idx(lastIdx)
+ last_idx = len(array) - 1
+ start_from = self.get_parent_idx(last_idx)
for idx, i in enumerate(array):
self.idx_of_element[i] = idx
self.heap_dict[i.name] = i.val
- for i in range(startFrom, -1, -1):
+ for i in range(start_from, -1, -1):
self.sift_down(i, array)
return array
@@ -121,14 +121,14 @@ class MinHeap:
self.sift_up(len(self.heap) - 1)
def is_empty(self):
- return True if len(self.heap) == 0 else False
+ return len(self.heap) == 0
- def decrease_key(self, node, newValue):
+ def decrease_key(self, node, new_value):
assert (
- self.heap[self.idx_of_element[node]].val > newValue
+ self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
- node.val = newValue
- self.heap_dict[node.name] = newValue
+ node.val = new_value
+ self.heap_dict[node.name] = new_value
self.sift_up(self.idx_of_element[node])
@@ -143,7 +143,7 @@ e = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
-myMinHeap = MinHeap([r, b, a, x, e])
+my_min_heap = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
@@ -154,14 +154,14 @@ myMinHeap = MinHeap([r, b, a, x, e])
# Before
print("Min Heap - before decrease key")
-for i in myMinHeap.heap:
+for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
-myMinHeap.decrease_key(b, -17)
+my_min_heap.decrease_key(b, -17)
# After
-for i in myMinHeap.heap:
+for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
diff --git a/data_structures/heap/skew_heap.py b/data_structures/heap/skew_heap.py
index 490db061d..c4c13b082 100644
--- a/data_structures/heap/skew_heap.py
+++ b/data_structures/heap/skew_heap.py
@@ -71,7 +71,6 @@ class SkewHeap(Generic[T]):
"""
def __init__(self, data: Iterable[T] | None = ()) -> None:
-
"""
>>> sh = SkewHeap([3, 1, 3, 7])
>>> list(sh)
diff --git a/data_structures/linked_list/__init__.py b/data_structures/linked_list/__init__.py
index 6ba660231..56b0e51ba 100644
--- a/data_structures/linked_list/__init__.py
+++ b/data_structures/linked_list/__init__.py
@@ -11,7 +11,7 @@ from typing import Any
class Node:
- def __init__(self, item: Any, next: Any) -> None:
+ def __init__(self, item: Any, next: Any) -> None: # noqa: A002
self.item = item
self.next = next
@@ -49,7 +49,7 @@ class LinkedList:
>>> print(linked_list)
9 --> 14 --> 23
"""
- if not self.is_empty:
+ if self.is_empty():
return ""
else:
iterate = self.head
diff --git a/data_structures/linked_list/circular_linked_list.py b/data_structures/linked_list/circular_linked_list.py
index 6fec0a125..325d91026 100644
--- a/data_structures/linked_list/circular_linked_list.py
+++ b/data_structures/linked_list/circular_linked_list.py
@@ -24,7 +24,7 @@ class CircularLinkedList:
break
def __len__(self) -> int:
- return len(tuple(iter(self)))
+ return sum(1 for _ in self)
def __repr__(self):
return "->".join(str(item) for item in iter(self))
@@ -94,25 +94,25 @@ def test_circular_linked_list() -> None:
try:
circular_linked_list.delete_front()
- assert False # This should not happen
+ raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
- assert False # This should not happen
+ raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1)
- assert False
+ raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0)
- assert False
+ raise AssertionError
except IndexError:
assert True
diff --git a/data_structures/linked_list/doubly_linked_list.py b/data_structures/linked_list/doubly_linked_list.py
index 0eb3cf101..1a6c48191 100644
--- a/data_structures/linked_list/doubly_linked_list.py
+++ b/data_structures/linked_list/doubly_linked_list.py
@@ -51,7 +51,7 @@ class DoublyLinkedList:
>>> len(linked_list) == 5
True
"""
- return len(tuple(iter(self)))
+ return sum(1 for _ in self)
def insert_at_head(self, data):
self.insert_at_nth(0, data)
@@ -64,11 +64,11 @@ class DoublyLinkedList:
>>> linked_list = DoublyLinkedList()
>>> linked_list.insert_at_nth(-1, 666)
Traceback (most recent call last):
- ....
+ ....
IndexError: list index out of range
>>> linked_list.insert_at_nth(1, 666)
Traceback (most recent call last):
- ....
+ ....
IndexError: list index out of range
>>> linked_list.insert_at_nth(0, 2)
>>> linked_list.insert_at_nth(0, 1)
@@ -78,10 +78,12 @@ class DoublyLinkedList:
'1->2->3->4'
>>> linked_list.insert_at_nth(5, 5)
Traceback (most recent call last):
- ....
+ ....
IndexError: list index out of range
"""
- if not 0 <= index <= len(self):
+ length = len(self)
+
+ if not 0 <= index <= length:
raise IndexError("list index out of range")
new_node = Node(data)
if self.head is None:
@@ -90,13 +92,13 @@ class DoublyLinkedList:
self.head.previous = new_node
new_node.next = self.head
self.head = new_node
- elif index == len(self):
+ elif index == length:
self.tail.next = new_node
new_node.previous = self.tail
self.tail = new_node
else:
temp = self.head
- for i in range(0, index):
+ for _ in range(0, index):
temp = temp.next
temp.previous.next = new_node
new_node.previous = temp.previous
@@ -114,7 +116,7 @@ class DoublyLinkedList:
>>> linked_list = DoublyLinkedList()
>>> linked_list.delete_at_nth(0)
Traceback (most recent call last):
- ....
+ ....
IndexError: list index out of range
>>> for i in range(0, 5):
... linked_list.insert_at_nth(i, i + 1)
@@ -128,24 +130,26 @@ class DoublyLinkedList:
'2->4'
>>> linked_list.delete_at_nth(2)
Traceback (most recent call last):
- ....
+ ....
IndexError: list index out of range
"""
- if not 0 <= index <= len(self) - 1:
+ length = len(self)
+
+ if not 0 <= index <= length - 1:
raise IndexError("list index out of range")
delete_node = self.head # default first node
- if len(self) == 1:
+ if length == 1:
self.head = self.tail = None
elif index == 0:
self.head = self.head.next
self.head.previous = None
- elif index == len(self) - 1:
+ elif index == length - 1:
delete_node = self.tail
self.tail = self.tail.previous
self.tail.next = None
else:
temp = self.head
- for i in range(0, index):
+ for _ in range(0, index):
temp = temp.next
delete_node = temp
temp.next.previous = temp.previous
@@ -159,7 +163,7 @@ class DoublyLinkedList:
if current.next:
current = current.next
else: # We have reached the end an no value matches
- return "No data matching given value"
+ raise ValueError("No data matching given value")
if current == self.head:
self.delete_head()
@@ -194,13 +198,13 @@ def test_doubly_linked_list() -> None:
try:
linked_list.delete_head()
- assert False # This should not happen.
+ raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
- assert False # This should not happen.
+ raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
diff --git a/data_structures/linked_list/doubly_linked_list_two.py b/data_structures/linked_list/doubly_linked_list_two.py
index 184b6966b..e993cc5a2 100644
--- a/data_structures/linked_list/doubly_linked_list_two.py
+++ b/data_structures/linked_list/doubly_linked_list_two.py
@@ -80,7 +80,6 @@ class LinkedList:
return None
def set_head(self, node: Node) -> None:
-
if self.head is None:
self.head = node
self.tail = node
@@ -129,7 +128,7 @@ class LinkedList:
while node:
if current_position == position:
self.insert_before_node(node, new_node)
- return None
+ return
current_position += 1
node = node.next
self.insert_after_node(self.tail, new_node)
@@ -143,9 +142,7 @@ class LinkedList:
raise Exception("Node not found")
def delete_value(self, value):
- node = self.get_node(value)
-
- if node is not None:
+ if (node := self.get_node(value)) is not None:
if node == self.head:
self.head = self.head.get_next()
diff --git a/data_structures/linked_list/is_palindrome.py b/data_structures/linked_list/is_palindrome.py
index acc87c1c2..ec19e99f7 100644
--- a/data_structures/linked_list/is_palindrome.py
+++ b/data_structures/linked_list/is_palindrome.py
@@ -55,7 +55,7 @@ def is_palindrome_dict(head):
d = {}
pos = 0
while head:
- if head.val in d.keys():
+ if head.val in d:
d[head.val].append(pos)
else:
d[head.val] = [pos]
diff --git a/data_structures/linked_list/merge_two_lists.py b/data_structures/linked_list/merge_two_lists.py
index 43dd46186..ca0d3bb48 100644
--- a/data_structures/linked_list/merge_two_lists.py
+++ b/data_structures/linked_list/merge_two_lists.py
@@ -13,13 +13,13 @@ test_data_even = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class Node:
data: int
- next: Node | None
+ next_node: Node | None
class SortedLinkedList:
def __init__(self, ints: Iterable[int]) -> None:
self.head: Node | None = None
- for i in reversed(sorted(ints)):
+ for i in sorted(ints, reverse=True):
self.head = Node(i, self.head)
def __iter__(self) -> Iterator[int]:
@@ -32,7 +32,7 @@ class SortedLinkedList:
node = self.head
while node:
yield node.data
- node = node.next
+ node = node.next_node
def __len__(self) -> int:
"""
@@ -44,7 +44,7 @@ class SortedLinkedList:
>>> len(SortedLinkedList(test_data_odd))
8
"""
- return len(tuple(iter(self)))
+ return sum(1 for _ in self)
def __str__(self) -> str:
"""
diff --git a/data_structures/linked_list/middle_element_of_linked_list.py b/data_structures/linked_list/middle_element_of_linked_list.py
index 0c6250f3b..86dad6b41 100644
--- a/data_structures/linked_list/middle_element_of_linked_list.py
+++ b/data_structures/linked_list/middle_element_of_linked_list.py
@@ -62,7 +62,7 @@ class LinkedList:
if __name__ == "__main__":
link = LinkedList()
- for i in range(int(input().strip())):
+ for _ in range(int(input().strip())):
data = int(input().strip())
link.push(data)
print(link.middle_element())
diff --git a/data_structures/linked_list/singly_linked_list.py b/data_structures/linked_list/singly_linked_list.py
index a4156b650..890e21c9b 100644
--- a/data_structures/linked_list/singly_linked_list.py
+++ b/data_structures/linked_list/singly_linked_list.py
@@ -72,7 +72,7 @@ class LinkedList:
>>> len(linked_list)
0
"""
- return len(tuple(iter(self)))
+ return sum(1 for _ in self)
def __repr__(self) -> str:
"""
@@ -95,11 +95,11 @@ class LinkedList:
True
>>> linked_list[-10]
Traceback (most recent call last):
- ...
+ ...
ValueError: list index out of range.
>>> linked_list[len(linked_list)]
Traceback (most recent call last):
- ...
+ ...
ValueError: list index out of range.
"""
if not 0 <= index < len(self):
@@ -107,6 +107,7 @@ class LinkedList:
for i, node in enumerate(self):
if i == index:
return node
+ return None
# Used to change the data of a particular node
def __setitem__(self, index: int, data: Any) -> None:
@@ -122,17 +123,17 @@ class LinkedList:
-666
>>> linked_list[-10] = 666
Traceback (most recent call last):
- ...
+ ...
ValueError: list index out of range.
>>> linked_list[len(linked_list)] = 666
Traceback (most recent call last):
- ...
+ ...
ValueError: list index out of range.
"""
if not 0 <= index < len(self):
raise ValueError("list index out of range.")
current = self.head
- for i in range(index):
+ for _ in range(index):
current = current.next
current.data = data
@@ -233,7 +234,7 @@ class LinkedList:
'third'
>>> linked_list.delete_head()
Traceback (most recent call last):
- ...
+ ...
IndexError: List index out of range.
"""
return self.delete_nth(0)
@@ -260,7 +261,7 @@ class LinkedList:
'first'
>>> linked_list.delete_tail()
Traceback (most recent call last):
- ...
+ ...
IndexError: List index out of range.
"""
return self.delete_nth(len(self) - 1)
@@ -281,11 +282,11 @@ class LinkedList:
first->third
>>> linked_list.delete_nth(5) # this raises error
Traceback (most recent call last):
- ...
+ ...
IndexError: List index out of range.
>>> linked_list.delete_nth(-1) # this also raises error
Traceback (most recent call last):
- ...
+ ...
IndexError: List index out of range.
"""
if not 0 <= index <= len(self) - 1: # test if index is valid
@@ -352,13 +353,13 @@ def test_singly_linked_list() -> None:
try:
linked_list.delete_head()
- assert False # This should not happen.
+ raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
- assert False # This should not happen.
+ raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
@@ -392,7 +393,7 @@ def test_singly_linked_list_2() -> None:
This section of the test used varying data types for input.
>>> test_singly_linked_list_2()
"""
- input = [
+ test_input = [
-9,
100,
Node(77345112),
@@ -410,7 +411,7 @@ def test_singly_linked_list_2() -> None:
]
linked_list = LinkedList()
- for i in input:
+ for i in test_input:
linked_list.insert_tail(i)
# Check if it's empty or not
diff --git a/data_structures/linked_list/skip_list.py b/data_structures/linked_list/skip_list.py
index 176049120..4413c53e5 100644
--- a/data_structures/linked_list/skip_list.py
+++ b/data_structures/linked_list/skip_list.py
@@ -205,7 +205,7 @@ class SkipList(Generic[KT, VT]):
if level > self.level:
# After level increase we have to add additional nodes to head.
- for i in range(self.level - 1, level):
+ for _ in range(self.level - 1, level):
update_vector.append(self.head)
self.level = level
@@ -388,10 +388,7 @@ def test_delete_doesnt_leave_dead_nodes():
def test_iter_always_yields_sorted_values():
def is_sorted(lst):
- for item, next_item in zip(lst, lst[1:]):
- if next_item < item:
- return False
- return True
+ return all(next_item >= item for item, next_item in zip(lst, lst[1:]))
skip_list = SkipList()
for i in range(10):
@@ -407,7 +404,7 @@ def test_iter_always_yields_sorted_values():
def pytests():
- for i in range(100):
+ for _ in range(100):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
@@ -443,4 +440,7 @@ def main():
if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
main()
diff --git a/data_structures/queue/circular_queue_linked_list.py b/data_structures/queue/circular_queue_linked_list.py
index e8c2b8bff..62042c4bc 100644
--- a/data_structures/queue/circular_queue_linked_list.py
+++ b/data_structures/queue/circular_queue_linked_list.py
@@ -127,7 +127,7 @@ class CircularQueueLinkedList:
"""
self.check_can_perform_operation()
if self.rear is None or self.front is None:
- return
+ return None
if self.front == self.rear:
data = self.front.data
self.front.data = None
diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py
index 1603e50bc..44dc863b9 100644
--- a/data_structures/queue/double_ended_queue.py
+++ b/data_structures/queue/double_ended_queue.py
@@ -15,8 +15,8 @@ class Deque:
----------
append(val: Any) -> None
appendleft(val: Any) -> None
- extend(iter: Iterable) -> None
- extendleft(iter: Iterable) -> None
+ extend(iterable: Iterable) -> None
+ extendleft(iterable: Iterable) -> None
pop() -> Any
popleft() -> Any
Observers
@@ -32,7 +32,7 @@ class Deque:
the number of nodes
"""
- __slots__ = ["_front", "_back", "_len"]
+ __slots__ = ("_front", "_back", "_len")
@dataclass
class _Node:
@@ -42,8 +42,8 @@ class Deque:
"""
val: Any = None
- next: Deque._Node | None = None
- prev: Deque._Node | None = None
+ next_node: Deque._Node | None = None
+ prev_node: Deque._Node | None = None
class _Iterator:
"""
@@ -54,7 +54,7 @@ class Deque:
the current node of the iteration.
"""
- __slots__ = ["_cur"]
+ __slots__ = ("_cur",)
def __init__(self, cur: Deque._Node | None) -> None:
self._cur = cur
@@ -81,7 +81,7 @@ class Deque:
# finished iterating
raise StopIteration
val = self._cur.val
- self._cur = self._cur.next
+ self._cur = self._cur.next_node
return val
@@ -128,8 +128,8 @@ class Deque:
self._len = 1
else:
# connect nodes
- self._back.next = node
- node.prev = self._back
+ self._back.next_node = node
+ node.prev_node = self._back
self._back = node # assign new back to the new node
self._len += 1
@@ -170,8 +170,8 @@ class Deque:
self._len = 1
else:
# connect nodes
- node.next = self._front
- self._front.prev = node
+ node.next_node = self._front
+ self._front.prev_node = node
self._front = node # assign new front to the new node
self._len += 1
@@ -179,9 +179,9 @@ class Deque:
# make sure there were no errors
assert not self.is_empty(), "Error on appending value."
- def extend(self, iter: Iterable[Any]) -> None:
+ def extend(self, iterable: Iterable[Any]) -> None:
"""
- Appends every value of iter to the end of the deque.
+ Appends every value of iterable to the end of the deque.
Time complexity: O(n)
>>> our_deque_1 = Deque([1, 2, 3])
>>> our_deque_1.extend([4, 5])
@@ -205,12 +205,12 @@ class Deque:
>>> list(our_deque_2) == list(deque_collections_2)
True
"""
- for val in iter:
+ for val in iterable:
self.append(val)
- def extendleft(self, iter: Iterable[Any]) -> None:
+ def extendleft(self, iterable: Iterable[Any]) -> None:
"""
- Appends every value of iter to the beginning of the deque.
+ Appends every value of iterable to the beginning of the deque.
Time complexity: O(n)
>>> our_deque_1 = Deque([1, 2, 3])
>>> our_deque_1.extendleft([0, -1])
@@ -234,7 +234,7 @@ class Deque:
>>> list(our_deque_2) == list(deque_collections_2)
True
"""
- for val in iter:
+ for val in iterable:
self.appendleft(val)
def pop(self) -> Any:
@@ -264,10 +264,9 @@ class Deque:
assert not self.is_empty(), "Deque is empty."
topop = self._back
- self._back = self._back.prev # set new back
- self._back.next = (
- None # drop the last node - python will deallocate memory automatically
- )
+ self._back = self._back.prev_node # set new back
+ # drop the last node - python will deallocate memory automatically
+ self._back.next_node = None
self._len -= 1
@@ -300,8 +299,8 @@ class Deque:
assert not self.is_empty(), "Deque is empty."
topop = self._front
- self._front = self._front.next # set new front and drop the first node
- self._front.prev = None
+ self._front = self._front.next_node # set new front and drop the first node
+ self._front.prev_node = None
self._len -= 1
@@ -377,7 +376,7 @@ class Deque:
me = self._front
oth = other._front
- # if the length of the deques are not the same, they are not equal
+ # if the length of the dequeues are not the same, they are not equal
if len(self) != len(other):
return False
@@ -385,8 +384,8 @@ class Deque:
# compare every value
if me.val != oth.val:
return False
- me = me.next
- oth = oth.next
+ me = me.next_node
+ oth = oth.next_node
return True
@@ -424,9 +423,9 @@ class Deque:
while aux is not None:
# append the values in a list to display
values_list.append(aux.val)
- aux = aux.next
+ aux = aux.next_node
- return "[" + ", ".join(repr(val) for val in values_list) + "]"
+ return f"[{', '.join(repr(val) for val in values_list)}]"
if __name__ == "__main__":
diff --git a/data_structures/queue/linked_queue.py b/data_structures/queue/linked_queue.py
index c6e9f5390..3af97d28e 100644
--- a/data_structures/queue/linked_queue.py
+++ b/data_structures/queue/linked_queue.py
@@ -22,7 +22,7 @@ class LinkedQueue:
>>> queue.put(5)
>>> queue.put(9)
>>> queue.put('python')
- >>> queue.is_empty();
+ >>> queue.is_empty()
False
>>> queue.get()
5
@@ -96,7 +96,7 @@ class LinkedQueue:
>>> queue = LinkedQueue()
>>> queue.get()
Traceback (most recent call last):
- ...
+ ...
IndexError: dequeue from empty queue
>>> for i in range(1, 6):
... queue.put(i)
@@ -116,7 +116,7 @@ class LinkedQueue:
>>> queue = LinkedQueue()
>>> queue.get()
Traceback (most recent call last):
- ...
+ ...
IndexError: dequeue from empty queue
>>> queue = LinkedQueue()
>>> for i in range(1, 6):
diff --git a/data_structures/queue/priority_queue_using_list.py b/data_structures/queue/priority_queue_using_list.py
index c5cf26433..f61b5e8e6 100644
--- a/data_structures/queue/priority_queue_using_list.py
+++ b/data_structures/queue/priority_queue_using_list.py
@@ -58,7 +58,7 @@ class FixedPriorityQueue:
4
>>> fpq.dequeue()
Traceback (most recent call last):
- ...
+ ...
data_structures.queue.priority_queue_using_list.UnderFlowError: All queues are empty
>>> print(fpq)
Priority 0: []
diff --git a/data_structures/queue/queue_by_list.py b/data_structures/queue/queue_by_list.py
new file mode 100644
index 000000000..4b05be9fd
--- /dev/null
+++ b/data_structures/queue/queue_by_list.py
@@ -0,0 +1,141 @@
+"""Queue represented by a Python list"""
+
+from collections.abc import Iterable
+from typing import Generic, TypeVar
+
+_T = TypeVar("_T")
+
+
+class QueueByList(Generic[_T]):
+ def __init__(self, iterable: Iterable[_T] | None = None) -> None:
+ """
+ >>> QueueByList()
+ Queue(())
+ >>> QueueByList([10, 20, 30])
+ Queue((10, 20, 30))
+ >>> QueueByList((i**2 for i in range(1, 4)))
+ Queue((1, 4, 9))
+ """
+ self.entries: list[_T] = list(iterable or [])
+
+ def __len__(self) -> int:
+ """
+ >>> len(QueueByList())
+ 0
+ >>> from string import ascii_lowercase
+ >>> len(QueueByList(ascii_lowercase))
+ 26
+ >>> queue = QueueByList()
+ >>> for i in range(1, 11):
+ ... queue.put(i)
+ >>> len(queue)
+ 10
+ >>> for i in range(2):
+ ... queue.get()
+ 1
+ 2
+ >>> len(queue)
+ 8
+ """
+
+ return len(self.entries)
+
+ def __repr__(self) -> str:
+ """
+ >>> queue = QueueByList()
+ >>> queue
+ Queue(())
+ >>> str(queue)
+ 'Queue(())'
+ >>> queue.put(10)
+ >>> queue
+ Queue((10,))
+ >>> queue.put(20)
+ >>> queue.put(30)
+ >>> queue
+ Queue((10, 20, 30))
+ """
+
+ return f"Queue({tuple(self.entries)})"
+
+ def put(self, item: _T) -> None:
+ """Put `item` to the Queue
+
+ >>> queue = QueueByList()
+ >>> queue.put(10)
+ >>> queue.put(20)
+ >>> len(queue)
+ 2
+ >>> queue
+ Queue((10, 20))
+ """
+
+ self.entries.append(item)
+
+ def get(self) -> _T:
+ """
+ Get `item` from the Queue
+
+ >>> queue = QueueByList((10, 20, 30))
+ >>> queue.get()
+ 10
+ >>> queue.put(40)
+ >>> queue.get()
+ 20
+ >>> queue.get()
+ 30
+ >>> len(queue)
+ 1
+ >>> queue.get()
+ 40
+ >>> queue.get()
+ Traceback (most recent call last):
+ ...
+ IndexError: Queue is empty
+ """
+
+ if not self.entries:
+ raise IndexError("Queue is empty")
+ return self.entries.pop(0)
+
+ def rotate(self, rotation: int) -> None:
+ """Rotate the items of the Queue `rotation` times
+
+ >>> queue = QueueByList([10, 20, 30, 40])
+ >>> queue
+ Queue((10, 20, 30, 40))
+ >>> queue.rotate(1)
+ >>> queue
+ Queue((20, 30, 40, 10))
+ >>> queue.rotate(2)
+ >>> queue
+ Queue((40, 10, 20, 30))
+ """
+
+ put = self.entries.append
+ get = self.entries.pop
+
+ for _ in range(rotation):
+ put(get(0))
+
+ def get_front(self) -> _T:
+ """Get the front item from the Queue
+
+ >>> queue = QueueByList((10, 20, 30))
+ >>> queue.get_front()
+ 10
+ >>> queue
+ Queue((10, 20, 30))
+ >>> queue.get()
+ 10
+ >>> queue.get_front()
+ 20
+ """
+
+ return self.entries[0]
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
diff --git a/data_structures/queue/queue_by_two_stacks.py b/data_structures/queue/queue_by_two_stacks.py
new file mode 100644
index 000000000..cd62f155a
--- /dev/null
+++ b/data_structures/queue/queue_by_two_stacks.py
@@ -0,0 +1,115 @@
+"""Queue implementation using two stacks"""
+
+from collections.abc import Iterable
+from typing import Generic, TypeVar
+
+_T = TypeVar("_T")
+
+
+class QueueByTwoStacks(Generic[_T]):
+ def __init__(self, iterable: Iterable[_T] | None = None) -> None:
+ """
+ >>> QueueByTwoStacks()
+ Queue(())
+ >>> QueueByTwoStacks([10, 20, 30])
+ Queue((10, 20, 30))
+ >>> QueueByTwoStacks((i**2 for i in range(1, 4)))
+ Queue((1, 4, 9))
+ """
+ self._stack1: list[_T] = list(iterable or [])
+ self._stack2: list[_T] = []
+
+ def __len__(self) -> int:
+ """
+ >>> len(QueueByTwoStacks())
+ 0
+ >>> from string import ascii_lowercase
+ >>> len(QueueByTwoStacks(ascii_lowercase))
+ 26
+ >>> queue = QueueByTwoStacks()
+ >>> for i in range(1, 11):
+ ... queue.put(i)
+ ...
+ >>> len(queue)
+ 10
+ >>> for i in range(2):
+ ... queue.get()
+ 1
+ 2
+ >>> len(queue)
+ 8
+ """
+
+ return len(self._stack1) + len(self._stack2)
+
+ def __repr__(self) -> str:
+ """
+ >>> queue = QueueByTwoStacks()
+ >>> queue
+ Queue(())
+ >>> str(queue)
+ 'Queue(())'
+ >>> queue.put(10)
+ >>> queue
+ Queue((10,))
+ >>> queue.put(20)
+ >>> queue.put(30)
+ >>> queue
+ Queue((10, 20, 30))
+ """
+ return f"Queue({tuple(self._stack2[::-1] + self._stack1)})"
+
+ def put(self, item: _T) -> None:
+ """
+ Put `item` into the Queue
+
+ >>> queue = QueueByTwoStacks()
+ >>> queue.put(10)
+ >>> queue.put(20)
+ >>> len(queue)
+ 2
+ >>> queue
+ Queue((10, 20))
+ """
+
+ self._stack1.append(item)
+
+ def get(self) -> _T:
+ """
+ Get `item` from the Queue
+
+ >>> queue = QueueByTwoStacks((10, 20, 30))
+ >>> queue.get()
+ 10
+ >>> queue.put(40)
+ >>> queue.get()
+ 20
+ >>> queue.get()
+ 30
+ >>> len(queue)
+ 1
+ >>> queue.get()
+ 40
+ >>> queue.get()
+ Traceback (most recent call last):
+ ...
+ IndexError: Queue is empty
+ """
+
+ # To reduce number of attribute look-ups in `while` loop.
+ stack1_pop = self._stack1.pop
+ stack2_append = self._stack2.append
+
+ if not self._stack2:
+ while self._stack1:
+ stack2_append(stack1_pop())
+
+ if not self._stack2:
+ raise IndexError("Queue is empty")
+ return self._stack2.pop()
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
diff --git a/data_structures/queue/queue_on_list.py b/data_structures/queue/queue_on_list.py
deleted file mode 100644
index 485cf0b6f..000000000
--- a/data_structures/queue/queue_on_list.py
+++ /dev/null
@@ -1,52 +0,0 @@
-"""Queue represented by a Python list"""
-
-
-class Queue:
- def __init__(self):
- self.entries = []
- self.length = 0
- self.front = 0
-
- def __str__(self):
- printed = "<" + str(self.entries)[1:-1] + ">"
- return printed
-
- """Enqueues {@code item}
- @param item
- item to enqueue"""
-
- def put(self, item):
- self.entries.append(item)
- self.length = self.length + 1
-
- """Dequeues {@code item}
- @requirement: |self.length| > 0
- @return dequeued
- item that was dequeued"""
-
- def get(self):
- self.length = self.length - 1
- dequeued = self.entries[self.front]
- # self.front-=1
- # self.entries = self.entries[self.front:]
- self.entries = self.entries[1:]
- return dequeued
-
- """Rotates the queue {@code rotation} times
- @param rotation
- number of times to rotate queue"""
-
- def rotate(self, rotation):
- for i in range(rotation):
- self.put(self.get())
-
- """Enqueues {@code item}
- @return item at front of self.entries"""
-
- def get_front(self):
- return self.entries[0]
-
- """Returns the length of this.entries"""
-
- def size(self):
- return self.length
diff --git a/data_structures/queue/queue_on_pseudo_stack.py b/data_structures/queue/queue_on_pseudo_stack.py
index 7fa2fb256..d98451000 100644
--- a/data_structures/queue/queue_on_pseudo_stack.py
+++ b/data_structures/queue/queue_on_pseudo_stack.py
@@ -1,4 +1,5 @@
"""Queue represented by a pseudo stack (represented by a list with pop and append)"""
+from typing import Any
class Queue:
@@ -14,7 +15,7 @@ class Queue:
@param item
item to enqueue"""
- def put(self, item):
+ def put(self, item: Any) -> None:
self.stack.append(item)
self.length = self.length + 1
@@ -23,7 +24,7 @@ class Queue:
@return dequeued
item that was dequeued"""
- def get(self):
+ def get(self) -> Any:
self.rotate(1)
dequeued = self.stack[self.length - 1]
self.stack = self.stack[:-1]
@@ -35,8 +36,8 @@ class Queue:
@param rotation
number of times to rotate queue"""
- def rotate(self, rotation):
- for i in range(rotation):
+ def rotate(self, rotation: int) -> None:
+ for _ in range(rotation):
temp = self.stack[0]
self.stack = self.stack[1:]
self.put(temp)
@@ -45,7 +46,7 @@ class Queue:
"""Reports item at the front of self
@return item at front of self.stack"""
- def front(self):
+ def front(self) -> Any:
front = self.get()
self.put(front)
self.rotate(self.length - 1)
@@ -53,5 +54,5 @@ class Queue:
"""Returns the length of this.stack"""
- def size(self):
+ def size(self) -> int:
return self.length
diff --git a/data_structures/stacks/infix_to_postfix_conversion.py b/data_structures/stacks/infix_to_postfix_conversion.py
index b812d108e..e69706193 100644
--- a/data_structures/stacks/infix_to_postfix_conversion.py
+++ b/data_structures/stacks/infix_to_postfix_conversion.py
@@ -4,9 +4,26 @@ https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
"""
+from typing import Literal
+
from .balanced_parentheses import balanced_parentheses
from .stack import Stack
+PRECEDENCES: dict[str, int] = {
+ "+": 1,
+ "-": 1,
+ "*": 2,
+ "/": 2,
+ "^": 3,
+}
+ASSOCIATIVITIES: dict[str, Literal["LR", "RL"]] = {
+ "+": "LR",
+ "-": "LR",
+ "*": "LR",
+ "/": "LR",
+ "^": "RL",
+}
+
def precedence(char: str) -> int:
"""
@@ -14,14 +31,22 @@ def precedence(char: str) -> int:
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
- return {"+": 1, "-": 1, "*": 2, "/": 2, "^": 3}.get(char, -1)
+ return PRECEDENCES.get(char, -1)
+
+
+def associativity(char: str) -> Literal["LR", "RL"]:
+ """
+ Return the associativity of the operator `char`.
+ https://en.wikipedia.org/wiki/Operator_associativity
+ """
+ return ASSOCIATIVITIES[char]
def infix_to_postfix(expression_str: str) -> str:
"""
>>> infix_to_postfix("(1*(2+3)+4))")
Traceback (most recent call last):
- ...
+ ...
ValueError: Mismatched parentheses
>>> infix_to_postfix("")
''
@@ -35,6 +60,8 @@ def infix_to_postfix(expression_str: str) -> str:
'a b c * + d e * f + g * +'
>>> infix_to_postfix("x^y/(5*z)+2")
'x y ^ 5 z * / 2 +'
+ >>> infix_to_postfix("2^3^2")
+ '2 3 2 ^ ^'
"""
if not balanced_parentheses(expression_str):
raise ValueError("Mismatched parentheses")
@@ -50,9 +77,26 @@ def infix_to_postfix(expression_str: str) -> str:
postfix.append(stack.pop())
stack.pop()
else:
- while not stack.is_empty() and precedence(char) <= precedence(stack.peek()):
+ while True:
+ if stack.is_empty():
+ stack.push(char)
+ break
+
+ char_precedence = precedence(char)
+ tos_precedence = precedence(stack.peek())
+
+ if char_precedence > tos_precedence:
+ stack.push(char)
+ break
+ if char_precedence < tos_precedence:
+ postfix.append(stack.pop())
+ continue
+ # Precedences are equal
+ if associativity(char) == "RL":
+ stack.push(char)
+ break
postfix.append(stack.pop())
- stack.push(char)
+
while not stack.is_empty():
postfix.append(stack.pop())
return " ".join(postfix)
diff --git a/data_structures/stacks/infix_to_prefix_conversion.py b/data_structures/stacks/infix_to_prefix_conversion.py
index d3dc9e3e9..6f6d5d57e 100644
--- a/data_structures/stacks/infix_to_prefix_conversion.py
+++ b/data_structures/stacks/infix_to_prefix_conversion.py
@@ -15,9 +15,9 @@ Enter an Infix Equation = a + b ^c
"""
-def infix_2_postfix(Infix):
- Stack = []
- Postfix = []
+def infix_2_postfix(infix):
+ stack = []
+ post_fix = []
priority = {
"^": 3,
"*": 2,
@@ -26,7 +26,7 @@ def infix_2_postfix(Infix):
"+": 1,
"-": 1,
} # Priority of each operator
- print_width = len(Infix) if (len(Infix) > 7) else 7
+ print_width = len(infix) if (len(infix) > 7) else 7
# Print table header for output
print(
@@ -37,52 +37,52 @@ def infix_2_postfix(Infix):
)
print("-" * (print_width * 3 + 7))
- for x in Infix:
+ for x in infix:
if x.isalpha() or x.isdigit():
- Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix
+ post_fix.append(x) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
- Stack.append(x) # if x is "(" push to Stack
+ stack.append(x) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
- while Stack[-1] != "(":
- Postfix.append(Stack.pop()) # Pop stack & add the content to Postfix
- Stack.pop()
+ while stack[-1] != "(":
+ post_fix.append(stack.pop()) # Pop stack & add the content to Postfix
+ stack.pop()
else:
- if len(Stack) == 0:
- Stack.append(x) # If stack is empty, push x to stack
+ if len(stack) == 0:
+ stack.append(x) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
- while len(Stack) > 0 and priority[x] <= priority[Stack[-1]]:
- Postfix.append(Stack.pop()) # pop stack & add to Postfix
- Stack.append(x) # push x to stack
+ while len(stack) > 0 and priority[x] <= priority[stack[-1]]:
+ post_fix.append(stack.pop()) # pop stack & add to Postfix
+ stack.append(x) # push x to stack
print(
x.center(8),
- ("".join(Stack)).ljust(print_width),
- ("".join(Postfix)).ljust(print_width),
+ ("".join(stack)).ljust(print_width),
+ ("".join(post_fix)).ljust(print_width),
sep=" | ",
) # Output in tabular format
- while len(Stack) > 0: # while stack is not empty
- Postfix.append(Stack.pop()) # pop stack & add to Postfix
+ while len(stack) > 0: # while stack is not empty
+ post_fix.append(stack.pop()) # pop stack & add to Postfix
print(
" ".center(8),
- ("".join(Stack)).ljust(print_width),
- ("".join(Postfix)).ljust(print_width),
+ ("".join(stack)).ljust(print_width),
+ ("".join(post_fix)).ljust(print_width),
sep=" | ",
) # Output in tabular format
- return "".join(Postfix) # return Postfix as str
+ return "".join(post_fix) # return Postfix as str
-def infix_2_prefix(Infix):
- Infix = list(Infix[::-1]) # reverse the infix equation
+def infix_2_prefix(infix):
+ infix = list(infix[::-1]) # reverse the infix equation
- for i in range(len(Infix)):
- if Infix[i] == "(":
- Infix[i] = ")" # change "(" to ")"
- elif Infix[i] == ")":
- Infix[i] = "(" # change ")" to "("
+ for i in range(len(infix)):
+ if infix[i] == "(":
+ infix[i] = ")" # change "(" to ")"
+ elif infix[i] == ")":
+ infix[i] = "(" # change ")" to "("
- return (infix_2_postfix("".join(Infix)))[
+ return (infix_2_postfix("".join(infix)))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
diff --git a/data_structures/stacks/next_greater_element.py b/data_structures/stacks/next_greater_element.py
index 5bab7c609..7d76d1f47 100644
--- a/data_structures/stacks/next_greater_element.py
+++ b/data_structures/stacks/next_greater_element.py
@@ -17,12 +17,12 @@ def next_greatest_element_slow(arr: list[float]) -> list[float]:
arr_size = len(arr)
for i in range(arr_size):
- next: float = -1
+ next_element: float = -1
for j in range(i + 1, arr_size):
if arr[i] < arr[j]:
- next = arr[j]
+ next_element = arr[j]
break
- result.append(next)
+ result.append(next_element)
return result
@@ -36,12 +36,12 @@ def next_greatest_element_fast(arr: list[float]) -> list[float]:
"""
result = []
for i, outer in enumerate(arr):
- next: float = -1
+ next_item: float = -1
for inner in arr[i + 1 :]:
if outer < inner:
- next = inner
+ next_item = inner
break
- result.append(next)
+ result.append(next_item)
return result
diff --git a/data_structures/stacks/postfix_evaluation.py b/data_structures/stacks/postfix_evaluation.py
index 574acac71..28128f82e 100644
--- a/data_structures/stacks/postfix_evaluation.py
+++ b/data_structures/stacks/postfix_evaluation.py
@@ -20,49 +20,49 @@ Enter a Postfix Equation (space separated) = 5 6 9 * +
import operator as op
-def Solve(Postfix):
- Stack = []
- Div = lambda x, y: int(x / y) # noqa: E731 integer division operation
- Opr = {
+def solve(post_fix):
+ stack = []
+ div = lambda x, y: int(x / y) # noqa: E731 integer division operation
+ opr = {
"^": op.pow,
"*": op.mul,
- "/": Div,
+ "/": div,
"+": op.add,
"-": op.sub,
} # operators & their respective operation
# print table header
print("Symbol".center(8), "Action".center(12), "Stack", sep=" | ")
- print("-" * (30 + len(Postfix)))
+ print("-" * (30 + len(post_fix)))
- for x in Postfix:
+ for x in post_fix:
if x.isdigit(): # if x in digit
- Stack.append(x) # append x to stack
+ stack.append(x) # append x to stack
# output in tabular format
- print(x.rjust(8), ("push(" + x + ")").ljust(12), ",".join(Stack), sep=" | ")
+ print(x.rjust(8), ("push(" + x + ")").ljust(12), ",".join(stack), sep=" | ")
else:
- B = Stack.pop() # pop stack
+ b = stack.pop() # pop stack
# output in tabular format
- print("".rjust(8), ("pop(" + B + ")").ljust(12), ",".join(Stack), sep=" | ")
+ print("".rjust(8), ("pop(" + b + ")").ljust(12), ",".join(stack), sep=" | ")
- A = Stack.pop() # pop stack
+ a = stack.pop() # pop stack
# output in tabular format
- print("".rjust(8), ("pop(" + A + ")").ljust(12), ",".join(Stack), sep=" | ")
+ print("".rjust(8), ("pop(" + a + ")").ljust(12), ",".join(stack), sep=" | ")
- Stack.append(
- str(Opr[x](int(A), int(B)))
+ stack.append(
+ str(opr[x](int(a), int(b)))
) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8),
- ("push(" + A + x + B + ")").ljust(12),
- ",".join(Stack),
+ ("push(" + a + x + b + ")").ljust(12),
+ ",".join(stack),
sep=" | ",
)
- return int(Stack[0])
+ return int(stack[0])
if __name__ == "__main__":
Postfix = input("\n\nEnter a Postfix Equation (space separated) = ").split(" ")
- print("\n\tResult = ", Solve(Postfix))
+ print("\n\tResult = ", solve(Postfix))
diff --git a/data_structures/stacks/prefix_evaluation.py b/data_structures/stacks/prefix_evaluation.py
index 00df2c1e6..f48eca23d 100644
--- a/data_structures/stacks/prefix_evaluation.py
+++ b/data_structures/stacks/prefix_evaluation.py
@@ -36,7 +36,6 @@ def evaluate(expression):
# iterate over the string in reverse order
for c in expression.split()[::-1]:
-
# push operand to stack
if is_operand(c):
stack.append(int(c))
diff --git a/data_structures/stacks/stack.py b/data_structures/stacks/stack.py
index d1c73df43..a14f4648a 100644
--- a/data_structures/stacks/stack.py
+++ b/data_structures/stacks/stack.py
@@ -92,13 +92,13 @@ def test_stack() -> None:
try:
_ = stack.pop()
- assert False # This should not happen
+ raise AssertionError # This should not happen
except StackUnderflowError:
assert True # This should happen
try:
_ = stack.peek()
- assert False # This should not happen
+ raise AssertionError # This should not happen
except StackUnderflowError:
assert True # This should happen
@@ -118,7 +118,7 @@ def test_stack() -> None:
try:
stack.push(200)
- assert False # This should not happen
+ raise AssertionError # This should not happen
except StackOverflowError:
assert True # This should happen
diff --git a/data_structures/stacks/stack_with_doubly_linked_list.py b/data_structures/stacks/stack_with_doubly_linked_list.py
index a129665f2..50c5236e0 100644
--- a/data_structures/stacks/stack_with_doubly_linked_list.py
+++ b/data_structures/stacks/stack_with_doubly_linked_list.py
@@ -92,7 +92,6 @@ class Stack(Generic[T]):
# Code execution starts here
if __name__ == "__main__":
-
# Start with the empty stack
stack: Stack[int] = Stack()
diff --git a/data_structures/stacks/stack_with_singly_linked_list.py b/data_structures/stacks/stack_with_singly_linked_list.py
index 903ae39db..f5ce83b86 100644
--- a/data_structures/stacks/stack_with_singly_linked_list.py
+++ b/data_structures/stacks/stack_with_singly_linked_list.py
@@ -109,7 +109,7 @@ class LinkedStack(Generic[T]):
>>> stack = LinkedStack()
>>> stack.pop()
Traceback (most recent call last):
- ...
+ ...
IndexError: pop from empty stack
>>> stack.push("c")
>>> stack.push("b")
diff --git a/data_structures/stacks/stock_span_problem.py b/data_structures/stacks/stock_span_problem.py
index cc2adfdd6..de423c1eb 100644
--- a/data_structures/stacks/stock_span_problem.py
+++ b/data_structures/stacks/stock_span_problem.py
@@ -8,19 +8,17 @@ on the current day is less than or equal to its price on the given day.
"""
-def calculateSpan(price, S):
-
+def calculation_span(price, s):
n = len(price)
# Create a stack and push index of fist element to it
st = []
st.append(0)
# Span value of first element is always 1
- S[0] = 1
+ s[0] = 1
# Calculate span values for rest of the elements
for i in range(1, n):
-
# Pop elements from stack while stack is not
# empty and top of stack is smaller than price[i]
while len(st) > 0 and price[st[0]] <= price[i]:
@@ -30,14 +28,14 @@ def calculateSpan(price, S):
# than all elements on left of it, i.e. price[0],
# price[1], ..price[i-1]. Else the price[i] is
# greater than elements after top of stack
- S[i] = i + 1 if len(st) <= 0 else (i - st[0])
+ s[i] = i + 1 if len(st) <= 0 else (i - st[0])
# Push this element to stack
st.append(i)
# A utility function to print elements of array
-def printArray(arr, n):
+def print_array(arr, n):
for i in range(0, n):
print(arr[i], end=" ")
@@ -47,7 +45,7 @@ price = [10, 4, 5, 90, 120, 80]
S = [0 for i in range(len(price) + 1)]
# Fill the span values in array S[]
-calculateSpan(price, S)
+calculation_span(price, S)
# Print the calculated span values
-printArray(S, len(price))
+print_array(S, len(price))
diff --git a/data_structures/trie/radix_tree.py b/data_structures/trie/radix_tree.py
new file mode 100644
index 000000000..fadc50cb4
--- /dev/null
+++ b/data_structures/trie/radix_tree.py
@@ -0,0 +1,230 @@
+"""
+A Radix Tree is a data structure that represents a space-optimized
+trie (prefix tree) in whicheach node that is the only child is merged
+with its parent [https://en.wikipedia.org/wiki/Radix_tree]
+"""
+
+
+class RadixNode:
+ def __init__(self, prefix: str = "", is_leaf: bool = False) -> None:
+ # Mapping from the first character of the prefix of the node
+ self.nodes: dict[str, RadixNode] = {}
+
+ # A node will be a leaf if the tree contains its word
+ self.is_leaf = is_leaf
+
+ self.prefix = prefix
+
+ def match(self, word: str) -> tuple[str, str, str]:
+ """Compute the common substring of the prefix of the node and a word
+
+ Args:
+ word (str): word to compare
+
+ Returns:
+ (str, str, str): common substring, remaining prefix, remaining word
+
+ >>> RadixNode("myprefix").match("mystring")
+ ('my', 'prefix', 'string')
+ """
+ x = 0
+ for q, w in zip(self.prefix, word):
+ if q != w:
+ break
+
+ x += 1
+
+ return self.prefix[:x], self.prefix[x:], word[x:]
+
+ def insert_many(self, words: list[str]) -> None:
+ """Insert many words in the tree
+
+ Args:
+ words (list[str]): list of words
+
+ >>> RadixNode("myprefix").insert_many(["mystring", "hello"])
+ """
+ for word in words:
+ self.insert(word)
+
+ def insert(self, word: str) -> None:
+ """Insert a word into the tree
+
+ Args:
+ word (str): word to insert
+
+ >>> RadixNode("myprefix").insert("mystring")
+
+ >>> root = RadixNode()
+ >>> root.insert_many(['myprefix', 'myprefixA', 'myprefixAA'])
+ >>> root.print_tree()
+ - myprefix (leaf)
+ -- A (leaf)
+ --- A (leaf)
+ """
+ # Case 1: If the word is the prefix of the node
+ # Solution: We set the current node as leaf
+ if self.prefix == word and not self.is_leaf:
+ self.is_leaf = True
+
+ # Case 2: The node has no edges that have a prefix to the word
+ # Solution: We create an edge from the current node to a new one
+ # containing the word
+ elif word[0] not in self.nodes:
+ self.nodes[word[0]] = RadixNode(prefix=word, is_leaf=True)
+
+ else:
+ incoming_node = self.nodes[word[0]]
+ matching_string, remaining_prefix, remaining_word = incoming_node.match(
+ word
+ )
+
+ # Case 3: The node prefix is equal to the matching
+ # Solution: We insert remaining word on the next node
+ if remaining_prefix == "":
+ self.nodes[matching_string[0]].insert(remaining_word)
+
+ # Case 4: The word is greater equal to the matching
+ # Solution: Create a node in between both nodes, change
+ # prefixes and add the new node for the remaining word
+ else:
+ incoming_node.prefix = remaining_prefix
+
+ aux_node = self.nodes[matching_string[0]]
+ self.nodes[matching_string[0]] = RadixNode(matching_string, False)
+ self.nodes[matching_string[0]].nodes[remaining_prefix[0]] = aux_node
+
+ if remaining_word == "":
+ self.nodes[matching_string[0]].is_leaf = True
+ else:
+ self.nodes[matching_string[0]].insert(remaining_word)
+
+ def find(self, word: str) -> bool:
+ """Returns if the word is on the tree
+
+ Args:
+ word (str): word to check
+
+ Returns:
+ bool: True if the word appears on the tree
+
+ >>> RadixNode("myprefix").find("mystring")
+ False
+ """
+ incoming_node = self.nodes.get(word[0], None)
+ if not incoming_node:
+ return False
+ else:
+ matching_string, remaining_prefix, remaining_word = incoming_node.match(
+ word
+ )
+ # If there is remaining prefix, the word can't be on the tree
+ if remaining_prefix != "":
+ return False
+ # This applies when the word and the prefix are equal
+ elif remaining_word == "":
+ return incoming_node.is_leaf
+ # We have word remaining so we check the next node
+ else:
+ return incoming_node.find(remaining_word)
+
+ def delete(self, word: str) -> bool:
+ """Deletes a word from the tree if it exists
+
+ Args:
+ word (str): word to be deleted
+
+ Returns:
+ bool: True if the word was found and deleted. False if word is not found
+
+ >>> RadixNode("myprefix").delete("mystring")
+ False
+ """
+ incoming_node = self.nodes.get(word[0], None)
+ if not incoming_node:
+ return False
+ else:
+ matching_string, remaining_prefix, remaining_word = incoming_node.match(
+ word
+ )
+ # If there is remaining prefix, the word can't be on the tree
+ if remaining_prefix != "":
+ return False
+ # We have word remaining so we check the next node
+ elif remaining_word != "":
+ return incoming_node.delete(remaining_word)
+ else:
+ # If it is not a leaf, we don't have to delete
+ if not incoming_node.is_leaf:
+ return False
+ else:
+ # We delete the nodes if no edges go from it
+ if len(incoming_node.nodes) == 0:
+ del self.nodes[word[0]]
+ # We merge the current node with its only child
+ if len(self.nodes) == 1 and not self.is_leaf:
+ merging_node = next(iter(self.nodes.values()))
+ self.is_leaf = merging_node.is_leaf
+ self.prefix += merging_node.prefix
+ self.nodes = merging_node.nodes
+ # If there is more than 1 edge, we just mark it as non-leaf
+ elif len(incoming_node.nodes) > 1:
+ incoming_node.is_leaf = False
+ # If there is 1 edge, we merge it with its child
+ else:
+ merging_node = next(iter(incoming_node.nodes.values()))
+ incoming_node.is_leaf = merging_node.is_leaf
+ incoming_node.prefix += merging_node.prefix
+ incoming_node.nodes = merging_node.nodes
+
+ return True
+
+ def print_tree(self, height: int = 0) -> None:
+ """Print the tree
+
+ Args:
+ height (int, optional): Height of the printed node
+ """
+ if self.prefix != "":
+ print("-" * height, self.prefix, " (leaf)" if self.is_leaf else "")
+
+ for value in self.nodes.values():
+ value.print_tree(height + 1)
+
+
+def test_trie() -> bool:
+ words = "banana bananas bandana band apple all beast".split()
+ root = RadixNode()
+ root.insert_many(words)
+
+ assert all(root.find(word) for word in words)
+ assert not root.find("bandanas")
+ assert not root.find("apps")
+ root.delete("all")
+ assert not root.find("all")
+ root.delete("banana")
+ assert not root.find("banana")
+ assert root.find("bananas")
+
+ return True
+
+
+def pytests() -> None:
+ assert test_trie()
+
+
+def main() -> None:
+ """
+ >>> pytests()
+ """
+ root = RadixNode()
+ words = "banana bananas bandanas bandana band apple all beast".split()
+ root.insert_many(words)
+
+ print("Words:", words)
+ print("Tree:")
+ root.print_tree()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/data_structures/trie/trie.py b/data_structures/trie/trie.py
index 162d08d1d..46b93a499 100644
--- a/data_structures/trie/trie.py
+++ b/data_structures/trie/trie.py
@@ -8,7 +8,7 @@ longest word)) lookup time making it an optimal approach when space is not an is
class TrieNode:
def __init__(self) -> None:
- self.nodes: dict[str, TrieNode] = dict() # Mapping from char to TrieNode
+ self.nodes: dict[str, TrieNode] = {} # Mapping from char to TrieNode
self.is_leaf = False
def insert_many(self, words: list[str]) -> None:
diff --git a/digital_image_processing/change_contrast.py b/digital_image_processing/change_contrast.py
index 6a1504002..7e4969470 100644
--- a/digital_image_processing/change_contrast.py
+++ b/digital_image_processing/change_contrast.py
@@ -4,8 +4,8 @@ Changing contrast with PIL
This algorithm is used in
https://noivce.pythonanywhere.com/ Python web app.
-python/black: True
-flake8 : True
+psf/black: True
+ruff : True
"""
from PIL import Image
diff --git a/digital_image_processing/dithering/burkes.py b/digital_image_processing/dithering/burkes.py
index 2bf0bbe03..35aedc16d 100644
--- a/digital_image_processing/dithering/burkes.py
+++ b/digital_image_processing/dithering/burkes.py
@@ -21,7 +21,8 @@ class Burkes:
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
- raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
+ msg = f"Factor value should be from 0 to {self.max_threshold}"
+ raise ValueError(msg)
self.input_img = input_img
self.threshold = threshold
@@ -38,9 +39,18 @@ class Burkes:
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
"""
>>> Burkes.get_greyscale(3, 4, 5)
- 3.753
+ 4.185
+ >>> Burkes.get_greyscale(0, 0, 0)
+ 0.0
+ >>> Burkes.get_greyscale(255, 255, 255)
+ 255.0
"""
- return 0.114 * blue + 0.587 * green + 0.2126 * red
+ """
+ Formula from https://en.wikipedia.org/wiki/HSL_and_HSV
+ cf Lightness section, and Fig 13c.
+ We use the first of four possible.
+ """
+ return 0.114 * blue + 0.587 * green + 0.299 * red
def process(self) -> None:
for y in range(self.height):
@@ -48,10 +58,10 @@ class Burkes:
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
- current_error = greyscale + self.error_table[x][y]
+ current_error = greyscale + self.error_table[y][x]
else:
self.output_img[y][x] = (255, 255, 255)
- current_error = greyscale + self.error_table[x][y] - 255
+ current_error = greyscale + self.error_table[y][x] - 255
"""
Burkes error propagation (`*` is current pixel):
diff --git a/digital_image_processing/edge_detection/canny.py b/digital_image_processing/edge_detection/canny.py
index 295b4d825..f8cbeedb3 100644
--- a/digital_image_processing/edge_detection/canny.py
+++ b/digital_image_processing/edge_detection/canny.py
@@ -18,105 +18,126 @@ def gen_gaussian_kernel(k_size, sigma):
return g
-def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
- image_row, image_col = image.shape[0], image.shape[1]
- # gaussian_filter
- gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
- # get the gradient and degree by sobel_filter
- sobel_grad, sobel_theta = sobel_filter(gaussian_out)
- gradient_direction = np.rad2deg(sobel_theta)
- gradient_direction += PI
-
- dst = np.zeros((image_row, image_col))
-
+def suppress_non_maximum(image_shape, gradient_direction, sobel_grad):
"""
Non-maximum suppression. If the edge strength of the current pixel is the largest
compared to the other pixels in the mask with the same direction, the value will be
preserved. Otherwise, the value will be suppressed.
"""
- for row in range(1, image_row - 1):
- for col in range(1, image_col - 1):
+ destination = np.zeros(image_shape)
+
+ for row in range(1, image_shape[0] - 1):
+ for col in range(1, image_shape[1] - 1):
direction = gradient_direction[row, col]
if (
- 0 <= direction < 22.5
+ 0 <= direction < PI / 8
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
- W = sobel_grad[row, col - 1]
- E = sobel_grad[row, col + 1]
- if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E:
- dst[row, col] = sobel_grad[row, col]
+ w = sobel_grad[row, col - 1]
+ e = sobel_grad[row, col + 1]
+ if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e:
+ destination[row, col] = sobel_grad[row, col]
- elif (PI / 8 <= direction < 3 * PI / 8) or (
- 9 * PI / 8 <= direction < 11 * PI / 8
+ elif (
+ PI / 8 <= direction < 3 * PI / 8
+ or 9 * PI / 8 <= direction < 11 * PI / 8
):
- SW = sobel_grad[row + 1, col - 1]
- NE = sobel_grad[row - 1, col + 1]
- if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE:
- dst[row, col] = sobel_grad[row, col]
+ sw = sobel_grad[row + 1, col - 1]
+ ne = sobel_grad[row - 1, col + 1]
+ if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne:
+ destination[row, col] = sobel_grad[row, col]
- elif (3 * PI / 8 <= direction < 5 * PI / 8) or (
- 11 * PI / 8 <= direction < 13 * PI / 8
+ elif (
+ 3 * PI / 8 <= direction < 5 * PI / 8
+ or 11 * PI / 8 <= direction < 13 * PI / 8
):
- N = sobel_grad[row - 1, col]
- S = sobel_grad[row + 1, col]
- if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S:
- dst[row, col] = sobel_grad[row, col]
+ n = sobel_grad[row - 1, col]
+ s = sobel_grad[row + 1, col]
+ if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s:
+ destination[row, col] = sobel_grad[row, col]
- elif (5 * PI / 8 <= direction < 7 * PI / 8) or (
- 13 * PI / 8 <= direction < 15 * PI / 8
+ elif (
+ 5 * PI / 8 <= direction < 7 * PI / 8
+ or 13 * PI / 8 <= direction < 15 * PI / 8
):
- NW = sobel_grad[row - 1, col - 1]
- SE = sobel_grad[row + 1, col + 1]
- if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE:
- dst[row, col] = sobel_grad[row, col]
+ nw = sobel_grad[row - 1, col - 1]
+ se = sobel_grad[row + 1, col + 1]
+ if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se:
+ destination[row, col] = sobel_grad[row, col]
- """
- High-Low threshold detection. If an edge pixel’s gradient value is higher
- than the high threshold value, it is marked as a strong edge pixel. If an
- edge pixel’s gradient value is smaller than the high threshold value and
- larger than the low threshold value, it is marked as a weak edge pixel. If
- an edge pixel's value is smaller than the low threshold value, it will be
- suppressed.
- """
- if dst[row, col] >= threshold_high:
- dst[row, col] = strong
- elif dst[row, col] <= threshold_low:
- dst[row, col] = 0
+ return destination
+
+
+def detect_high_low_threshold(
+ image_shape, destination, threshold_low, threshold_high, weak, strong
+):
+ """
+ High-Low threshold detection. If an edge pixel’s gradient value is higher
+ than the high threshold value, it is marked as a strong edge pixel. If an
+ edge pixel’s gradient value is smaller than the high threshold value and
+ larger than the low threshold value, it is marked as a weak edge pixel. If
+ an edge pixel's value is smaller than the low threshold value, it will be
+ suppressed.
+ """
+ for row in range(1, image_shape[0] - 1):
+ for col in range(1, image_shape[1] - 1):
+ if destination[row, col] >= threshold_high:
+ destination[row, col] = strong
+ elif destination[row, col] <= threshold_low:
+ destination[row, col] = 0
else:
- dst[row, col] = weak
+ destination[row, col] = weak
+
+def track_edge(image_shape, destination, weak, strong):
"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected
to a strong edge pixel while noise responses are unconnected. As long as there is
one strong edge pixel that is involved in its 8-connected neighborhood, that weak
edge point can be identified as one that should be preserved.
"""
- for row in range(1, image_row):
- for col in range(1, image_col):
- if dst[row, col] == weak:
+ for row in range(1, image_shape[0]):
+ for col in range(1, image_shape[1]):
+ if destination[row, col] == weak:
if 255 in (
- dst[row, col + 1],
- dst[row, col - 1],
- dst[row - 1, col],
- dst[row + 1, col],
- dst[row - 1, col - 1],
- dst[row + 1, col - 1],
- dst[row - 1, col + 1],
- dst[row + 1, col + 1],
+ destination[row, col + 1],
+ destination[row, col - 1],
+ destination[row - 1, col],
+ destination[row + 1, col],
+ destination[row - 1, col - 1],
+ destination[row + 1, col - 1],
+ destination[row - 1, col + 1],
+ destination[row + 1, col + 1],
):
- dst[row, col] = strong
+ destination[row, col] = strong
else:
- dst[row, col] = 0
+ destination[row, col] = 0
- return dst
+
+def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
+ # gaussian_filter
+ gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
+ # get the gradient and degree by sobel_filter
+ sobel_grad, sobel_theta = sobel_filter(gaussian_out)
+ gradient_direction = PI + np.rad2deg(sobel_theta)
+
+ destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad)
+
+ detect_high_low_threshold(
+ image.shape, destination, threshold_low, threshold_high, weak, strong
+ )
+
+ track_edge(image.shape, destination, weak, strong)
+
+ return destination
if __name__ == "__main__":
# read original image in gray mode
lena = cv2.imread(r"../image_data/lena.jpg", 0)
# canny edge detection
- canny_dst = canny(lena)
- cv2.imshow("canny", canny_dst)
+ canny_destination = canny(lena)
+ cv2.imshow("canny", canny_destination)
cv2.waitKey(0)
diff --git a/digital_image_processing/filters/bilateral_filter.py b/digital_image_processing/filters/bilateral_filter.py
index 76ae4dd20..565da73f6 100644
--- a/digital_image_processing/filters/bilateral_filter.py
+++ b/digital_image_processing/filters/bilateral_filter.py
@@ -46,16 +46,15 @@ def bilateral_filter(
kernel_size: int,
) -> np.ndarray:
img2 = np.zeros(img.shape)
- gaussKer = get_gauss_kernel(kernel_size, spatial_variance)
- sizeX, sizeY = img.shape
- for i in range(kernel_size // 2, sizeX - kernel_size // 2):
- for j in range(kernel_size // 2, sizeY - kernel_size // 2):
-
- imgS = get_slice(img, i, j, kernel_size)
- imgI = imgS - imgS[kernel_size // 2, kernel_size // 2]
- imgIG = vec_gaussian(imgI, intensity_variance)
- weights = np.multiply(gaussKer, imgIG)
- vals = np.multiply(imgS, weights)
+ gauss_ker = get_gauss_kernel(kernel_size, spatial_variance)
+ size_x, size_y = img.shape
+ for i in range(kernel_size // 2, size_x - kernel_size // 2):
+ for j in range(kernel_size // 2, size_y - kernel_size // 2):
+ img_s = get_slice(img, i, j, kernel_size)
+ img_i = img_s - img_s[kernel_size // 2, kernel_size // 2]
+ img_ig = vec_gaussian(img_i, intensity_variance)
+ weights = np.multiply(gauss_ker, img_ig)
+ vals = np.multiply(img_s, weights)
val = np.sum(vals) / np.sum(weights)
img2[i, j] = val
return img2
diff --git a/digital_image_processing/filters/local_binary_pattern.py b/digital_image_processing/filters/local_binary_pattern.py
index e73aa59bf..907fe2cb0 100644
--- a/digital_image_processing/filters/local_binary_pattern.py
+++ b/digital_image_processing/filters/local_binary_pattern.py
@@ -60,8 +60,7 @@ def local_binary_value(image: np.ndarray, x_coordinate: int, y_coordinate: int)
)
-if __name__ == "main":
-
+if __name__ == "__main__":
# Reading the image and converting it to grayscale.
image = cv2.imread(
"digital_image_processing/image_data/lena.jpg", cv2.IMREAD_GRAYSCALE
diff --git a/digital_image_processing/histogram_equalization/histogram_stretch.py b/digital_image_processing/histogram_equalization/histogram_stretch.py
index 0288a2c1f..5ea7773e3 100644
--- a/digital_image_processing/histogram_equalization/histogram_stretch.py
+++ b/digital_image_processing/histogram_equalization/histogram_stretch.py
@@ -11,7 +11,7 @@ import numpy as np
from matplotlib import pyplot as plt
-class contrastStretch:
+class ConstantStretch:
def __init__(self):
self.img = ""
self.original_image = ""
@@ -45,10 +45,10 @@ class contrastStretch:
self.img[j][i] = self.last_list[num]
cv2.imwrite("output_data/output.jpg", self.img)
- def plotHistogram(self):
+ def plot_histogram(self):
plt.hist(self.img.ravel(), 256, [0, 256])
- def showImage(self):
+ def show_image(self):
cv2.imshow("Output-Image", self.img)
cv2.imshow("Input-Image", self.original_image)
cv2.waitKey(5000)
@@ -57,7 +57,7 @@ class contrastStretch:
if __name__ == "__main__":
file_path = os.path.join(os.path.basename(__file__), "image_data/input.jpg")
- stretcher = contrastStretch()
+ stretcher = ConstantStretch()
stretcher.stretch(file_path)
- stretcher.plotHistogram()
- stretcher.showImage()
+ stretcher.plot_histogram()
+ stretcher.show_image()
diff --git a/digital_image_processing/index_calculation.py b/digital_image_processing/index_calculation.py
index 033334af8..67830668b 100644
--- a/digital_image_processing/index_calculation.py
+++ b/digital_image_processing/index_calculation.py
@@ -104,72 +104,71 @@ class IndexCalculation:
#RGBIndex = ["GLI", "CI", "Hue", "I", "NGRDI", "RI", "S", "IF"]
"""
- def __init__(self, red=None, green=None, blue=None, redEdge=None, nir=None):
- # print("Numpy version: " + np.__version__)
- self.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir)
+ def __init__(self, red=None, green=None, blue=None, red_edge=None, nir=None):
+ self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir)
- def setMatrices(self, red=None, green=None, blue=None, redEdge=None, nir=None):
+ def set_matricies(self, red=None, green=None, blue=None, red_edge=None, nir=None):
if red is not None:
self.red = red
if green is not None:
self.green = green
if blue is not None:
self.blue = blue
- if redEdge is not None:
- self.redEdge = redEdge
+ if red_edge is not None:
+ self.redEdge = red_edge
if nir is not None:
self.nir = nir
return True
def calculation(
- self, index="", red=None, green=None, blue=None, redEdge=None, nir=None
+ self, index="", red=None, green=None, blue=None, red_edge=None, nir=None
):
"""
performs the calculation of the index with the values instantiated in the class
:str index: abbreviation of index name to perform
"""
- self.setMatrices(red=red, green=green, blue=blue, redEdge=redEdge, nir=nir)
+ self.set_matricies(red=red, green=green, blue=blue, red_edge=red_edge, nir=nir)
funcs = {
- "ARVI2": self.ARVI2,
- "CCCI": self.CCCI,
- "CVI": self.CVI,
- "GLI": self.GLI,
- "NDVI": self.NDVI,
- "BNDVI": self.BNDVI,
- "redEdgeNDVI": self.redEdgeNDVI,
- "GNDVI": self.GNDVI,
- "GBNDVI": self.GBNDVI,
- "GRNDVI": self.GRNDVI,
- "RBNDVI": self.RBNDVI,
- "PNDVI": self.PNDVI,
- "ATSAVI": self.ATSAVI,
- "BWDRVI": self.BWDRVI,
- "CIgreen": self.CIgreen,
- "CIrededge": self.CIrededge,
- "CI": self.CI,
- "CTVI": self.CTVI,
- "GDVI": self.GDVI,
- "EVI": self.EVI,
- "GEMI": self.GEMI,
- "GOSAVI": self.GOSAVI,
- "GSAVI": self.GSAVI,
- "Hue": self.Hue,
- "IVI": self.IVI,
- "IPVI": self.IPVI,
- "I": self.I,
- "RVI": self.RVI,
- "MRVI": self.MRVI,
- "MSAVI": self.MSAVI,
- "NormG": self.NormG,
- "NormNIR": self.NormNIR,
- "NormR": self.NormR,
- "NGRDI": self.NGRDI,
- "RI": self.RI,
- "S": self.S,
- "IF": self.IF,
- "DVI": self.DVI,
- "TVI": self.TVI,
- "NDRE": self.NDRE,
+ "ARVI2": self.arv12,
+ "CCCI": self.ccci,
+ "CVI": self.cvi,
+ "GLI": self.gli,
+ "NDVI": self.ndvi,
+ "BNDVI": self.bndvi,
+ "redEdgeNDVI": self.red_edge_ndvi,
+ "GNDVI": self.gndvi,
+ "GBNDVI": self.gbndvi,
+ "GRNDVI": self.grndvi,
+ "RBNDVI": self.rbndvi,
+ "PNDVI": self.pndvi,
+ "ATSAVI": self.atsavi,
+ "BWDRVI": self.bwdrvi,
+ "CIgreen": self.ci_green,
+ "CIrededge": self.ci_rededge,
+ "CI": self.ci,
+ "CTVI": self.ctvi,
+ "GDVI": self.gdvi,
+ "EVI": self.evi,
+ "GEMI": self.gemi,
+ "GOSAVI": self.gosavi,
+ "GSAVI": self.gsavi,
+ "Hue": self.hue,
+ "IVI": self.ivi,
+ "IPVI": self.ipvi,
+ "I": self.i,
+ "RVI": self.rvi,
+ "MRVI": self.mrvi,
+ "MSAVI": self.m_savi,
+ "NormG": self.norm_g,
+ "NormNIR": self.norm_nir,
+ "NormR": self.norm_r,
+ "NGRDI": self.ngrdi,
+ "RI": self.ri,
+ "S": self.s,
+ "IF": self._if,
+ "DVI": self.dvi,
+ "TVI": self.tvi,
+ "NDRE": self.ndre,
}
try:
@@ -178,7 +177,7 @@ class IndexCalculation:
print("Index not in the list!")
return False
- def ARVI2(self):
+ def arv12(self):
"""
Atmospherically Resistant Vegetation Index 2
https://www.indexdatabase.de/db/i-single.php?id=396
@@ -187,7 +186,7 @@ class IndexCalculation:
"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
- def CCCI(self):
+ def ccci(self):
"""
Canopy Chlorophyll Content Index
https://www.indexdatabase.de/db/i-single.php?id=224
@@ -197,7 +196,7 @@ class IndexCalculation:
(self.nir - self.red) / (self.nir + self.red)
)
- def CVI(self):
+ def cvi(self):
"""
Chlorophyll vegetation index
https://www.indexdatabase.de/db/i-single.php?id=391
@@ -205,7 +204,7 @@ class IndexCalculation:
"""
return self.nir * (self.red / (self.green**2))
- def GLI(self):
+ def gli(self):
"""
self.green leaf index
https://www.indexdatabase.de/db/i-single.php?id=375
@@ -215,7 +214,7 @@ class IndexCalculation:
2 * self.green + self.red + self.blue
)
- def NDVI(self):
+ def ndvi(self):
"""
Normalized Difference self.nir/self.red Normalized Difference Vegetation
Index, Calibrated NDVI - CDVI
@@ -224,7 +223,7 @@ class IndexCalculation:
"""
return (self.nir - self.red) / (self.nir + self.red)
- def BNDVI(self):
+ def bndvi(self):
"""
Normalized Difference self.nir/self.blue self.blue-normalized difference
vegetation index
@@ -233,7 +232,7 @@ class IndexCalculation:
"""
return (self.nir - self.blue) / (self.nir + self.blue)
- def redEdgeNDVI(self):
+ def red_edge_ndvi(self):
"""
Normalized Difference self.rededge/self.red
https://www.indexdatabase.de/db/i-single.php?id=235
@@ -241,7 +240,7 @@ class IndexCalculation:
"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
- def GNDVI(self):
+ def gndvi(self):
"""
Normalized Difference self.nir/self.green self.green NDVI
https://www.indexdatabase.de/db/i-single.php?id=401
@@ -249,7 +248,7 @@ class IndexCalculation:
"""
return (self.nir - self.green) / (self.nir + self.green)
- def GBNDVI(self):
+ def gbndvi(self):
"""
self.green-self.blue NDVI
https://www.indexdatabase.de/db/i-single.php?id=186
@@ -259,7 +258,7 @@ class IndexCalculation:
self.nir + (self.green + self.blue)
)
- def GRNDVI(self):
+ def grndvi(self):
"""
self.green-self.red NDVI
https://www.indexdatabase.de/db/i-single.php?id=185
@@ -269,7 +268,7 @@ class IndexCalculation:
self.nir + (self.green + self.red)
)
- def RBNDVI(self):
+ def rbndvi(self):
"""
self.red-self.blue NDVI
https://www.indexdatabase.de/db/i-single.php?id=187
@@ -277,7 +276,7 @@ class IndexCalculation:
"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
- def PNDVI(self):
+ def pndvi(self):
"""
Pan NDVI
https://www.indexdatabase.de/db/i-single.php?id=188
@@ -287,7 +286,7 @@ class IndexCalculation:
self.nir + (self.green + self.red + self.blue)
)
- def ATSAVI(self, X=0.08, a=1.22, b=0.03):
+ def atsavi(self, x=0.08, a=1.22, b=0.03):
"""
Adjusted transformed soil-adjusted VI
https://www.indexdatabase.de/db/i-single.php?id=209
@@ -295,10 +294,10 @@ class IndexCalculation:
"""
return a * (
(self.nir - a * self.red - b)
- / (a * self.nir + self.red - a * b + X * (1 + a**2))
+ / (a * self.nir + self.red - a * b + x * (1 + a**2))
)
- def BWDRVI(self):
+ def bwdrvi(self):
"""
self.blue-wide dynamic range vegetation index
https://www.indexdatabase.de/db/i-single.php?id=136
@@ -306,7 +305,7 @@ class IndexCalculation:
"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
- def CIgreen(self):
+ def ci_green(self):
"""
Chlorophyll Index self.green
https://www.indexdatabase.de/db/i-single.php?id=128
@@ -314,7 +313,7 @@ class IndexCalculation:
"""
return (self.nir / self.green) - 1
- def CIrededge(self):
+ def ci_rededge(self):
"""
Chlorophyll Index self.redEdge
https://www.indexdatabase.de/db/i-single.php?id=131
@@ -322,7 +321,7 @@ class IndexCalculation:
"""
return (self.nir / self.redEdge) - 1
- def CI(self):
+ def ci(self):
"""
Coloration Index
https://www.indexdatabase.de/db/i-single.php?id=11
@@ -330,16 +329,16 @@ class IndexCalculation:
"""
return (self.red - self.blue) / self.red
- def CTVI(self):
+ def ctvi(self):
"""
Corrected Transformed Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=244
:return: index
"""
- ndvi = self.NDVI()
+ ndvi = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2))
- def GDVI(self):
+ def gdvi(self):
"""
Difference self.nir/self.green self.green Difference Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=27
@@ -347,7 +346,7 @@ class IndexCalculation:
"""
return self.nir - self.green
- def EVI(self):
+ def evi(self):
"""
Enhanced Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=16
@@ -357,7 +356,7 @@ class IndexCalculation:
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
- def GEMI(self):
+ def gemi(self):
"""
Global Environment Monitoring Index
https://www.indexdatabase.de/db/i-single.php?id=25
@@ -368,25 +367,25 @@ class IndexCalculation:
)
return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red)
- def GOSAVI(self, Y=0.16):
+ def gosavi(self, y=0.16):
"""
self.green Optimized Soil Adjusted Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=29
mit Y = 0,16
:return: index
"""
- return (self.nir - self.green) / (self.nir + self.green + Y)
+ return (self.nir - self.green) / (self.nir + self.green + y)
- def GSAVI(self, L=0.5):
+ def gsavi(self, n=0.5):
"""
self.green Soil Adjusted Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=31
- mit L = 0,5
+ mit N = 0,5
:return: index
"""
- return ((self.nir - self.green) / (self.nir + self.green + L)) * (1 + L)
+ return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
- def Hue(self):
+ def hue(self):
"""
Hue
https://www.indexdatabase.de/db/i-single.php?id=34
@@ -396,7 +395,7 @@ class IndexCalculation:
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)
)
- def IVI(self, a=None, b=None):
+ def ivi(self, a=None, b=None):
"""
Ideal vegetation index
https://www.indexdatabase.de/db/i-single.php?id=276
@@ -406,15 +405,15 @@ class IndexCalculation:
"""
return (self.nir - b) / (a * self.red)
- def IPVI(self):
+ def ipvi(self):
"""
Infraself.red percentage vegetation index
https://www.indexdatabase.de/db/i-single.php?id=35
:return: index
"""
- return (self.nir / ((self.nir + self.red) / 2)) * (self.NDVI() + 1)
+ return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
- def I(self): # noqa: E741,E743
+ def i(self):
"""
Intensity
https://www.indexdatabase.de/db/i-single.php?id=36
@@ -422,7 +421,7 @@ class IndexCalculation:
"""
return (self.red + self.green + self.blue) / 30.5
- def RVI(self):
+ def rvi(self):
"""
Ratio-Vegetation-Index
http://www.seos-project.eu/modules/remotesensing/remotesensing-c03-s01-p01.html
@@ -430,15 +429,15 @@ class IndexCalculation:
"""
return self.nir / self.red
- def MRVI(self):
+ def mrvi(self):
"""
Modified Normalized Difference Vegetation Index RVI
https://www.indexdatabase.de/db/i-single.php?id=275
:return: index
"""
- return (self.RVI() - 1) / (self.RVI() + 1)
+ return (self.rvi() - 1) / (self.rvi() + 1)
- def MSAVI(self):
+ def m_savi(self):
"""
Modified Soil Adjusted Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=44
@@ -449,7 +448,7 @@ class IndexCalculation:
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
- def NormG(self):
+ def norm_g(self):
"""
Norm G
https://www.indexdatabase.de/db/i-single.php?id=50
@@ -457,7 +456,7 @@ class IndexCalculation:
"""
return self.green / (self.nir + self.red + self.green)
- def NormNIR(self):
+ def norm_nir(self):
"""
Norm self.nir
https://www.indexdatabase.de/db/i-single.php?id=51
@@ -465,7 +464,7 @@ class IndexCalculation:
"""
return self.nir / (self.nir + self.red + self.green)
- def NormR(self):
+ def norm_r(self):
"""
Norm R
https://www.indexdatabase.de/db/i-single.php?id=52
@@ -473,7 +472,7 @@ class IndexCalculation:
"""
return self.red / (self.nir + self.red + self.green)
- def NGRDI(self):
+ def ngrdi(self):
"""
Normalized Difference self.green/self.red Normalized self.green self.red
difference index, Visible Atmospherically Resistant Indices self.green
@@ -483,7 +482,7 @@ class IndexCalculation:
"""
return (self.green - self.red) / (self.green + self.red)
- def RI(self):
+ def ri(self):
"""
Normalized Difference self.red/self.green self.redness Index
https://www.indexdatabase.de/db/i-single.php?id=74
@@ -491,17 +490,17 @@ class IndexCalculation:
"""
return (self.red - self.green) / (self.red + self.green)
- def S(self):
+ def s(self):
"""
Saturation
https://www.indexdatabase.de/db/i-single.php?id=77
:return: index
"""
- max = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
- min = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
- return (max - min) / max
+ max_value = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)])
+ min_value = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)])
+ return (max_value - min_value) / max_value
- def IF(self):
+ def _if(self):
"""
Shape Index
https://www.indexdatabase.de/db/i-single.php?id=79
@@ -509,7 +508,7 @@ class IndexCalculation:
"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
- def DVI(self):
+ def dvi(self):
"""
Simple Ratio self.nir/self.red Difference Vegetation Index, Vegetation Index
Number (VIN)
@@ -518,15 +517,15 @@ class IndexCalculation:
"""
return self.nir / self.red
- def TVI(self):
+ def tvi(self):
"""
Transformed Vegetation Index
https://www.indexdatabase.de/db/i-single.php?id=98
:return: index
"""
- return (self.NDVI() + 0.5) ** (1 / 2)
+ return (self.ndvi() + 0.5) ** (1 / 2)
- def NDRE(self):
+ def ndre(self):
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
diff --git a/digital_image_processing/morphological_operations/dilation_operation.py b/digital_image_processing/morphological_operations/dilation_operation.py
index 274880b0a..e49b955c1 100644
--- a/digital_image_processing/morphological_operations/dilation_operation.py
+++ b/digital_image_processing/morphological_operations/dilation_operation.py
@@ -1,41 +1,43 @@
+from pathlib import Path
+
import numpy as np
from PIL import Image
-def rgb2gray(rgb: np.array) -> np.array:
+def rgb_to_gray(rgb: np.ndarray) -> np.ndarray:
"""
Return gray image from rgb image
- >>> rgb2gray(np.array([[[127, 255, 0]]]))
+ >>> rgb_to_gray(np.array([[[127, 255, 0]]]))
array([[187.6453]])
- >>> rgb2gray(np.array([[[0, 0, 0]]]))
+ >>> rgb_to_gray(np.array([[[0, 0, 0]]]))
array([[0.]])
- >>> rgb2gray(np.array([[[2, 4, 1]]]))
+ >>> rgb_to_gray(np.array([[[2, 4, 1]]]))
array([[3.0598]])
- >>> rgb2gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]]))
+ >>> rgb_to_gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]]))
array([[159.0524, 90.0635, 117.6989]])
"""
r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2989 * r + 0.5870 * g + 0.1140 * b
-def gray2binary(gray: np.array) -> np.array:
+def gray_to_binary(gray: np.ndarray) -> np.ndarray:
"""
Return binary image from gray image
- >>> gray2binary(np.array([[127, 255, 0]]))
+ >>> gray_to_binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
- >>> gray2binary(np.array([[0]]))
+ >>> gray_to_binary(np.array([[0]]))
array([[False]])
- >>> gray2binary(np.array([[26.2409, 4.9315, 1.4729]]))
+ >>> gray_to_binary(np.array([[26.2409, 4.9315, 1.4729]]))
array([[False, False, False]])
- >>> gray2binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]]))
+ >>> gray_to_binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]]))
array([[False, True, False],
[False, True, False],
[False, True, False]])
"""
- return (127 < gray) & (gray <= 255)
+ return (gray > 127) & (gray <= 255)
-def dilation(image: np.array, kernel: np.array) -> np.array:
+def dilation(image: np.ndarray, kernel: np.ndarray) -> np.ndarray:
"""
Return dilated image
>>> dilation(np.array([[True, False, True]]), np.array([[0, 1, 0]]))
@@ -61,14 +63,13 @@ def dilation(image: np.array, kernel: np.array) -> np.array:
return output
-# kernel to be applied
-structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
-
-
if __name__ == "__main__":
# read original image
- image = np.array(Image.open(r"..\image_data\lena.jpg"))
- output = dilation(gray2binary(rgb2gray(image)), structuring_element)
+ lena_path = Path(__file__).resolve().parent / "image_data" / "lena.jpg"
+ lena = np.array(Image.open(lena_path))
+ # kernel to be applied
+ structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
+ output = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
pil_img = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png")
diff --git a/digital_image_processing/morphological_operations/erosion_operation.py b/digital_image_processing/morphological_operations/erosion_operation.py
index 4b0a5eee8..c0e1ef847 100644
--- a/digital_image_processing/morphological_operations/erosion_operation.py
+++ b/digital_image_processing/morphological_operations/erosion_operation.py
@@ -21,6 +21,7 @@ def rgb2gray(rgb: np.array) -> np.array:
def gray2binary(gray: np.array) -> np.array:
"""
Return binary image from gray image
+
>>> gray2binary(np.array([[127, 255, 0]]))
array([[False, True, False]])
>>> gray2binary(np.array([[0]]))
@@ -32,7 +33,7 @@ def gray2binary(gray: np.array) -> np.array:
[False, True, False],
[False, True, False]])
"""
- return (127 < gray) & (gray <= 255)
+ return (gray > 127) & (gray <= 255)
def erosion(image: np.array, kernel: np.array) -> np.array:
diff --git a/digital_image_processing/rotation/rotation.py b/digital_image_processing/rotation/rotation.py
index 958d16faf..0f5e36ddd 100644
--- a/digital_image_processing/rotation/rotation.py
+++ b/digital_image_processing/rotation/rotation.py
@@ -10,12 +10,12 @@ def get_rotation(
) -> np.ndarray:
"""
Get image rotation
- :param img: np.array
+ :param img: np.ndarray
:param pt1: 3x2 list
:param pt2: 3x2 list
:param rows: columns image shape
:param cols: rows image shape
- :return: np.array
+ :return: np.ndarray
"""
matrix = cv2.getAffineTransform(pt1, pt2)
return cv2.warpAffine(img, matrix, (rows, cols))
diff --git a/digital_image_processing/test_digital_image_processing.py b/digital_image_processing/test_digital_image_processing.py
index 1f42fddf2..fee7ab247 100644
--- a/digital_image_processing/test_digital_image_processing.py
+++ b/digital_image_processing/test_digital_image_processing.py
@@ -10,7 +10,7 @@ from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
-from digital_image_processing.edge_detection import canny as canny
+from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
@@ -62,8 +62,8 @@ def test_gen_gaussian_kernel_filter():
def test_convolve_filter():
# laplace diagonals
- Laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
- res = conv.img_convolve(gray, Laplace).astype(uint8)
+ laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
+ res = conv.img_convolve(gray, laplace).astype(uint8)
assert res.any()
@@ -96,7 +96,7 @@ def test_nearest_neighbour(
def test_local_binary_pattern():
- file_path: str = "digital_image_processing/image_data/lena.jpg"
+ file_path = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
image = imread(file_path, 0)
diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py
index 72da11639..1d1bf301d 100644
--- a/divide_and_conquer/convex_hull.py
+++ b/divide_and_conquer/convex_hull.py
@@ -174,12 +174,12 @@ def _validate_input(points: list[Point] | list[list[float]]) -> list[Point]:
"""
if not hasattr(points, "__iter__"):
- raise ValueError(
- f"Expecting an iterable object but got an non-iterable type {points}"
- )
+ msg = f"Expecting an iterable object but got an non-iterable type {points}"
+ raise ValueError(msg)
if not points:
- raise ValueError(f"Expecting a list of points but got {points}")
+ msg = f"Expecting a list of points but got {points}"
+ raise ValueError(msg)
return _construct_points(points)
@@ -266,7 +266,7 @@ def convex_hull_bf(points: list[Point]) -> list[Point]:
points_left_of_ij = points_right_of_ij = False
ij_part_of_convex_hull = True
for k in range(n):
- if k != i and k != j:
+ if k not in {i, j}:
det_k = _det(points[i], points[j], points[k])
if det_k > 0:
@@ -458,16 +458,16 @@ def convex_hull_melkman(points: list[Point]) -> list[Point]:
convex_hull[1] = points[i]
i += 1
- for i in range(i, n):
+ for j in range(i, n):
if (
- _det(convex_hull[0], convex_hull[-1], points[i]) > 0
+ _det(convex_hull[0], convex_hull[-1], points[j]) > 0
and _det(convex_hull[-1], convex_hull[0], points[1]) < 0
):
# The point lies within the convex hull
continue
- convex_hull.insert(0, points[i])
- convex_hull.append(points[i])
+ convex_hull.insert(0, points[j])
+ convex_hull.append(points[j])
while _det(convex_hull[0], convex_hull[1], convex_hull[2]) >= 0:
del convex_hull[1]
while _det(convex_hull[-1], convex_hull[-2], convex_hull[-3]) <= 0:
diff --git a/divide_and_conquer/inversions.py b/divide_and_conquer/inversions.py
index e20d35dac..35f78fe5c 100644
--- a/divide_and_conquer/inversions.py
+++ b/divide_and_conquer/inversions.py
@@ -63,18 +63,18 @@ def count_inversions_recursive(arr):
if len(arr) <= 1:
return arr, 0
mid = len(arr) // 2
- P = arr[0:mid]
- Q = arr[mid:]
+ p = arr[0:mid]
+ q = arr[mid:]
- A, inversion_p = count_inversions_recursive(P)
- B, inversions_q = count_inversions_recursive(Q)
- C, cross_inversions = _count_cross_inversions(A, B)
+ a, inversion_p = count_inversions_recursive(p)
+ b, inversions_q = count_inversions_recursive(q)
+ c, cross_inversions = _count_cross_inversions(a, b)
num_inversions = inversion_p + inversions_q + cross_inversions
- return C, num_inversions
+ return c, num_inversions
-def _count_cross_inversions(P, Q):
+def _count_cross_inversions(p, q):
"""
Counts the inversions across two sorted arrays.
And combine the two arrays into one sorted array
@@ -96,26 +96,26 @@ def _count_cross_inversions(P, Q):
([1, 2, 3, 3, 4, 5], 0)
"""
- R = []
+ r = []
i = j = num_inversion = 0
- while i < len(P) and j < len(Q):
- if P[i] > Q[j]:
+ while i < len(p) and j < len(q):
+ if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
- num_inversion += len(P) - i
- R.append(Q[j])
+ num_inversion += len(p) - i
+ r.append(q[j])
j += 1
else:
- R.append(P[i])
+ r.append(p[i])
i += 1
- if i < len(P):
- R.extend(P[i:])
+ if i < len(p):
+ r.extend(p[i:])
else:
- R.extend(Q[j:])
+ r.extend(q[j:])
- return R, num_inversion
+ return r, num_inversion
def main():
diff --git a/divide_and_conquer/max_subarray.py b/divide_and_conquer/max_subarray.py
new file mode 100644
index 000000000..851ef621a
--- /dev/null
+++ b/divide_and_conquer/max_subarray.py
@@ -0,0 +1,112 @@
+"""
+The maximum subarray problem is the task of finding the continuous subarray that has the
+maximum sum within a given array of numbers. For example, given the array
+[-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum is
+[4, -1, 2, 1], which has a sum of 6.
+
+This divide-and-conquer algorithm finds the maximum subarray in O(n log n) time.
+"""
+from __future__ import annotations
+
+import time
+from collections.abc import Sequence
+from random import randint
+
+from matplotlib import pyplot as plt
+
+
+def max_subarray(
+ arr: Sequence[float], low: int, high: int
+) -> tuple[int | None, int | None, float]:
+ """
+ Solves the maximum subarray problem using divide and conquer.
+ :param arr: the given array of numbers
+ :param low: the start index
+ :param high: the end index
+ :return: the start index of the maximum subarray, the end index of the
+ maximum subarray, and the maximum subarray sum
+
+ >>> nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
+ >>> max_subarray(nums, 0, len(nums) - 1)
+ (3, 6, 6)
+ >>> nums = [2, 8, 9]
+ >>> max_subarray(nums, 0, len(nums) - 1)
+ (0, 2, 19)
+ >>> nums = [0, 0]
+ >>> max_subarray(nums, 0, len(nums) - 1)
+ (0, 0, 0)
+ >>> nums = [-1.0, 0.0, 1.0]
+ >>> max_subarray(nums, 0, len(nums) - 1)
+ (2, 2, 1.0)
+ >>> nums = [-2, -3, -1, -4, -6]
+ >>> max_subarray(nums, 0, len(nums) - 1)
+ (2, 2, -1)
+ >>> max_subarray([], 0, 0)
+ (None, None, 0)
+ """
+ if not arr:
+ return None, None, 0
+ if low == high:
+ return low, high, arr[low]
+
+ mid = (low + high) // 2
+ left_low, left_high, left_sum = max_subarray(arr, low, mid)
+ right_low, right_high, right_sum = max_subarray(arr, mid + 1, high)
+ cross_left, cross_right, cross_sum = max_cross_sum(arr, low, mid, high)
+ if left_sum >= right_sum and left_sum >= cross_sum:
+ return left_low, left_high, left_sum
+ elif right_sum >= left_sum and right_sum >= cross_sum:
+ return right_low, right_high, right_sum
+ return cross_left, cross_right, cross_sum
+
+
+def max_cross_sum(
+ arr: Sequence[float], low: int, mid: int, high: int
+) -> tuple[int, int, float]:
+ left_sum, max_left = float("-inf"), -1
+ right_sum, max_right = float("-inf"), -1
+
+ summ: int | float = 0
+ for i in range(mid, low - 1, -1):
+ summ += arr[i]
+ if summ > left_sum:
+ left_sum = summ
+ max_left = i
+
+ summ = 0
+ for i in range(mid + 1, high + 1):
+ summ += arr[i]
+ if summ > right_sum:
+ right_sum = summ
+ max_right = i
+
+ return max_left, max_right, (left_sum + right_sum)
+
+
+def time_max_subarray(input_size: int) -> float:
+ arr = [randint(1, input_size) for _ in range(input_size)]
+ start = time.time()
+ max_subarray(arr, 0, input_size - 1)
+ end = time.time()
+ return end - start
+
+
+def plot_runtimes() -> None:
+ input_sizes = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
+ runtimes = [time_max_subarray(input_size) for input_size in input_sizes]
+ print("No of Inputs\t\tTime Taken")
+ for input_size, runtime in zip(input_sizes, runtimes):
+ print(input_size, "\t\t", runtime)
+ plt.plot(input_sizes, runtimes)
+ plt.xlabel("Number of Inputs")
+ plt.ylabel("Time taken in seconds")
+ plt.show()
+
+
+if __name__ == "__main__":
+ """
+ A random simulation of this algorithm.
+ """
+ from doctest import testmod
+
+ testmod()
diff --git a/divide_and_conquer/max_subarray_sum.py b/divide_and_conquer/max_subarray_sum.py
deleted file mode 100644
index 43f58086e..000000000
--- a/divide_and_conquer/max_subarray_sum.py
+++ /dev/null
@@ -1,76 +0,0 @@
-"""
-Given a array of length n, max_subarray_sum() finds
-the maximum of sum of contiguous sub-array using divide and conquer method.
-
-Time complexity : O(n log n)
-
-Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION
-(section : 4, sub-section : 4.1, page : 70)
-
-"""
-
-
-def max_sum_from_start(array):
- """This function finds the maximum contiguous sum of array from 0 index
-
- Parameters :
- array (list[int]) : given array
-
- Returns :
- max_sum (int) : maximum contiguous sum of array from 0 index
-
- """
- array_sum = 0
- max_sum = float("-inf")
- for num in array:
- array_sum += num
- if array_sum > max_sum:
- max_sum = array_sum
- return max_sum
-
-
-def max_cross_array_sum(array, left, mid, right):
- """This function finds the maximum contiguous sum of left and right arrays
-
- Parameters :
- array, left, mid, right (list[int], int, int, int)
-
- Returns :
- (int) : maximum of sum of contiguous sum of left and right arrays
-
- """
-
- max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1])
- max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1])
- return max_sum_of_left + max_sum_of_right
-
-
-def max_subarray_sum(array, left, right):
- """Maximum contiguous sub-array sum, using divide and conquer method
-
- Parameters :
- array, left, right (list[int], int, int) :
- given array, current left index and current right index
-
- Returns :
- int : maximum of sum of contiguous sub-array
-
- """
-
- # base case: array has only one element
- if left == right:
- return array[right]
-
- # Recursion
- mid = (left + right) // 2
- left_half_sum = max_subarray_sum(array, left, mid)
- right_half_sum = max_subarray_sum(array, mid + 1, right)
- cross_sum = max_cross_array_sum(array, left, mid, right)
- return max(left_half_sum, right_half_sum, cross_sum)
-
-
-array = [-2, -5, 6, -2, -3, 1, 5, -6]
-array_length = len(array)
-print(
- "Maximum sum of contiguous subarray:", max_subarray_sum(array, 0, array_length - 1)
-)
diff --git a/divide_and_conquer/strassen_matrix_multiplication.py b/divide_and_conquer/strassen_matrix_multiplication.py
index 17efcfc7c..cbfc7e565 100644
--- a/divide_and_conquer/strassen_matrix_multiplication.py
+++ b/divide_and_conquer/strassen_matrix_multiplication.py
@@ -68,8 +68,7 @@ def matrix_dimensions(matrix: list) -> tuple[int, int]:
def print_matrix(matrix: list) -> None:
- for i in range(len(matrix)):
- print(matrix[i])
+ print("\n".join(str(line) for line in matrix))
def actual_strassen(matrix_a: list, matrix_b: list) -> list:
@@ -113,17 +112,19 @@ def strassen(matrix1: list, matrix2: list) -> list:
[[139, 163], [121, 134], [100, 121]]
"""
if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]:
- raise Exception(
- "Unable to multiply these matrices, please check the dimensions. \n"
- f"Matrix A:{matrix1} \nMatrix B:{matrix2}"
+ msg = (
+ "Unable to multiply these matrices, please check the dimensions.\n"
+ f"Matrix A: {matrix1}\n"
+ f"Matrix B: {matrix2}"
)
+ raise Exception(msg)
dimension1 = matrix_dimensions(matrix1)
dimension2 = matrix_dimensions(matrix2)
if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]:
return [matrix1, matrix2]
- maximum = max(max(dimension1), max(dimension2))
+ maximum = max(*dimension1, *dimension2)
maxim = int(math.pow(2, math.ceil(math.log2(maximum))))
new_matrix1 = matrix1
new_matrix2 = matrix2
@@ -132,12 +133,12 @@ def strassen(matrix1: list, matrix2: list) -> list:
# power of 2
for i in range(0, maxim):
if i < dimension1[0]:
- for j in range(dimension1[1], maxim):
+ for _ in range(dimension1[1], maxim):
new_matrix1[i].append(0)
else:
new_matrix1.append([0] * maxim)
if i < dimension2[0]:
- for j in range(dimension2[1], maxim):
+ for _ in range(dimension2[1], maxim):
new_matrix2[i].append(0)
else:
new_matrix2.append([0] * maxim)
@@ -147,7 +148,7 @@ def strassen(matrix1: list, matrix2: list) -> list:
# Removing the additional zeros
for i in range(0, maxim):
if i < dimension1[0]:
- for j in range(dimension2[1], maxim):
+ for _ in range(dimension2[1], maxim):
final_matrix[i].pop()
else:
final_matrix.pop()
diff --git a/dynamic_programming/all_construct.py b/dynamic_programming/all_construct.py
index 5ffed2caa..6e53a702c 100644
--- a/dynamic_programming/all_construct.py
+++ b/dynamic_programming/all_construct.py
@@ -21,7 +21,7 @@ def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[
table_size: int = len(target) + 1
table: list[list[list[str]]] = []
- for i in range(table_size):
+ for _ in range(table_size):
table.append([])
# seed value
table[0] = [[]] # because empty string has empty combination
@@ -34,7 +34,7 @@ def all_construct(target: str, word_bank: list[str] | None = None) -> list[list[
# slice condition
if target[i : i + len(word)] == word:
new_combinations: list[list[str]] = [
- [word] + way for way in table[i]
+ [word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
diff --git a/dynamic_programming/bitmask.py b/dynamic_programming/bitmask.py
index 2994db5b5..56bb8e96b 100644
--- a/dynamic_programming/bitmask.py
+++ b/dynamic_programming/bitmask.py
@@ -13,7 +13,6 @@ from collections import defaultdict
class AssignmentUsingBitmask:
def __init__(self, task_performed, total):
-
self.total_tasks = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
@@ -28,8 +27,7 @@ class AssignmentUsingBitmask:
# to 1
self.final_mask = (1 << len(task_performed)) - 1
- def CountWaysUtil(self, mask, task_no):
-
+ def count_ways_until(self, mask, task_no):
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
@@ -43,45 +41,42 @@ class AssignmentUsingBitmask:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
- total_ways_util = self.CountWaysUtil(mask, task_no + 1)
+ total_ways_util = self.count_ways_until(mask, task_no + 1)
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
-
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
- total_ways_util += self.CountWaysUtil(mask | (1 << p), task_no + 1)
+ total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1)
# save the value.
self.dp[mask][task_no] = total_ways_util
return self.dp[mask][task_no]
- def countNoOfWays(self, task_performed):
-
+ def count_no_of_ways(self, task_performed):
# Store the list of persons for each task
for i in range(len(task_performed)):
for j in task_performed[i]:
self.task[j].append(i)
# call the function to fill the DP table, final answer is stored in dp[0][1]
- return self.CountWaysUtil(0, 1)
+ return self.count_ways_until(0, 1)
if __name__ == "__main__":
-
total_tasks = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
task_performed = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
- AssignmentUsingBitmask(task_performed, total_tasks).countNoOfWays(
+ AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
diff --git a/dynamic_programming/climbing_stairs.py b/dynamic_programming/climbing_stairs.py
index 048d57aed..d6273d025 100644
--- a/dynamic_programming/climbing_stairs.py
+++ b/dynamic_programming/climbing_stairs.py
@@ -1,20 +1,20 @@
#!/usr/bin/env python3
-def climb_stairs(n: int) -> int:
+def climb_stairs(number_of_steps: int) -> int:
"""
LeetCdoe No.70: Climbing Stairs
- Distinct ways to climb a n step staircase where
- each time you can either climb 1 or 2 steps.
+ Distinct ways to climb a number_of_steps staircase where each time you can either
+ climb 1 or 2 steps.
Args:
- n: number of steps of staircase
+ number_of_steps: number of steps on the staircase
Returns:
- Distinct ways to climb a n step staircase
+ Distinct ways to climb a number_of_steps staircase
Raises:
- AssertionError: n not positive integer
+ AssertionError: number_of_steps not positive integer
>>> climb_stairs(3)
3
@@ -23,18 +23,17 @@ def climb_stairs(n: int) -> int:
>>> climb_stairs(-7) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
- AssertionError: n needs to be positive integer, your input -7
+ AssertionError: number_of_steps needs to be positive integer, your input -7
"""
assert (
- isinstance(n, int) and n > 0
- ), f"n needs to be positive integer, your input {n}"
- if n == 1:
+ isinstance(number_of_steps, int) and number_of_steps > 0
+ ), f"number_of_steps needs to be positive integer, your input {number_of_steps}"
+ if number_of_steps == 1:
return 1
- dp = [0] * (n + 1)
- dp[0], dp[1] = (1, 1)
- for i in range(2, n + 1):
- dp[i] = dp[i - 1] + dp[i - 2]
- return dp[n]
+ previous, current = 1, 1
+ for _ in range(number_of_steps - 1):
+ current, previous = current + previous, current
+ return current
if __name__ == "__main__":
diff --git a/dynamic_programming/combination_sum_iv.py b/dynamic_programming/combination_sum_iv.py
new file mode 100644
index 000000000..b2aeb0824
--- /dev/null
+++ b/dynamic_programming/combination_sum_iv.py
@@ -0,0 +1,102 @@
+"""
+Question:
+You are given an array of distinct integers and you have to tell how many
+different ways of selecting the elements from the array are there such that
+the sum of chosen elements is equal to the target number tar.
+
+Example
+
+Input:
+N = 3
+target = 5
+array = [1, 2, 5]
+
+Output:
+9
+
+Approach:
+The basic idea is to go over recursively to find the way such that the sum
+of chosen elements is “tar”. For every element, we have two choices
+ 1. Include the element in our set of chosen elements.
+ 2. Don’t include the element in our set of chosen elements.
+"""
+
+
+def combination_sum_iv(n: int, array: list[int], target: int) -> int:
+ """
+ Function checks the all possible combinations, and returns the count
+ of possible combination in exponential Time Complexity.
+
+ >>> combination_sum_iv(3, [1,2,5], 5)
+ 9
+ """
+
+ def count_of_possible_combinations(target: int) -> int:
+ if target < 0:
+ return 0
+ if target == 0:
+ return 1
+ return sum(count_of_possible_combinations(target - item) for item in array)
+
+ return count_of_possible_combinations(target)
+
+
+def combination_sum_iv_dp_array(n: int, array: list[int], target: int) -> int:
+ """
+ Function checks the all possible combinations, and returns the count
+ of possible combination in O(N^2) Time Complexity as we are using Dynamic
+ programming array here.
+
+ >>> combination_sum_iv_dp_array(3, [1,2,5], 5)
+ 9
+ """
+
+ def count_of_possible_combinations_with_dp_array(
+ target: int, dp_array: list[int]
+ ) -> int:
+ if target < 0:
+ return 0
+ if target == 0:
+ return 1
+ if dp_array[target] != -1:
+ return dp_array[target]
+ answer = sum(
+ count_of_possible_combinations_with_dp_array(target - item, dp_array)
+ for item in array
+ )
+ dp_array[target] = answer
+ return answer
+
+ dp_array = [-1] * (target + 1)
+ return count_of_possible_combinations_with_dp_array(target, dp_array)
+
+
+def combination_sum_iv_bottom_up(n: int, array: list[int], target: int) -> int:
+ """
+ Function checks the all possible combinations with using bottom up approach,
+ and returns the count of possible combination in O(N^2) Time Complexity
+ as we are using Dynamic programming array here.
+
+ >>> combination_sum_iv_bottom_up(3, [1,2,5], 5)
+ 9
+ """
+
+ dp_array = [0] * (target + 1)
+ dp_array[0] = 1
+
+ for i in range(1, target + 1):
+ for j in range(n):
+ if i - array[j] >= 0:
+ dp_array[i] += dp_array[i - array[j]]
+
+ return dp_array[target]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ n = 3
+ target = 5
+ array = [1, 2, 5]
+ print(combination_sum_iv(n, array, target))
diff --git a/dynamic_programming/edit_distance.py b/dynamic_programming/edit_distance.py
index 56877e0c5..774aa0473 100644
--- a/dynamic_programming/edit_distance.py
+++ b/dynamic_programming/edit_distance.py
@@ -19,74 +19,72 @@ class EditDistance:
"""
def __init__(self):
- self.__prepare__()
+ self.word1 = ""
+ self.word2 = ""
+ self.dp = []
- def __prepare__(self, N=0, M=0):
- self.dp = [[-1 for y in range(0, M)] for x in range(0, N)]
-
- def __solveDP(self, x, y):
- if x == -1:
- return y + 1
- elif y == -1:
- return x + 1
- elif self.dp[x][y] > -1:
- return self.dp[x][y]
+ def __min_dist_top_down_dp(self, m: int, n: int) -> int:
+ if m == -1:
+ return n + 1
+ elif n == -1:
+ return m + 1
+ elif self.dp[m][n] > -1:
+ return self.dp[m][n]
else:
- if self.A[x] == self.B[y]:
- self.dp[x][y] = self.__solveDP(x - 1, y - 1)
+ if self.word1[m] == self.word2[n]:
+ self.dp[m][n] = self.__min_dist_top_down_dp(m - 1, n - 1)
else:
- self.dp[x][y] = 1 + min(
- self.__solveDP(x, y - 1),
- self.__solveDP(x - 1, y),
- self.__solveDP(x - 1, y - 1),
- )
+ insert = self.__min_dist_top_down_dp(m, n - 1)
+ delete = self.__min_dist_top_down_dp(m - 1, n)
+ replace = self.__min_dist_top_down_dp(m - 1, n - 1)
+ self.dp[m][n] = 1 + min(insert, delete, replace)
- return self.dp[x][y]
+ return self.dp[m][n]
- def solve(self, A, B):
- if isinstance(A, bytes):
- A = A.decode("ascii")
+ def min_dist_top_down(self, word1: str, word2: str) -> int:
+ """
+ >>> EditDistance().min_dist_top_down("intention", "execution")
+ 5
+ >>> EditDistance().min_dist_top_down("intention", "")
+ 9
+ >>> EditDistance().min_dist_top_down("", "")
+ 0
+ """
+ self.word1 = word1
+ self.word2 = word2
+ self.dp = [[-1 for _ in range(len(word2))] for _ in range(len(word1))]
- if isinstance(B, bytes):
- B = B.decode("ascii")
+ return self.__min_dist_top_down_dp(len(word1) - 1, len(word2) - 1)
- self.A = str(A)
- self.B = str(B)
+ def min_dist_bottom_up(self, word1: str, word2: str) -> int:
+ """
+ >>> EditDistance().min_dist_bottom_up("intention", "execution")
+ 5
+ >>> EditDistance().min_dist_bottom_up("intention", "")
+ 9
+ >>> EditDistance().min_dist_bottom_up("", "")
+ 0
+ """
+ self.word1 = word1
+ self.word2 = word2
+ m = len(word1)
+ n = len(word2)
+ self.dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
- self.__prepare__(len(A), len(B))
-
- return self.__solveDP(len(A) - 1, len(B) - 1)
-
-
-def min_distance_bottom_up(word1: str, word2: str) -> int:
- """
- >>> min_distance_bottom_up("intention", "execution")
- 5
- >>> min_distance_bottom_up("intention", "")
- 9
- >>> min_distance_bottom_up("", "")
- 0
- """
- m = len(word1)
- n = len(word2)
- dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
- for i in range(m + 1):
- for j in range(n + 1):
-
- if i == 0: # first string is empty
- dp[i][j] = j
- elif j == 0: # second string is empty
- dp[i][j] = i
- elif (
- word1[i - 1] == word2[j - 1]
- ): # last character of both substing is equal
- dp[i][j] = dp[i - 1][j - 1]
- else:
- insert = dp[i][j - 1]
- delete = dp[i - 1][j]
- replace = dp[i - 1][j - 1]
- dp[i][j] = 1 + min(insert, delete, replace)
- return dp[m][n]
+ for i in range(m + 1):
+ for j in range(n + 1):
+ if i == 0: # first string is empty
+ self.dp[i][j] = j
+ elif j == 0: # second string is empty
+ self.dp[i][j] = i
+ elif word1[i - 1] == word2[j - 1]: # last characters are equal
+ self.dp[i][j] = self.dp[i - 1][j - 1]
+ else:
+ insert = self.dp[i][j - 1]
+ delete = self.dp[i - 1][j]
+ replace = self.dp[i - 1][j - 1]
+ self.dp[i][j] = 1 + min(insert, delete, replace)
+ return self.dp[m][n]
if __name__ == "__main__":
@@ -99,7 +97,7 @@ if __name__ == "__main__":
S2 = input("Enter the second string: ").strip()
print()
- print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2)))
- print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2)))
+ print(f"The minimum edit distance is: {solver.min_dist_top_down(S1, S2)}")
+ print(f"The minimum edit distance is: {solver.min_dist_bottom_up(S1, S2)}")
print()
print("*************** End of Testing Edit Distance DP Algorithm ***************")
diff --git a/dynamic_programming/fibonacci.py b/dynamic_programming/fibonacci.py
index 4abc60d4f..c102493aa 100644
--- a/dynamic_programming/fibonacci.py
+++ b/dynamic_programming/fibonacci.py
@@ -18,14 +18,13 @@ class Fibonacci:
>>> Fibonacci().get(5)
[0, 1, 1, 2, 3]
"""
- difference = index - (len(self.sequence) - 2)
- if difference >= 1:
+ if (difference := index - (len(self.sequence) - 2)) >= 1:
for _ in range(difference):
self.sequence.append(self.sequence[-1] + self.sequence[-2])
return self.sequence[:index]
-def main():
+def main() -> None:
print(
"Fibonacci Series Using Dynamic Programming\n",
"Enter the index of the Fibonacci number you want to calculate ",
diff --git a/dynamic_programming/fizz_buzz.py b/dynamic_programming/fizz_buzz.py
new file mode 100644
index 000000000..e29116437
--- /dev/null
+++ b/dynamic_programming/fizz_buzz.py
@@ -0,0 +1,64 @@
+# https://en.wikipedia.org/wiki/Fizz_buzz#Programming
+
+
+def fizz_buzz(number: int, iterations: int) -> str:
+ """
+ Plays FizzBuzz.
+ Prints Fizz if number is a multiple of 3.
+ Prints Buzz if its a multiple of 5.
+ Prints FizzBuzz if its a multiple of both 3 and 5 or 15.
+ Else Prints The Number Itself.
+ >>> fizz_buzz(1,7)
+ '1 2 Fizz 4 Buzz Fizz 7 '
+ >>> fizz_buzz(1,0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Iterations must be done more than 0 times to play FizzBuzz
+ >>> fizz_buzz(-5,5)
+ Traceback (most recent call last):
+ ...
+ ValueError: starting number must be
+ and integer and be more than 0
+ >>> fizz_buzz(10,-5)
+ Traceback (most recent call last):
+ ...
+ ValueError: Iterations must be done more than 0 times to play FizzBuzz
+ >>> fizz_buzz(1.5,5)
+ Traceback (most recent call last):
+ ...
+ ValueError: starting number must be
+ and integer and be more than 0
+ >>> fizz_buzz(1,5.5)
+ Traceback (most recent call last):
+ ...
+ ValueError: iterations must be defined as integers
+ """
+ if not isinstance(iterations, int):
+ raise ValueError("iterations must be defined as integers")
+ if not isinstance(number, int) or not number >= 1:
+ raise ValueError(
+ """starting number must be
+ and integer and be more than 0"""
+ )
+ if not iterations >= 1:
+ raise ValueError("Iterations must be done more than 0 times to play FizzBuzz")
+
+ out = ""
+ while number <= iterations:
+ if number % 3 == 0:
+ out += "Fizz"
+ if number % 5 == 0:
+ out += "Buzz"
+ if 0 not in (number % 3, number % 5):
+ out += str(number)
+
+ # print(out)
+ number += 1
+ out += " "
+ return out
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/floyd_warshall.py b/dynamic_programming/floyd_warshall.py
index a4b6c6a82..614a3c72a 100644
--- a/dynamic_programming/floyd_warshall.py
+++ b/dynamic_programming/floyd_warshall.py
@@ -2,41 +2,41 @@ import math
class Graph:
- def __init__(self, N=0): # a graph with Node 0,1,...,N-1
- self.N = N
- self.W = [
- [math.inf for j in range(0, N)] for i in range(0, N)
+ def __init__(self, n=0): # a graph with Node 0,1,...,N-1
+ self.n = n
+ self.w = [
+ [math.inf for j in range(0, n)] for i in range(0, n)
] # adjacency matrix for weight
self.dp = [
- [math.inf for j in range(0, N)] for i in range(0, N)
+ [math.inf for j in range(0, n)] for i in range(0, n)
] # dp[i][j] stores minimum distance from i to j
- def addEdge(self, u, v, w):
+ def add_edge(self, u, v, w):
self.dp[u][v] = w
def floyd_warshall(self):
- for k in range(0, self.N):
- for i in range(0, self.N):
- for j in range(0, self.N):
+ for k in range(0, self.n):
+ for i in range(0, self.n):
+ for j in range(0, self.n):
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
- def showMin(self, u, v):
+ def show_min(self, u, v):
return self.dp[u][v]
if __name__ == "__main__":
graph = Graph(5)
- graph.addEdge(0, 2, 9)
- graph.addEdge(0, 4, 10)
- graph.addEdge(1, 3, 5)
- graph.addEdge(2, 3, 7)
- graph.addEdge(3, 0, 10)
- graph.addEdge(3, 1, 2)
- graph.addEdge(3, 2, 1)
- graph.addEdge(3, 4, 6)
- graph.addEdge(4, 1, 3)
- graph.addEdge(4, 2, 4)
- graph.addEdge(4, 3, 9)
+ graph.add_edge(0, 2, 9)
+ graph.add_edge(0, 4, 10)
+ graph.add_edge(1, 3, 5)
+ graph.add_edge(2, 3, 7)
+ graph.add_edge(3, 0, 10)
+ graph.add_edge(3, 1, 2)
+ graph.add_edge(3, 2, 1)
+ graph.add_edge(3, 4, 6)
+ graph.add_edge(4, 1, 3)
+ graph.add_edge(4, 2, 4)
+ graph.add_edge(4, 3, 9)
graph.floyd_warshall()
- graph.showMin(1, 4)
- graph.showMin(0, 3)
+ graph.show_min(1, 4)
+ graph.show_min(0, 3)
diff --git a/dynamic_programming/iterating_through_submasks.py b/dynamic_programming/iterating_through_submasks.py
index 21c64dba4..4d0a250e8 100644
--- a/dynamic_programming/iterating_through_submasks.py
+++ b/dynamic_programming/iterating_through_submasks.py
@@ -9,7 +9,6 @@ from __future__ import annotations
def list_of_submasks(mask: int) -> list[int]:
-
"""
Args:
mask : number which shows mask ( always integer > 0, zero does not have any
diff --git a/dynamic_programming/k_means_clustering_tensorflow.py_tf b/dynamic_programming/k_means_clustering_tensorflow.py
similarity index 98%
rename from dynamic_programming/k_means_clustering_tensorflow.py_tf
rename to dynamic_programming/k_means_clustering_tensorflow.py
index 4fbcedeaa..8d3f6f0df 100644
--- a/dynamic_programming/k_means_clustering_tensorflow.py_tf
+++ b/dynamic_programming/k_means_clustering_tensorflow.py
@@ -1,9 +1,10 @@
-import tensorflow as tf
from random import shuffle
+
+import tensorflow as tf
from numpy import array
-def TFKMeansCluster(vectors, noofclusters):
+def tf_k_means_cluster(vectors, noofclusters):
"""
K-Means Clustering using TensorFlow.
'vectors' should be a n*k 2-D NumPy array, where n is the number
@@ -30,7 +31,6 @@ def TFKMeansCluster(vectors, noofclusters):
graph = tf.Graph()
with graph.as_default():
-
# SESSION OF COMPUTATION
sess = tf.Session()
@@ -95,8 +95,7 @@ def TFKMeansCluster(vectors, noofclusters):
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
noofiterations = 100
- for iteration_n in range(noofiterations):
-
+ for _ in range(noofiterations):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
diff --git a/dynamic_programming/knapsack.py b/dynamic_programming/knapsack.py
index 804d7d4f1..489b5ada4 100644
--- a/dynamic_programming/knapsack.py
+++ b/dynamic_programming/knapsack.py
@@ -1,45 +1,45 @@
"""
Given weights and values of n items, put these items in a knapsack of
- capacity W to get the maximum total value in the knapsack.
+capacity W to get the maximum total value in the knapsack.
Note that only the integer weights 0-1 knapsack problem is solvable
- using dynamic programming.
+using dynamic programming.
"""
-def MF_knapsack(i, wt, val, j):
+def mf_knapsack(i, wt, val, j):
"""
This code involves the concept of memory functions. Here we solve the subproblems
which are needed unlike the below example
F is a 2D array with -1s filled up
"""
- global F # a global dp table for knapsack
- if F[i][j] < 0:
+ global f # a global dp table for knapsack
+ if f[i][j] < 0:
if j < wt[i - 1]:
- val = MF_knapsack(i - 1, wt, val, j)
+ val = mf_knapsack(i - 1, wt, val, j)
else:
val = max(
- MF_knapsack(i - 1, wt, val, j),
- MF_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1],
+ mf_knapsack(i - 1, wt, val, j),
+ mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1],
)
- F[i][j] = val
- return F[i][j]
+ f[i][j] = val
+ return f[i][j]
-def knapsack(W, wt, val, n):
- dp = [[0 for i in range(W + 1)] for j in range(n + 1)]
+def knapsack(w, wt, val, n):
+ dp = [[0] * (w + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
- for w in range(1, W + 1):
- if wt[i - 1] <= w:
- dp[i][w] = max(val[i - 1] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w])
+ for w_ in range(1, w + 1):
+ if wt[i - 1] <= w_:
+ dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_])
else:
- dp[i][w] = dp[i - 1][w]
+ dp[i][w_] = dp[i - 1][w_]
- return dp[n][W], dp
+ return dp[n][w_], dp
-def knapsack_with_example_solution(W: int, wt: list, val: list):
+def knapsack_with_example_solution(w: int, wt: list, val: list):
"""
Solves the integer weights knapsack problem returns one of
the several possible optimal subsets.
@@ -78,21 +78,22 @@ def knapsack_with_example_solution(W: int, wt: list, val: list):
num_items = len(wt)
if num_items != len(val):
- raise ValueError(
- "The number of weights must be the "
- "same as the number of values.\nBut "
- f"got {num_items} weights and {len(val)} values"
+ msg = (
+ "The number of weights must be the same as the number of values.\n"
+ f"But got {num_items} weights and {len(val)} values"
)
+ raise ValueError(msg)
for i in range(num_items):
if not isinstance(wt[i], int):
- raise TypeError(
- "All weights must be integers but "
- f"got weight of type {type(wt[i])} at index {i}"
+ msg = (
+ "All weights must be integers but got weight of "
+ f"type {type(wt[i])} at index {i}"
)
+ raise TypeError(msg)
- optimal_val, dp_table = knapsack(W, wt, val, num_items)
+ optimal_val, dp_table = knapsack(w, wt, val, num_items)
example_optional_set: set = set()
- _construct_solution(dp_table, wt, num_items, W, example_optional_set)
+ _construct_solution(dp_table, wt, num_items, w, example_optional_set)
return optimal_val, example_optional_set
@@ -108,7 +109,7 @@ def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set):
dp: list of list, the table of a solved integer weight dynamic programming problem
wt: list or tuple, the vector of weights of the items
- i: int, the index of the item under consideration
+ i: int, the index of the item under consideration
j: int, the current possible maximum weight
optimal_set: set, the optimal subset so far. This gets modified by the function.
@@ -136,10 +137,10 @@ if __name__ == "__main__":
wt = [4, 3, 2, 3]
n = 4
w = 6
- F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]
+ f = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
optimal_solution, _ = knapsack(w, wt, val, n)
print(optimal_solution)
- print(MF_knapsack(n, wt, val, w)) # switched the n and w
+ print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
diff --git a/dynamic_programming/longest_common_subsequence.py b/dynamic_programming/longest_common_subsequence.py
index fdcf3311a..178b4169b 100644
--- a/dynamic_programming/longest_common_subsequence.py
+++ b/dynamic_programming/longest_common_subsequence.py
@@ -38,36 +38,30 @@ def longest_common_subsequence(x: str, y: str):
n = len(y)
# declaring the array for storing the dp values
- L = [[0] * (n + 1) for _ in range(m + 1)]
+ l = [[0] * (n + 1) for _ in range(m + 1)] # noqa: E741
for i in range(1, m + 1):
for j in range(1, n + 1):
- if x[i - 1] == y[j - 1]:
- match = 1
- else:
- match = 0
+ match = 1 if x[i - 1] == y[j - 1] else 0
- L[i][j] = max(L[i - 1][j], L[i][j - 1], L[i - 1][j - 1] + match)
+ l[i][j] = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match)
seq = ""
i, j = m, n
while i > 0 and j > 0:
- if x[i - 1] == y[j - 1]:
- match = 1
- else:
- match = 0
+ match = 1 if x[i - 1] == y[j - 1] else 0
- if L[i][j] == L[i - 1][j - 1] + match:
+ if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
seq = x[i - 1] + seq
i -= 1
j -= 1
- elif L[i][j] == L[i - 1][j]:
+ elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
- return L[m][n], seq
+ return l[m][n], seq
if __name__ == "__main__":
diff --git a/dynamic_programming/longest_common_substring.py b/dynamic_programming/longest_common_substring.py
new file mode 100644
index 000000000..e2f944a5e
--- /dev/null
+++ b/dynamic_programming/longest_common_substring.py
@@ -0,0 +1,63 @@
+"""
+Longest Common Substring Problem Statement: Given two sequences, find the
+longest common substring present in both of them. A substring is
+necessarily continuous.
+Example: "abcdef" and "xabded" have two longest common substrings, "ab" or "de".
+Therefore, algorithm should return any one of them.
+"""
+
+
+def longest_common_substring(text1: str, text2: str) -> str:
+ """
+ Finds the longest common substring between two strings.
+ >>> longest_common_substring("", "")
+ ''
+ >>> longest_common_substring("a","")
+ ''
+ >>> longest_common_substring("", "a")
+ ''
+ >>> longest_common_substring("a", "a")
+ 'a'
+ >>> longest_common_substring("abcdef", "bcd")
+ 'bcd'
+ >>> longest_common_substring("abcdef", "xabded")
+ 'ab'
+ >>> longest_common_substring("GeeksforGeeks", "GeeksQuiz")
+ 'Geeks'
+ >>> longest_common_substring("abcdxyz", "xyzabcd")
+ 'abcd'
+ >>> longest_common_substring("zxabcdezy", "yzabcdezx")
+ 'abcdez'
+ >>> longest_common_substring("OldSite:GeeksforGeeks.org", "NewSite:GeeksQuiz.com")
+ 'Site:Geeks'
+ >>> longest_common_substring(1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: longest_common_substring() takes two strings for inputs
+ """
+
+ if not (isinstance(text1, str) and isinstance(text2, str)):
+ raise ValueError("longest_common_substring() takes two strings for inputs")
+
+ text1_length = len(text1)
+ text2_length = len(text2)
+
+ dp = [[0] * (text2_length + 1) for _ in range(text1_length + 1)]
+ ans_index = 0
+ ans_length = 0
+
+ for i in range(1, text1_length + 1):
+ for j in range(1, text2_length + 1):
+ if text1[i - 1] == text2[j - 1]:
+ dp[i][j] = 1 + dp[i - 1][j - 1]
+ if dp[i][j] > ans_length:
+ ans_index = i
+ ans_length = dp[i][j]
+
+ return text1[ans_index - ans_length : ans_index]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/longest_increasing_subsequence.py b/dynamic_programming/longest_increasing_subsequence.py
index a029f9be7..d82789376 100644
--- a/dynamic_programming/longest_increasing_subsequence.py
+++ b/dynamic_programming/longest_increasing_subsequence.py
@@ -34,12 +34,12 @@ def longest_subsequence(array: list[int]) -> list[int]: # This function is recu
return array
# Else
pivot = array[0]
- isFound = False
+ is_found = False
i = 1
longest_subseq: list[int] = []
- while not isFound and i < array_length:
+ while not is_found and i < array_length:
if array[i] < pivot:
- isFound = True
+ is_found = True
temp_array = [element for element in array[i:] if element >= array[i]]
temp_array = longest_subsequence(temp_array)
if len(temp_array) > len(longest_subseq):
@@ -48,7 +48,7 @@ def longest_subsequence(array: list[int]) -> list[int]: # This function is recu
i += 1
temp_array = [element for element in array[1:] if element >= pivot]
- temp_array = [pivot] + longest_subsequence(temp_array)
+ temp_array = [pivot, *longest_subsequence(temp_array)]
if len(temp_array) > len(longest_subseq):
return temp_array
else:
diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py
index af536f8bb..5e11d729f 100644
--- a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py
+++ b/dynamic_programming/longest_increasing_subsequence_o(nlogn).py
@@ -7,7 +7,7 @@
from __future__ import annotations
-def CeilIndex(v, l, r, key): # noqa: E741
+def ceil_index(v, l, r, key): # noqa: E741
while r - l > 1:
m = (l + r) // 2
if v[m] >= key:
@@ -17,16 +17,16 @@ def CeilIndex(v, l, r, key): # noqa: E741
return r
-def LongestIncreasingSubsequenceLength(v: list[int]) -> int:
+def longest_increasing_subsequence_length(v: list[int]) -> int:
"""
- >>> LongestIncreasingSubsequenceLength([2, 5, 3, 7, 11, 8, 10, 13, 6])
+ >>> longest_increasing_subsequence_length([2, 5, 3, 7, 11, 8, 10, 13, 6])
6
- >>> LongestIncreasingSubsequenceLength([])
+ >>> longest_increasing_subsequence_length([])
0
- >>> LongestIncreasingSubsequenceLength([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3,
- ... 11, 7, 15])
+ >>> longest_increasing_subsequence_length([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13,
+ ... 3, 11, 7, 15])
6
- >>> LongestIncreasingSubsequenceLength([5, 4, 3, 2, 1])
+ >>> longest_increasing_subsequence_length([5, 4, 3, 2, 1])
1
"""
if len(v) == 0:
@@ -44,7 +44,7 @@ def LongestIncreasingSubsequenceLength(v: list[int]) -> int:
tail[length] = v[i]
length += 1
else:
- tail[CeilIndex(tail, -1, length - 1, v[i])] = v[i]
+ tail[ceil_index(tail, -1, length - 1, v[i])] = v[i]
return length
diff --git a/dynamic_programming/longest_sub_array.py b/dynamic_programming/longest_sub_array.py
index 30159a138..b477acf61 100644
--- a/dynamic_programming/longest_sub_array.py
+++ b/dynamic_programming/longest_sub_array.py
@@ -14,7 +14,6 @@ class SubArray:
def __init__(self, arr):
# we need a list not a string, so do something to change the type
self.array = arr.split(",")
- print(("the input array is:", self.array))
def solve_sub_array(self):
rear = [int(self.array[0])] * len(self.array)
diff --git a/dynamic_programming/matrix_chain_order.py b/dynamic_programming/matrix_chain_order.py
index 9411bc704..d612aea7b 100644
--- a/dynamic_programming/matrix_chain_order.py
+++ b/dynamic_programming/matrix_chain_order.py
@@ -8,34 +8,34 @@ Space Complexity: O(n^2)
"""
-def MatrixChainOrder(array):
- N = len(array)
- Matrix = [[0 for x in range(N)] for x in range(N)]
- Sol = [[0 for x in range(N)] for x in range(N)]
+def matrix_chain_order(array):
+ n = len(array)
+ matrix = [[0 for x in range(n)] for x in range(n)]
+ sol = [[0 for x in range(n)] for x in range(n)]
- for ChainLength in range(2, N):
- for a in range(1, N - ChainLength + 1):
- b = a + ChainLength - 1
+ for chain_length in range(2, n):
+ for a in range(1, n - chain_length + 1):
+ b = a + chain_length - 1
- Matrix[a][b] = sys.maxsize
+ matrix[a][b] = sys.maxsize
for c in range(a, b):
cost = (
- Matrix[a][c] + Matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
+ matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
- if cost < Matrix[a][b]:
- Matrix[a][b] = cost
- Sol[a][b] = c
- return Matrix, Sol
+ if cost < matrix[a][b]:
+ matrix[a][b] = cost
+ sol[a][b] = c
+ return matrix, sol
# Print order of matrix with Ai as Matrix
-def PrintOptimalSolution(OptimalSolution, i, j):
+def print_optiomal_solution(optimal_solution, i, j):
if i == j:
print("A" + str(i), end=" ")
else:
print("(", end=" ")
- PrintOptimalSolution(OptimalSolution, i, OptimalSolution[i][j])
- PrintOptimalSolution(OptimalSolution, OptimalSolution[i][j] + 1, j)
+ print_optiomal_solution(optimal_solution, i, optimal_solution[i][j])
+ print_optiomal_solution(optimal_solution, optimal_solution[i][j] + 1, j)
print(")", end=" ")
@@ -44,10 +44,10 @@ def main():
n = len(array)
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
- Matrix, OptimalSolution = MatrixChainOrder(array)
+ matrix, optimal_solution = matrix_chain_order(array)
- print("No. of Operation required: " + str(Matrix[1][n - 1]))
- PrintOptimalSolution(OptimalSolution, 1, n - 1)
+ print("No. of Operation required: " + str(matrix[1][n - 1]))
+ print_optiomal_solution(optimal_solution, 1, n - 1)
if __name__ == "__main__":
diff --git a/dynamic_programming/max_non_adjacent_sum.py b/dynamic_programming/max_non_adjacent_sum.py
index 5362b22ca..e3cc23f49 100644
--- a/dynamic_programming/max_non_adjacent_sum.py
+++ b/dynamic_programming/max_non_adjacent_sum.py
@@ -7,7 +7,7 @@ def maximum_non_adjacent_sum(nums: list[int]) -> int:
"""
Find the maximum non-adjacent sum of the integers in the nums input list
- >>> print(maximum_non_adjacent_sum([1, 2, 3]))
+ >>> maximum_non_adjacent_sum([1, 2, 3])
4
>>> maximum_non_adjacent_sum([1, 5, 3, 7, 2, 2, 6])
18
diff --git a/dynamic_programming/max_product_subarray.py b/dynamic_programming/max_product_subarray.py
new file mode 100644
index 000000000..425859bc0
--- /dev/null
+++ b/dynamic_programming/max_product_subarray.py
@@ -0,0 +1,53 @@
+def max_product_subarray(numbers: list[int]) -> int:
+ """
+ Returns the maximum product that can be obtained by multiplying a
+ contiguous subarray of the given integer list `nums`.
+
+ Example:
+ >>> max_product_subarray([2, 3, -2, 4])
+ 6
+ >>> max_product_subarray((-2, 0, -1))
+ 0
+ >>> max_product_subarray([2, 3, -2, 4, -1])
+ 48
+ >>> max_product_subarray([-1])
+ -1
+ >>> max_product_subarray([0])
+ 0
+ >>> max_product_subarray([])
+ 0
+ >>> max_product_subarray("")
+ 0
+ >>> max_product_subarray(None)
+ 0
+ >>> max_product_subarray([2, 3, -2, 4.5, -1])
+ Traceback (most recent call last):
+ ...
+ ValueError: numbers must be an iterable of integers
+ >>> max_product_subarray("ABC")
+ Traceback (most recent call last):
+ ...
+ ValueError: numbers must be an iterable of integers
+ """
+ if not numbers:
+ return 0
+
+ if not isinstance(numbers, (list, tuple)) or not all(
+ isinstance(number, int) for number in numbers
+ ):
+ raise ValueError("numbers must be an iterable of integers")
+
+ max_till_now = min_till_now = max_prod = numbers[0]
+
+ for i in range(1, len(numbers)):
+ # update the maximum and minimum subarray products
+ number = numbers[i]
+ if number < 0:
+ max_till_now, min_till_now = min_till_now, max_till_now
+ max_till_now = max(number, max_till_now * number)
+ min_till_now = min(number, min_till_now * number)
+
+ # update the maximum product found till now
+ max_prod = max(max_prod, max_till_now)
+
+ return max_prod
diff --git a/dynamic_programming/max_sub_array.py b/dynamic_programming/max_sub_array.py
deleted file mode 100644
index 3060010ef..000000000
--- a/dynamic_programming/max_sub_array.py
+++ /dev/null
@@ -1,94 +0,0 @@
-"""
-author : Mayank Kumar Jha (mk9440)
-"""
-from __future__ import annotations
-
-
-def find_max_sub_array(A, low, high):
- if low == high:
- return low, high, A[low]
- else:
- mid = (low + high) // 2
- left_low, left_high, left_sum = find_max_sub_array(A, low, mid)
- right_low, right_high, right_sum = find_max_sub_array(A, mid + 1, high)
- cross_left, cross_right, cross_sum = find_max_cross_sum(A, low, mid, high)
- if left_sum >= right_sum and left_sum >= cross_sum:
- return left_low, left_high, left_sum
- elif right_sum >= left_sum and right_sum >= cross_sum:
- return right_low, right_high, right_sum
- else:
- return cross_left, cross_right, cross_sum
-
-
-def find_max_cross_sum(A, low, mid, high):
- left_sum, max_left = -999999999, -1
- right_sum, max_right = -999999999, -1
- summ = 0
- for i in range(mid, low - 1, -1):
- summ += A[i]
- if summ > left_sum:
- left_sum = summ
- max_left = i
- summ = 0
- for i in range(mid + 1, high + 1):
- summ += A[i]
- if summ > right_sum:
- right_sum = summ
- max_right = i
- return max_left, max_right, (left_sum + right_sum)
-
-
-def max_sub_array(nums: list[int]) -> int:
- """
- Finds the contiguous subarray which has the largest sum and return its sum.
-
- >>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4])
- 6
-
- An empty (sub)array has sum 0.
- >>> max_sub_array([])
- 0
-
- If all elements are negative, the largest subarray would be the empty array,
- having the sum 0.
- >>> max_sub_array([-1, -2, -3])
- 0
- >>> max_sub_array([5, -2, -3])
- 5
- >>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84])
- 187
- """
- best = 0
- current = 0
- for i in nums:
- current += i
- if current < 0:
- current = 0
- best = max(best, current)
- return best
-
-
-if __name__ == "__main__":
- """
- A random simulation of this algorithm.
- """
- import time
- from random import randint
-
- from matplotlib import pyplot as plt
-
- inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
- tim = []
- for i in inputs:
- li = [randint(1, i) for j in range(i)]
- strt = time.time()
- (find_max_sub_array(li, 0, len(li) - 1))
- end = time.time()
- tim.append(end - strt)
- print("No of Inputs Time Taken")
- for i in range(len(inputs)):
- print(inputs[i], "\t\t", tim[i])
- plt.plot(inputs, tim)
- plt.xlabel("Number of Inputs")
- plt.ylabel("Time taken in seconds ")
- plt.show()
diff --git a/dynamic_programming/max_subarray_sum.py b/dynamic_programming/max_subarray_sum.py
new file mode 100644
index 000000000..c76943472
--- /dev/null
+++ b/dynamic_programming/max_subarray_sum.py
@@ -0,0 +1,60 @@
+"""
+The maximum subarray sum problem is the task of finding the maximum sum that can be
+obtained from a contiguous subarray within a given array of numbers. For example, given
+the array [-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum
+is [4, -1, 2, 1], so the maximum subarray sum is 6.
+
+Kadane's algorithm is a simple dynamic programming algorithm that solves the maximum
+subarray sum problem in O(n) time and O(1) space.
+
+Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem
+"""
+from collections.abc import Sequence
+
+
+def max_subarray_sum(
+ arr: Sequence[float], allow_empty_subarrays: bool = False
+) -> float:
+ """
+ Solves the maximum subarray sum problem using Kadane's algorithm.
+ :param arr: the given array of numbers
+ :param allow_empty_subarrays: if True, then the algorithm considers empty subarrays
+
+ >>> max_subarray_sum([2, 8, 9])
+ 19
+ >>> max_subarray_sum([0, 0])
+ 0
+ >>> max_subarray_sum([-1.0, 0.0, 1.0])
+ 1.0
+ >>> max_subarray_sum([1, 2, 3, 4, -2])
+ 10
+ >>> max_subarray_sum([-2, 1, -3, 4, -1, 2, 1, -5, 4])
+ 6
+ >>> max_subarray_sum([2, 3, -9, 8, -2])
+ 8
+ >>> max_subarray_sum([-2, -3, -1, -4, -6])
+ -1
+ >>> max_subarray_sum([-2, -3, -1, -4, -6], allow_empty_subarrays=True)
+ 0
+ >>> max_subarray_sum([])
+ 0
+ """
+ if not arr:
+ return 0
+
+ max_sum = 0 if allow_empty_subarrays else float("-inf")
+ curr_sum = 0.0
+ for num in arr:
+ curr_sum = max(0 if allow_empty_subarrays else num, curr_sum + num)
+ max_sum = max(max_sum, curr_sum)
+
+ return max_sum
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
+
+ nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
+ print(f"{max_subarray_sum(nums) = }")
diff --git a/dynamic_programming/max_sum_contiguous_subsequence.py b/dynamic_programming/max_sum_contiguous_subsequence.py
deleted file mode 100644
index bac592370..000000000
--- a/dynamic_programming/max_sum_contiguous_subsequence.py
+++ /dev/null
@@ -1,20 +0,0 @@
-def max_subarray_sum(nums: list) -> int:
- """
- >>> max_subarray_sum([6 , 9, -1, 3, -7, -5, 10])
- 17
- """
- if not nums:
- return 0
- n = len(nums)
-
- res, s, s_pre = nums[0], nums[0], nums[0]
- for i in range(1, n):
- s = max(nums[i], s_pre + nums[i])
- s_pre = s
- res = max(res, s)
- return res
-
-
-if __name__ == "__main__":
- nums = [6, 9, -1, 3, -7, -5, 10]
- print(max_subarray_sum(nums))
diff --git a/dynamic_programming/min_distance_up_bottom.py b/dynamic_programming/min_distance_up_bottom.py
new file mode 100644
index 000000000..4870c7ef4
--- /dev/null
+++ b/dynamic_programming/min_distance_up_bottom.py
@@ -0,0 +1,52 @@
+"""
+Author : Alexander Pantyukhin
+Date : October 14, 2022
+This is implementation Dynamic Programming up bottom approach
+to find edit distance.
+The aim is to demonstate up bottom approach for solving the task.
+The implementation was tested on the
+leetcode: https://leetcode.com/problems/edit-distance/
+
+Levinstein distance
+Dynamic Programming: up -> down.
+"""
+
+import functools
+
+
+def min_distance_up_bottom(word1: str, word2: str) -> int:
+ """
+ >>> min_distance_up_bottom("intention", "execution")
+ 5
+ >>> min_distance_up_bottom("intention", "")
+ 9
+ >>> min_distance_up_bottom("", "")
+ 0
+ >>> min_distance_up_bottom("zooicoarchaeologist", "zoologist")
+ 10
+ """
+ len_word1 = len(word1)
+ len_word2 = len(word2)
+
+ @functools.cache
+ def min_distance(index1: int, index2: int) -> int:
+ # if first word index is overflow - delete all from the second word
+ if index1 >= len_word1:
+ return len_word2 - index2
+ # if second word index is overflow - delete all from the first word
+ if index2 >= len_word2:
+ return len_word1 - index1
+ diff = int(word1[index1] != word2[index2]) # current letters not identical
+ return min(
+ 1 + min_distance(index1 + 1, index2),
+ 1 + min_distance(index1, index2 + 1),
+ diff + min_distance(index1 + 1, index2 + 1),
+ )
+
+ return min_distance(0, 0)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/minimum_coin_change.py b/dynamic_programming/minimum_coin_change.py
index 2869b5857..848bd654d 100644
--- a/dynamic_programming/minimum_coin_change.py
+++ b/dynamic_programming/minimum_coin_change.py
@@ -7,7 +7,7 @@ https://www.hackerrank.com/challenges/coin-change/problem
"""
-def dp_count(S, n):
+def dp_count(s, n):
"""
>>> dp_count([1, 2, 3], 4)
4
@@ -33,7 +33,7 @@ def dp_count(S, n):
# Pick all coins one by one and update table[] values
# after the index greater than or equal to the value of the
# picked coin
- for coin_val in S:
+ for coin_val in s:
for j in range(coin_val, n + 1):
table[j] += table[j - coin_val]
diff --git a/dynamic_programming/minimum_partition.py b/dynamic_programming/minimum_partition.py
index 8fad4ef30..3daa9767f 100644
--- a/dynamic_programming/minimum_partition.py
+++ b/dynamic_programming/minimum_partition.py
@@ -3,7 +3,7 @@ Partition a set into two subsets such that the difference of subset sums is mini
"""
-def findMin(arr):
+def find_min(arr):
n = len(arr)
s = sum(arr)
diff --git a/dynamic_programming/minimum_size_subarray_sum.py b/dynamic_programming/minimum_size_subarray_sum.py
new file mode 100644
index 000000000..3868d7353
--- /dev/null
+++ b/dynamic_programming/minimum_size_subarray_sum.py
@@ -0,0 +1,62 @@
+import sys
+
+
+def minimum_subarray_sum(target: int, numbers: list[int]) -> int:
+ """
+ Return the length of the shortest contiguous subarray in a list of numbers whose sum
+ is at least target. Reference: https://stackoverflow.com/questions/8269916
+
+ >>> minimum_subarray_sum(7, [2, 3, 1, 2, 4, 3])
+ 2
+ >>> minimum_subarray_sum(7, [2, 3, -1, 2, 4, -3])
+ 4
+ >>> minimum_subarray_sum(11, [1, 1, 1, 1, 1, 1, 1, 1])
+ 0
+ >>> minimum_subarray_sum(10, [1, 2, 3, 4, 5, 6, 7])
+ 2
+ >>> minimum_subarray_sum(5, [1, 1, 1, 1, 1, 5])
+ 1
+ >>> minimum_subarray_sum(0, [])
+ 0
+ >>> minimum_subarray_sum(0, [1, 2, 3])
+ 1
+ >>> minimum_subarray_sum(10, [10, 20, 30])
+ 1
+ >>> minimum_subarray_sum(7, [1, 1, 1, 1, 1, 1, 10])
+ 1
+ >>> minimum_subarray_sum(6, [])
+ 0
+ >>> minimum_subarray_sum(2, [1, 2, 3])
+ 1
+ >>> minimum_subarray_sum(-6, [])
+ 0
+ >>> minimum_subarray_sum(-6, [3, 4, 5])
+ 1
+ >>> minimum_subarray_sum(8, None)
+ 0
+ >>> minimum_subarray_sum(2, "ABC")
+ Traceback (most recent call last):
+ ...
+ ValueError: numbers must be an iterable of integers
+ """
+ if not numbers:
+ return 0
+ if target == 0 and target in numbers:
+ return 0
+ if not isinstance(numbers, (list, tuple)) or not all(
+ isinstance(number, int) for number in numbers
+ ):
+ raise ValueError("numbers must be an iterable of integers")
+
+ left = right = curr_sum = 0
+ min_len = sys.maxsize
+
+ while right < len(numbers):
+ curr_sum += numbers[right]
+ while curr_sum >= target and left <= right:
+ min_len = min(min_len, right - left + 1)
+ curr_sum -= numbers[left]
+ left += 1
+ right += 1
+
+ return 0 if min_len == sys.maxsize else min_len
diff --git a/dynamic_programming/minimum_squares_to_represent_a_number.py b/dynamic_programming/minimum_squares_to_represent_a_number.py
new file mode 100644
index 000000000..bf5849f5b
--- /dev/null
+++ b/dynamic_programming/minimum_squares_to_represent_a_number.py
@@ -0,0 +1,48 @@
+import math
+import sys
+
+
+def minimum_squares_to_represent_a_number(number: int) -> int:
+ """
+ Count the number of minimum squares to represent a number
+ >>> minimum_squares_to_represent_a_number(25)
+ 1
+ >>> minimum_squares_to_represent_a_number(37)
+ 2
+ >>> minimum_squares_to_represent_a_number(21)
+ 3
+ >>> minimum_squares_to_represent_a_number(58)
+ 2
+ >>> minimum_squares_to_represent_a_number(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: the value of input must not be a negative number
+ >>> minimum_squares_to_represent_a_number(0)
+ 1
+ >>> minimum_squares_to_represent_a_number(12.34)
+ Traceback (most recent call last):
+ ...
+ ValueError: the value of input must be a natural number
+ """
+ if number != int(number):
+ raise ValueError("the value of input must be a natural number")
+ if number < 0:
+ raise ValueError("the value of input must not be a negative number")
+ if number == 0:
+ return 1
+ answers = [-1] * (number + 1)
+ answers[0] = 0
+ for i in range(1, number + 1):
+ answer = sys.maxsize
+ root = int(math.sqrt(i))
+ for j in range(1, root + 1):
+ current_answer = 1 + answers[i - (j**2)]
+ answer = min(answer, current_answer)
+ answers[i] = answer
+ return answers[number]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/minimum_steps_to_one.py b/dynamic_programming/minimum_steps_to_one.py
index f4eb7033d..8785027fb 100644
--- a/dynamic_programming/minimum_steps_to_one.py
+++ b/dynamic_programming/minimum_steps_to_one.py
@@ -42,7 +42,8 @@ def min_steps_to_one(number: int) -> int:
"""
if number <= 0:
- raise ValueError(f"n must be greater than 0. Got n = {number}")
+ msg = f"n must be greater than 0. Got n = {number}"
+ raise ValueError(msg)
table = [number + 1] * (number + 1)
diff --git a/dynamic_programming/minimum_tickets_cost.py b/dynamic_programming/minimum_tickets_cost.py
new file mode 100644
index 000000000..6790c21f1
--- /dev/null
+++ b/dynamic_programming/minimum_tickets_cost.py
@@ -0,0 +1,129 @@
+"""
+Author : Alexander Pantyukhin
+Date : November 1, 2022
+
+Task:
+Given a list of days when you need to travel. Each day is integer from 1 to 365.
+You are able to use tickets for 1 day, 7 days and 30 days.
+Each ticket has a cost.
+
+Find the minimum cost you need to travel every day in the given list of days.
+
+Implementation notes:
+implementation Dynamic Programming up bottom approach.
+
+Runtime complexity: O(n)
+
+The implementation was tested on the
+leetcode: https://leetcode.com/problems/minimum-cost-for-tickets/
+
+
+Minimum Cost For Tickets
+Dynamic Programming: up -> down.
+"""
+
+import functools
+
+
+def mincost_tickets(days: list[int], costs: list[int]) -> int:
+ """
+ >>> mincost_tickets([1, 4, 6, 7, 8, 20], [2, 7, 15])
+ 11
+
+ >>> mincost_tickets([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 7, 15])
+ 17
+
+ >>> mincost_tickets([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 90, 150])
+ 24
+
+ >>> mincost_tickets([2], [2, 90, 150])
+ 2
+
+ >>> mincost_tickets([], [2, 90, 150])
+ 0
+
+ >>> mincost_tickets('hello', [2, 90, 150])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter days should be a list of integers
+
+ >>> mincost_tickets([], 'world')
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter costs should be a list of three integers
+
+ >>> mincost_tickets([0.25, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 90, 150])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter days should be a list of integers
+
+ >>> mincost_tickets([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 0.9, 150])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter costs should be a list of three integers
+
+ >>> mincost_tickets([-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [2, 90, 150])
+ Traceback (most recent call last):
+ ...
+ ValueError: All days elements should be greater than 0
+
+ >>> mincost_tickets([2, 367], [2, 90, 150])
+ Traceback (most recent call last):
+ ...
+ ValueError: All days elements should be less than 366
+
+ >>> mincost_tickets([2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter costs should be a list of three integers
+
+ >>> mincost_tickets([], [])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter costs should be a list of three integers
+
+ >>> mincost_tickets([2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 31], [1, 2, 3, 4])
+ Traceback (most recent call last):
+ ...
+ ValueError: The parameter costs should be a list of three integers
+ """
+
+ # Validation
+ if not isinstance(days, list) or not all(isinstance(day, int) for day in days):
+ raise ValueError("The parameter days should be a list of integers")
+
+ if len(costs) != 3 or not all(isinstance(cost, int) for cost in costs):
+ raise ValueError("The parameter costs should be a list of three integers")
+
+ if len(days) == 0:
+ return 0
+
+ if min(days) <= 0:
+ raise ValueError("All days elements should be greater than 0")
+
+ if max(days) >= 366:
+ raise ValueError("All days elements should be less than 366")
+
+ days_set = set(days)
+
+ @functools.cache
+ def dynamic_programming(index: int) -> int:
+ if index > 365:
+ return 0
+
+ if index not in days_set:
+ return dynamic_programming(index + 1)
+
+ return min(
+ costs[0] + dynamic_programming(index + 1),
+ costs[1] + dynamic_programming(index + 7),
+ costs[2] + dynamic_programming(index + 30),
+ )
+
+ return dynamic_programming(1)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/optimal_binary_search_tree.py b/dynamic_programming/optimal_binary_search_tree.py
index 0d94c1b61..b4f1181ac 100644
--- a/dynamic_programming/optimal_binary_search_tree.py
+++ b/dynamic_programming/optimal_binary_search_tree.py
@@ -104,7 +104,7 @@ def find_optimal_binary_search_tree(nodes):
dp = [[freqs[i] if i == j else 0 for j in range(n)] for i in range(n)]
# sum[i][j] stores the sum of key frequencies between i and j inclusive in nodes
# array
- sum = [[freqs[i] if i == j else 0 for j in range(n)] for i in range(n)]
+ total = [[freqs[i] if i == j else 0 for j in range(n)] for i in range(n)]
# stores tree roots that will be used later for constructing binary search tree
root = [[i if i == j else 0 for j in range(n)] for i in range(n)]
@@ -113,14 +113,14 @@ def find_optimal_binary_search_tree(nodes):
j = i + interval_length - 1
dp[i][j] = sys.maxsize # set the value to "infinity"
- sum[i][j] = sum[i][j - 1] + freqs[j]
+ total[i][j] = total[i][j - 1] + freqs[j]
# Apply Knuth's optimization
# Loop without optimization: for r in range(i, j + 1):
for r in range(root[i][j - 1], root[i + 1][j] + 1): # r is a temporal root
left = dp[i][r - 1] if r != i else 0 # optimal cost for left subtree
right = dp[r + 1][j] if r != j else 0 # optimal cost for right subtree
- cost = left + sum[i][j] + right
+ cost = left + total[i][j] + right
if dp[i][j] > cost:
dp[i][j] = cost
diff --git a/dynamic_programming/palindrome_partitioning.py b/dynamic_programming/palindrome_partitioning.py
new file mode 100644
index 000000000..c1629440e
--- /dev/null
+++ b/dynamic_programming/palindrome_partitioning.py
@@ -0,0 +1,39 @@
+"""
+Given a string s, partition s such that every substring of the
+partition is a palindrome.
+Find the minimum cuts needed for a palindrome partitioning of s.
+
+Time Complexity: O(n^2)
+Space Complexity: O(n^2)
+For other explanations refer to: https://www.youtube.com/watch?v=_H8V5hJUGd0
+"""
+
+
+def find_minimum_partitions(string: str) -> int:
+ """
+ Returns the minimum cuts needed for a palindrome partitioning of string
+
+ >>> find_minimum_partitions("aab")
+ 1
+ >>> find_minimum_partitions("aaa")
+ 0
+ >>> find_minimum_partitions("ababbbabbababa")
+ 3
+ """
+ length = len(string)
+ cut = [0] * length
+ is_palindromic = [[False for i in range(length)] for j in range(length)]
+ for i, c in enumerate(string):
+ mincut = i
+ for j in range(i + 1):
+ if c == string[j] and (i - j < 2 or is_palindromic[j + 1][i - 1]):
+ is_palindromic[j][i] = True
+ mincut = min(mincut, 0 if j == 0 else (cut[j - 1] + 1))
+ cut[i] = mincut
+ return cut[length - 1]
+
+
+if __name__ == "__main__":
+ s = input("Enter the string: ").strip()
+ ans = find_minimum_partitions(s)
+ print(f"Minimum number of partitions required for the '{s}' is {ans}")
diff --git a/dynamic_programming/regex_match.py b/dynamic_programming/regex_match.py
new file mode 100644
index 000000000..200a88283
--- /dev/null
+++ b/dynamic_programming/regex_match.py
@@ -0,0 +1,97 @@
+"""
+Regex matching check if a text matches pattern or not.
+Pattern:
+ '.' Matches any single character.
+ '*' Matches zero or more of the preceding element.
+More info:
+ https://medium.com/trick-the-interviwer/regular-expression-matching-9972eb74c03
+"""
+
+
+def recursive_match(text: str, pattern: str) -> bool:
+ """
+ Recursive matching algorithm.
+
+ Time complexity: O(2 ^ (|text| + |pattern|))
+ Space complexity: Recursion depth is O(|text| + |pattern|).
+
+ :param text: Text to match.
+ :param pattern: Pattern to match.
+ :return: True if text matches pattern, False otherwise.
+
+ >>> recursive_match('abc', 'a.c')
+ True
+ >>> recursive_match('abc', 'af*.c')
+ True
+ >>> recursive_match('abc', 'a.c*')
+ True
+ >>> recursive_match('abc', 'a.c*d')
+ False
+ >>> recursive_match('aa', '.*')
+ True
+ """
+ if not pattern:
+ return not text
+
+ if not text:
+ return pattern[-1] == "*" and recursive_match(text, pattern[:-2])
+
+ if text[-1] == pattern[-1] or pattern[-1] == ".":
+ return recursive_match(text[:-1], pattern[:-1])
+
+ if pattern[-1] == "*":
+ return recursive_match(text[:-1], pattern) or recursive_match(
+ text, pattern[:-2]
+ )
+
+ return False
+
+
+def dp_match(text: str, pattern: str) -> bool:
+ """
+ Dynamic programming matching algorithm.
+
+ Time complexity: O(|text| * |pattern|)
+ Space complexity: O(|text| * |pattern|)
+
+ :param text: Text to match.
+ :param pattern: Pattern to match.
+ :return: True if text matches pattern, False otherwise.
+
+ >>> dp_match('abc', 'a.c')
+ True
+ >>> dp_match('abc', 'af*.c')
+ True
+ >>> dp_match('abc', 'a.c*')
+ True
+ >>> dp_match('abc', 'a.c*d')
+ False
+ >>> dp_match('aa', '.*')
+ True
+ """
+ m = len(text)
+ n = len(pattern)
+ dp = [[False for _ in range(n + 1)] for _ in range(m + 1)]
+ dp[0][0] = True
+
+ for j in range(1, n + 1):
+ dp[0][j] = pattern[j - 1] == "*" and dp[0][j - 2]
+
+ for i in range(1, m + 1):
+ for j in range(1, n + 1):
+ if pattern[j - 1] in {".", text[i - 1]}:
+ dp[i][j] = dp[i - 1][j - 1]
+ elif pattern[j - 1] == "*":
+ dp[i][j] = dp[i][j - 2]
+ if pattern[j - 2] in {".", text[i - 1]}:
+ dp[i][j] |= dp[i - 1][j]
+ else:
+ dp[i][j] = False
+
+ return dp[m][n]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/rod_cutting.py b/dynamic_programming/rod_cutting.py
index 79104d8f4..f80fa440a 100644
--- a/dynamic_programming/rod_cutting.py
+++ b/dynamic_programming/rod_cutting.py
@@ -177,13 +177,15 @@ def _enforce_args(n: int, prices: list):
the rod
"""
if n < 0:
- raise ValueError(f"n must be greater than or equal to 0. Got n = {n}")
+ msg = f"n must be greater than or equal to 0. Got n = {n}"
+ raise ValueError(msg)
if n > len(prices):
- raise ValueError(
- "Each integral piece of rod must have a corresponding "
- f"price. Got n = {n} but length of prices = {len(prices)}"
+ msg = (
+ "Each integral piece of rod must have a corresponding price. "
+ f"Got n = {n} but length of prices = {len(prices)}"
)
+ raise ValueError(msg)
def main():
diff --git a/dynamic_programming/subset_generation.py b/dynamic_programming/subset_generation.py
index 4781b23b3..819fd8106 100644
--- a/dynamic_programming/subset_generation.py
+++ b/dynamic_programming/subset_generation.py
@@ -37,7 +37,8 @@ def print_combination(arr, n, r):
combination_util(arr, n, r, 0, data, 0)
-# Driver function to check for above function
-arr = [10, 20, 30, 40, 50]
-print_combination(arr, len(arr), 3)
-# This code is contributed by Ambuj sahu
+if __name__ == "__main__":
+ # Driver code to check the function above
+ arr = [10, 20, 30, 40, 50]
+ print_combination(arr, len(arr), 3)
+ # This code is contributed by Ambuj sahu
diff --git a/dynamic_programming/sum_of_subset.py b/dynamic_programming/sum_of_subset.py
index a12177b57..96ebcf583 100644
--- a/dynamic_programming/sum_of_subset.py
+++ b/dynamic_programming/sum_of_subset.py
@@ -1,34 +1,32 @@
-def isSumSubset(arr, arrLen, requiredSum):
+def is_sum_subset(arr: list[int], required_sum: int) -> bool:
"""
- >>> isSumSubset([2, 4, 6, 8], 4, 5)
+ >>> is_sum_subset([2, 4, 6, 8], 5)
False
- >>> isSumSubset([2, 4, 6, 8], 4, 14)
+ >>> is_sum_subset([2, 4, 6, 8], 14)
True
"""
# a subset value says 1 if that subset sum can be formed else 0
# initially no subsets can be formed hence False/0
- subset = [[False for i in range(requiredSum + 1)] for i in range(arrLen + 1)]
+ arr_len = len(arr)
+ subset = [[False] * (required_sum + 1) for _ in range(arr_len + 1)]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
- for i in range(arrLen + 1):
+ for i in range(arr_len + 1):
subset[i][0] = True
# sum is not zero and set is empty then false
- for i in range(1, requiredSum + 1):
+ for i in range(1, required_sum + 1):
subset[0][i] = False
- for i in range(1, arrLen + 1):
- for j in range(1, requiredSum + 1):
+ for i in range(1, arr_len + 1):
+ for j in range(1, required_sum + 1):
if arr[i - 1] > j:
subset[i][j] = subset[i - 1][j]
if arr[i - 1] <= j:
subset[i][j] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
- # uncomment to print the subset
- # for i in range(arrLen+1):
- # print(subset[i])
- print(subset[arrLen][requiredSum])
+ return subset[arr_len][required_sum]
if __name__ == "__main__":
diff --git a/dynamic_programming/tribonacci.py b/dynamic_programming/tribonacci.py
new file mode 100644
index 000000000..58e15da91
--- /dev/null
+++ b/dynamic_programming/tribonacci.py
@@ -0,0 +1,24 @@
+# Tribonacci sequence using Dynamic Programming
+
+
+def tribonacci(num: int) -> list[int]:
+ """
+ Given a number, return first n Tribonacci Numbers.
+ >>> tribonacci(5)
+ [0, 0, 1, 1, 2]
+ >>> tribonacci(8)
+ [0, 0, 1, 1, 2, 4, 7, 13]
+ """
+ dp = [0] * num
+ dp[2] = 1
+
+ for i in range(3, num):
+ dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
+
+ return dp
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/dynamic_programming/viterbi.py b/dynamic_programming/viterbi.py
new file mode 100644
index 000000000..764d45dc2
--- /dev/null
+++ b/dynamic_programming/viterbi.py
@@ -0,0 +1,403 @@
+from typing import Any
+
+
+def viterbi(
+ observations_space: list,
+ states_space: list,
+ initial_probabilities: dict,
+ transition_probabilities: dict,
+ emission_probabilities: dict,
+) -> list:
+ """
+ Viterbi Algorithm, to find the most likely path of
+ states from the start and the expected output.
+ https://en.wikipedia.org/wiki/Viterbi_algorithm
+ sdafads
+ Wikipedia example
+ >>> observations = ["normal", "cold", "dizzy"]
+ >>> states = ["Healthy", "Fever"]
+ >>> start_p = {"Healthy": 0.6, "Fever": 0.4}
+ >>> trans_p = {
+ ... "Healthy": {"Healthy": 0.7, "Fever": 0.3},
+ ... "Fever": {"Healthy": 0.4, "Fever": 0.6},
+ ... }
+ >>> emit_p = {
+ ... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1},
+ ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6},
+ ... }
+ >>> viterbi(observations, states, start_p, trans_p, emit_p)
+ ['Healthy', 'Healthy', 'Fever']
+
+ >>> viterbi((), states, start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ >>> viterbi(observations, (), start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ >>> viterbi(observations, states, {}, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ >>> viterbi(observations, states, start_p, {}, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ >>> viterbi(observations, states, start_p, trans_p, {})
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ >>> viterbi("invalid", states, start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: observations_space must be a list
+
+ >>> viterbi(["valid", 123], states, start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: observations_space must be a list of strings
+
+ >>> viterbi(observations, "invalid", start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: states_space must be a list
+
+ >>> viterbi(observations, ["valid", 123], start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: states_space must be a list of strings
+
+ >>> viterbi(observations, states, "invalid", trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: initial_probabilities must be a dict
+
+ >>> viterbi(observations, states, {2:2}, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: initial_probabilities all keys must be strings
+
+ >>> viterbi(observations, states, {"a":2}, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: initial_probabilities all values must be float
+
+ >>> viterbi(observations, states, start_p, "invalid", emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities must be a dict
+
+ >>> viterbi(observations, states, start_p, {"a":2}, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities all values must be dict
+
+ >>> viterbi(observations, states, start_p, {2:{2:2}}, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities all keys must be strings
+
+ >>> viterbi(observations, states, start_p, {"a":{2:2}}, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities all keys must be strings
+
+ >>> viterbi(observations, states, start_p, {"a":{"b":2}}, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities nested dictionary all values must be float
+
+ >>> viterbi(observations, states, start_p, trans_p, "invalid")
+ Traceback (most recent call last):
+ ...
+ ValueError: emission_probabilities must be a dict
+
+ >>> viterbi(observations, states, start_p, trans_p, None)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+
+ """
+ _validation(
+ observations_space,
+ states_space,
+ initial_probabilities,
+ transition_probabilities,
+ emission_probabilities,
+ )
+ # Creates data structures and fill initial step
+ probabilities: dict = {}
+ pointers: dict = {}
+ for state in states_space:
+ observation = observations_space[0]
+ probabilities[(state, observation)] = (
+ initial_probabilities[state] * emission_probabilities[state][observation]
+ )
+ pointers[(state, observation)] = None
+
+ # Fills the data structure with the probabilities of
+ # different transitions and pointers to previous states
+ for o in range(1, len(observations_space)):
+ observation = observations_space[o]
+ prior_observation = observations_space[o - 1]
+ for state in states_space:
+ # Calculates the argmax for probability function
+ arg_max = ""
+ max_probability = -1
+ for k_state in states_space:
+ probability = (
+ probabilities[(k_state, prior_observation)]
+ * transition_probabilities[k_state][state]
+ * emission_probabilities[state][observation]
+ )
+ if probability > max_probability:
+ max_probability = probability
+ arg_max = k_state
+
+ # Update probabilities and pointers dicts
+ probabilities[(state, observation)] = (
+ probabilities[(arg_max, prior_observation)]
+ * transition_probabilities[arg_max][state]
+ * emission_probabilities[state][observation]
+ )
+
+ pointers[(state, observation)] = arg_max
+
+ # The final observation
+ final_observation = observations_space[len(observations_space) - 1]
+
+ # argmax for given final observation
+ arg_max = ""
+ max_probability = -1
+ for k_state in states_space:
+ probability = probabilities[(k_state, final_observation)]
+ if probability > max_probability:
+ max_probability = probability
+ arg_max = k_state
+ last_state = arg_max
+
+ # Process pointers backwards
+ previous = last_state
+ result = []
+ for o in range(len(observations_space) - 1, -1, -1):
+ result.append(previous)
+ previous = pointers[previous, observations_space[o]]
+ result.reverse()
+
+ return result
+
+
+def _validation(
+ observations_space: Any,
+ states_space: Any,
+ initial_probabilities: Any,
+ transition_probabilities: Any,
+ emission_probabilities: Any,
+) -> None:
+ """
+ >>> observations = ["normal", "cold", "dizzy"]
+ >>> states = ["Healthy", "Fever"]
+ >>> start_p = {"Healthy": 0.6, "Fever": 0.4}
+ >>> trans_p = {
+ ... "Healthy": {"Healthy": 0.7, "Fever": 0.3},
+ ... "Fever": {"Healthy": 0.4, "Fever": 0.6},
+ ... }
+ >>> emit_p = {
+ ... "Healthy": {"normal": 0.5, "cold": 0.4, "dizzy": 0.1},
+ ... "Fever": {"normal": 0.1, "cold": 0.3, "dizzy": 0.6},
+ ... }
+ >>> _validation(observations, states, start_p, trans_p, emit_p)
+
+ >>> _validation([], states, start_p, trans_p, emit_p)
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+ """
+ _validate_not_empty(
+ observations_space,
+ states_space,
+ initial_probabilities,
+ transition_probabilities,
+ emission_probabilities,
+ )
+ _validate_lists(observations_space, states_space)
+ _validate_dicts(
+ initial_probabilities, transition_probabilities, emission_probabilities
+ )
+
+
+def _validate_not_empty(
+ observations_space: Any,
+ states_space: Any,
+ initial_probabilities: Any,
+ transition_probabilities: Any,
+ emission_probabilities: Any,
+) -> None:
+ """
+ >>> _validate_not_empty(["a"], ["b"], {"c":0.5},
+ ... {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
+
+ >>> _validate_not_empty(["a"], ["b"], {"c":0.5}, {}, {"f": {"g": 0.7}})
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+ >>> _validate_not_empty(["a"], ["b"], None, {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
+ Traceback (most recent call last):
+ ...
+ ValueError: There's an empty parameter
+ """
+ if not all(
+ [
+ observations_space,
+ states_space,
+ initial_probabilities,
+ transition_probabilities,
+ emission_probabilities,
+ ]
+ ):
+ raise ValueError("There's an empty parameter")
+
+
+def _validate_lists(observations_space: Any, states_space: Any) -> None:
+ """
+ >>> _validate_lists(["a"], ["b"])
+
+ >>> _validate_lists(1234, ["b"])
+ Traceback (most recent call last):
+ ...
+ ValueError: observations_space must be a list
+
+ >>> _validate_lists(["a"], [3])
+ Traceback (most recent call last):
+ ...
+ ValueError: states_space must be a list of strings
+ """
+ _validate_list(observations_space, "observations_space")
+ _validate_list(states_space, "states_space")
+
+
+def _validate_list(_object: Any, var_name: str) -> None:
+ """
+ >>> _validate_list(["a"], "mock_name")
+
+ >>> _validate_list("a", "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name must be a list
+ >>> _validate_list([0.5], "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name must be a list of strings
+
+ """
+ if not isinstance(_object, list):
+ msg = f"{var_name} must be a list"
+ raise ValueError(msg)
+ else:
+ for x in _object:
+ if not isinstance(x, str):
+ msg = f"{var_name} must be a list of strings"
+ raise ValueError(msg)
+
+
+def _validate_dicts(
+ initial_probabilities: Any,
+ transition_probabilities: Any,
+ emission_probabilities: Any,
+) -> None:
+ """
+ >>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
+
+ >>> _validate_dicts("invalid", {"d": {"e": 0.6}}, {"f": {"g": 0.7}})
+ Traceback (most recent call last):
+ ...
+ ValueError: initial_probabilities must be a dict
+ >>> _validate_dicts({"c":0.5}, {2: {"e": 0.6}}, {"f": {"g": 0.7}})
+ Traceback (most recent call last):
+ ...
+ ValueError: transition_probabilities all keys must be strings
+ >>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {2: 0.7}})
+ Traceback (most recent call last):
+ ...
+ ValueError: emission_probabilities all keys must be strings
+ >>> _validate_dicts({"c":0.5}, {"d": {"e": 0.6}}, {"f": {"g": "h"}})
+ Traceback (most recent call last):
+ ...
+ ValueError: emission_probabilities nested dictionary all values must be float
+ """
+ _validate_dict(initial_probabilities, "initial_probabilities", float)
+ _validate_nested_dict(transition_probabilities, "transition_probabilities")
+ _validate_nested_dict(emission_probabilities, "emission_probabilities")
+
+
+def _validate_nested_dict(_object: Any, var_name: str) -> None:
+ """
+ >>> _validate_nested_dict({"a":{"b": 0.5}}, "mock_name")
+
+ >>> _validate_nested_dict("invalid", "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name must be a dict
+ >>> _validate_nested_dict({"a": 8}, "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name all values must be dict
+ >>> _validate_nested_dict({"a":{2: 0.5}}, "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name all keys must be strings
+ >>> _validate_nested_dict({"a":{"b": 4}}, "mock_name")
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name nested dictionary all values must be float
+ """
+ _validate_dict(_object, var_name, dict)
+ for x in _object.values():
+ _validate_dict(x, var_name, float, True)
+
+
+def _validate_dict(
+ _object: Any, var_name: str, value_type: type, nested: bool = False
+) -> None:
+ """
+ >>> _validate_dict({"b": 0.5}, "mock_name", float)
+
+ >>> _validate_dict("invalid", "mock_name", float)
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name must be a dict
+ >>> _validate_dict({"a": 8}, "mock_name", dict)
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name all values must be dict
+ >>> _validate_dict({2: 0.5}, "mock_name",float, True)
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name all keys must be strings
+ >>> _validate_dict({"b": 4}, "mock_name", float,True)
+ Traceback (most recent call last):
+ ...
+ ValueError: mock_name nested dictionary all values must be float
+ """
+ if not isinstance(_object, dict):
+ msg = f"{var_name} must be a dict"
+ raise ValueError(msg)
+ if not all(isinstance(x, str) for x in _object):
+ msg = f"{var_name} all keys must be strings"
+ raise ValueError(msg)
+ if not all(isinstance(x, value_type) for x in _object.values()):
+ nested_text = "nested dictionary " if nested else ""
+ msg = f"{var_name} {nested_text}all values must be {value_type.__name__}"
+ raise ValueError(msg)
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
diff --git a/dynamic_programming/word_break.py b/dynamic_programming/word_break.py
new file mode 100644
index 000000000..4d7ac8690
--- /dev/null
+++ b/dynamic_programming/word_break.py
@@ -0,0 +1,111 @@
+"""
+Author : Alexander Pantyukhin
+Date : December 12, 2022
+
+Task:
+Given a string and a list of words, return true if the string can be
+segmented into a space-separated sequence of one or more words.
+
+Note that the same word may be reused
+multiple times in the segmentation.
+
+Implementation notes: Trie + Dynamic programming up -> down.
+The Trie will be used to store the words. It will be useful for scanning
+available words for the current position in the string.
+
+Leetcode:
+https://leetcode.com/problems/word-break/description/
+
+Runtime: O(n * n)
+Space: O(n)
+"""
+
+import functools
+from typing import Any
+
+
+def word_break(string: str, words: list[str]) -> bool:
+ """
+ Return True if numbers have opposite signs False otherwise.
+
+ >>> word_break("applepenapple", ["apple","pen"])
+ True
+ >>> word_break("catsandog", ["cats","dog","sand","and","cat"])
+ False
+ >>> word_break("cars", ["car","ca","rs"])
+ True
+ >>> word_break('abc', [])
+ False
+ >>> word_break(123, ['a'])
+ Traceback (most recent call last):
+ ...
+ ValueError: the string should be not empty string
+ >>> word_break('', ['a'])
+ Traceback (most recent call last):
+ ...
+ ValueError: the string should be not empty string
+ >>> word_break('abc', [123])
+ Traceback (most recent call last):
+ ...
+ ValueError: the words should be a list of non-empty strings
+ >>> word_break('abc', [''])
+ Traceback (most recent call last):
+ ...
+ ValueError: the words should be a list of non-empty strings
+ """
+
+ # Validation
+ if not isinstance(string, str) or len(string) == 0:
+ raise ValueError("the string should be not empty string")
+
+ if not isinstance(words, list) or not all(
+ isinstance(item, str) and len(item) > 0 for item in words
+ ):
+ raise ValueError("the words should be a list of non-empty strings")
+
+ # Build trie
+ trie: dict[str, Any] = {}
+ word_keeper_key = "WORD_KEEPER"
+
+ for word in words:
+ trie_node = trie
+ for c in word:
+ if c not in trie_node:
+ trie_node[c] = {}
+
+ trie_node = trie_node[c]
+
+ trie_node[word_keeper_key] = True
+
+ len_string = len(string)
+
+ # Dynamic programming method
+ @functools.cache
+ def is_breakable(index: int) -> bool:
+ """
+ >>> string = 'a'
+ >>> is_breakable(1)
+ True
+ """
+ if index == len_string:
+ return True
+
+ trie_node = trie
+ for i in range(index, len_string):
+ trie_node = trie_node.get(string[i], None)
+
+ if trie_node is None:
+ return False
+
+ if trie_node.get(word_keeper_key, False) and is_breakable(i + 1):
+ return True
+
+ return False
+
+ return is_breakable(0)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/apparent_power.py b/electronics/apparent_power.py
new file mode 100644
index 000000000..0ce1c2aa9
--- /dev/null
+++ b/electronics/apparent_power.py
@@ -0,0 +1,37 @@
+import cmath
+import math
+
+
+def apparent_power(
+ voltage: float, current: float, voltage_angle: float, current_angle: float
+) -> complex:
+ """
+ Calculate the apparent power in a single-phase AC circuit.
+
+ Reference: https://en.wikipedia.org/wiki/AC_power#Apparent_power
+
+ >>> apparent_power(100, 5, 0, 0)
+ (500+0j)
+ >>> apparent_power(100, 5, 90, 0)
+ (3.061616997868383e-14+500j)
+ >>> apparent_power(100, 5, -45, -60)
+ (-129.40952255126027-482.9629131445341j)
+ >>> apparent_power(200, 10, -30, -90)
+ (-999.9999999999998-1732.0508075688776j)
+ """
+ # Convert angles from degrees to radians
+ voltage_angle_rad = math.radians(voltage_angle)
+ current_angle_rad = math.radians(current_angle)
+
+ # Convert voltage and current to rectangular form
+ voltage_rect = cmath.rect(voltage, voltage_angle_rad)
+ current_rect = cmath.rect(current, current_angle_rad)
+
+ # Calculate apparent power
+ return voltage_rect * current_rect
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/builtin_voltage.py b/electronics/builtin_voltage.py
new file mode 100644
index 000000000..38fde4524
--- /dev/null
+++ b/electronics/builtin_voltage.py
@@ -0,0 +1,67 @@
+from math import log
+
+from scipy.constants import Boltzmann, physical_constants
+
+T = 300 # TEMPERATURE (unit = K)
+
+
+def builtin_voltage(
+ donor_conc: float, # donor concentration
+ acceptor_conc: float, # acceptor concentration
+ intrinsic_conc: float, # intrinsic concentration
+) -> float:
+ """
+ This function can calculate the Builtin Voltage of a pn junction diode.
+ This is calculated from the given three values.
+ Examples -
+ >>> builtin_voltage(donor_conc=1e17, acceptor_conc=1e17, intrinsic_conc=1e10)
+ 0.833370010652644
+ >>> builtin_voltage(donor_conc=0, acceptor_conc=1600, intrinsic_conc=200)
+ Traceback (most recent call last):
+ ...
+ ValueError: Donor concentration should be positive
+ >>> builtin_voltage(donor_conc=1000, acceptor_conc=0, intrinsic_conc=1200)
+ Traceback (most recent call last):
+ ...
+ ValueError: Acceptor concentration should be positive
+ >>> builtin_voltage(donor_conc=1000, acceptor_conc=1000, intrinsic_conc=0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Intrinsic concentration should be positive
+ >>> builtin_voltage(donor_conc=1000, acceptor_conc=3000, intrinsic_conc=2000)
+ Traceback (most recent call last):
+ ...
+ ValueError: Donor concentration should be greater than intrinsic concentration
+ >>> builtin_voltage(donor_conc=3000, acceptor_conc=1000, intrinsic_conc=2000)
+ Traceback (most recent call last):
+ ...
+ ValueError: Acceptor concentration should be greater than intrinsic concentration
+ """
+
+ if donor_conc <= 0:
+ raise ValueError("Donor concentration should be positive")
+ elif acceptor_conc <= 0:
+ raise ValueError("Acceptor concentration should be positive")
+ elif intrinsic_conc <= 0:
+ raise ValueError("Intrinsic concentration should be positive")
+ elif donor_conc <= intrinsic_conc:
+ raise ValueError(
+ "Donor concentration should be greater than intrinsic concentration"
+ )
+ elif acceptor_conc <= intrinsic_conc:
+ raise ValueError(
+ "Acceptor concentration should be greater than intrinsic concentration"
+ )
+ else:
+ return (
+ Boltzmann
+ * T
+ * log((donor_conc * acceptor_conc) / intrinsic_conc**2)
+ / physical_constants["electron volt"][0]
+ )
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/carrier_concentration.py b/electronics/carrier_concentration.py
index 03482f1e3..1fb9f2430 100644
--- a/electronics/carrier_concentration.py
+++ b/electronics/carrier_concentration.py
@@ -25,19 +25,19 @@ def carrier_concentration(
('hole_conc', 1440.0)
>>> carrier_concentration(electron_conc=1000, hole_conc=400, intrinsic_conc=1200)
Traceback (most recent call last):
- File "", line 37, in
+ ...
ValueError: You cannot supply more or less than 2 values
>>> carrier_concentration(electron_conc=-1000, hole_conc=0, intrinsic_conc=1200)
Traceback (most recent call last):
- File "", line 40, in
+ ...
ValueError: Electron concentration cannot be negative in a semiconductor
>>> carrier_concentration(electron_conc=0, hole_conc=-400, intrinsic_conc=1200)
Traceback (most recent call last):
- File "", line 44, in
+ ...
ValueError: Hole concentration cannot be negative in a semiconductor
>>> carrier_concentration(electron_conc=0, hole_conc=400, intrinsic_conc=-1200)
Traceback (most recent call last):
- File "", line 48, in
+ ...
ValueError: Intrinsic concentration cannot be negative in a semiconductor
"""
if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1:
diff --git a/electronics/circular_convolution.py b/electronics/circular_convolution.py
new file mode 100644
index 000000000..f2e35742e
--- /dev/null
+++ b/electronics/circular_convolution.py
@@ -0,0 +1,99 @@
+# https://en.wikipedia.org/wiki/Circular_convolution
+
+"""
+Circular convolution, also known as cyclic convolution,
+is a special case of periodic convolution, which is the convolution of two
+periodic functions that have the same period. Periodic convolution arises,
+for example, in the context of the discrete-time Fourier transform (DTFT).
+In particular, the DTFT of the product of two discrete sequences is the periodic
+convolution of the DTFTs of the individual sequences. And each DTFT is a periodic
+summation of a continuous Fourier transform function.
+
+Source: https://en.wikipedia.org/wiki/Circular_convolution
+"""
+
+import doctest
+from collections import deque
+
+import numpy as np
+
+
+class CircularConvolution:
+ """
+ This class stores the first and second signal and performs the circular convolution
+ """
+
+ def __init__(self) -> None:
+ """
+ First signal and second signal are stored as 1-D array
+ """
+
+ self.first_signal = [2, 1, 2, -1]
+ self.second_signal = [1, 2, 3, 4]
+
+ def circular_convolution(self) -> list[float]:
+ """
+ This function performs the circular convolution of the first and second signal
+ using matrix method
+
+ Usage:
+ >>> import circular_convolution as cc
+ >>> convolution = cc.CircularConvolution()
+ >>> convolution.circular_convolution()
+ [10, 10, 6, 14]
+
+ >>> convolution.first_signal = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]
+ >>> convolution.second_signal = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]
+ >>> convolution.circular_convolution()
+ [5.2, 6.0, 6.48, 6.64, 6.48, 6.0, 5.2, 4.08]
+
+ >>> convolution.first_signal = [-1, 1, 2, -2]
+ >>> convolution.second_signal = [0.5, 1, -1, 2, 0.75]
+ >>> convolution.circular_convolution()
+ [6.25, -3.0, 1.5, -2.0, -2.75]
+
+ >>> convolution.first_signal = [1, -1, 2, 3, -1]
+ >>> convolution.second_signal = [1, 2, 3]
+ >>> convolution.circular_convolution()
+ [8, -2, 3, 4, 11]
+
+ """
+
+ length_first_signal = len(self.first_signal)
+ length_second_signal = len(self.second_signal)
+
+ max_length = max(length_first_signal, length_second_signal)
+
+ # create a zero matrix of max_length x max_length
+ matrix = [[0] * max_length for i in range(max_length)]
+
+ # fills the smaller signal with zeros to make both signals of same length
+ if length_first_signal < length_second_signal:
+ self.first_signal += [0] * (max_length - length_first_signal)
+ elif length_first_signal > length_second_signal:
+ self.second_signal += [0] * (max_length - length_second_signal)
+
+ """
+ Fills the matrix in the following way assuming 'x' is the signal of length 4
+ [
+ [x[0], x[3], x[2], x[1]],
+ [x[1], x[0], x[3], x[2]],
+ [x[2], x[1], x[0], x[3]],
+ [x[3], x[2], x[1], x[0]]
+ ]
+ """
+ for i in range(max_length):
+ rotated_signal = deque(self.second_signal)
+ rotated_signal.rotate(i)
+ for j, item in enumerate(rotated_signal):
+ matrix[i][j] += item
+
+ # multiply the matrix with the first signal
+ final_signal = np.matmul(np.transpose(matrix), np.transpose(self.first_signal))
+
+ # rounding-off to two decimal places
+ return [round(i, 2) for i in final_signal]
+
+
+if __name__ == "__main__":
+ doctest.testmod()
diff --git a/electronics/coulombs_law.py b/electronics/coulombs_law.py
index e41c0410c..18c1a8179 100644
--- a/electronics/coulombs_law.py
+++ b/electronics/coulombs_law.py
@@ -8,7 +8,6 @@ COULOMBS_CONSTANT = 8.988e9 # units = N * m^s * C^-2
def couloumbs_law(
force: float, charge1: float, charge2: float, distance: float
) -> dict[str, float]:
-
"""
Apply Coulomb's Law on any three given values. These can be force, charge1,
charge2, or distance, and then in a Python dict return name/value pair of
diff --git a/electronics/electric_conductivity.py b/electronics/electric_conductivity.py
new file mode 100644
index 000000000..11f2a607d
--- /dev/null
+++ b/electronics/electric_conductivity.py
@@ -0,0 +1,53 @@
+from __future__ import annotations
+
+ELECTRON_CHARGE = 1.6021e-19 # units = C
+
+
+def electric_conductivity(
+ conductivity: float,
+ electron_conc: float,
+ mobility: float,
+) -> tuple[str, float]:
+ """
+ This function can calculate any one of the three -
+ 1. Conductivity
+ 2. Electron Concentration
+ 3. Electron Mobility
+ This is calculated from the other two provided values
+ Examples -
+ >>> electric_conductivity(conductivity=25, electron_conc=100, mobility=0)
+ ('mobility', 1.5604519068722301e+18)
+ >>> electric_conductivity(conductivity=0, electron_conc=1600, mobility=200)
+ ('conductivity', 5.12672e-14)
+ >>> electric_conductivity(conductivity=1000, electron_conc=0, mobility=1200)
+ ('electron_conc', 5.201506356240767e+18)
+ """
+ if (conductivity, electron_conc, mobility).count(0) != 1:
+ raise ValueError("You cannot supply more or less than 2 values")
+ elif conductivity < 0:
+ raise ValueError("Conductivity cannot be negative")
+ elif electron_conc < 0:
+ raise ValueError("Electron concentration cannot be negative")
+ elif mobility < 0:
+ raise ValueError("mobility cannot be negative")
+ elif conductivity == 0:
+ return (
+ "conductivity",
+ mobility * electron_conc * ELECTRON_CHARGE,
+ )
+ elif electron_conc == 0:
+ return (
+ "electron_conc",
+ conductivity / (mobility * ELECTRON_CHARGE),
+ )
+ else:
+ return (
+ "mobility",
+ conductivity / (electron_conc * ELECTRON_CHARGE),
+ )
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/electric_power.py b/electronics/electric_power.py
index ac673d7e3..8b92e320a 100644
--- a/electronics/electric_power.py
+++ b/electronics/electric_power.py
@@ -1,7 +1,12 @@
# https://en.m.wikipedia.org/wiki/Electric_power
from __future__ import annotations
-from collections import namedtuple
+from typing import NamedTuple
+
+
+class Result(NamedTuple):
+ name: str
+ value: float
def electric_power(voltage: float, current: float, power: float) -> tuple:
@@ -10,27 +15,26 @@ def electric_power(voltage: float, current: float, power: float) -> tuple:
fundamental value of electrical system.
examples are below:
>>> electric_power(voltage=0, current=2, power=5)
- result(name='voltage', value=2.5)
+ Result(name='voltage', value=2.5)
>>> electric_power(voltage=2, current=2, power=0)
- result(name='power', value=4.0)
+ Result(name='power', value=4.0)
>>> electric_power(voltage=-2, current=3, power=0)
- result(name='power', value=6.0)
+ Result(name='power', value=6.0)
>>> electric_power(voltage=2, current=4, power=2)
Traceback (most recent call last):
- File "", line 15, in
+ ...
ValueError: Only one argument must be 0
>>> electric_power(voltage=0, current=0, power=2)
Traceback (most recent call last):
- File "", line 19, in
+ ...
ValueError: Only one argument must be 0
>>> electric_power(voltage=0, current=2, power=-4)
Traceback (most recent call last):
- File "", line 23, in >> electric_power(voltage=2.2, current=2.2, power=0)
- result(name='power', value=4.84)
+ Result(name='power', value=4.84)
"""
- result = namedtuple("result", "name value")
if (voltage, current, power).count(0) != 1:
raise ValueError("Only one argument must be 0")
elif power < 0:
@@ -38,11 +42,11 @@ def electric_power(voltage: float, current: float, power: float) -> tuple:
"Power cannot be negative in any electrical/electronics system"
)
elif voltage == 0:
- return result("voltage", power / current)
+ return Result("voltage", power / current)
elif current == 0:
- return result("current", power / voltage)
+ return Result("current", power / voltage)
elif power == 0:
- return result("power", float(round(abs(voltage * current), 2)))
+ return Result("power", float(round(abs(voltage * current), 2)))
else:
raise ValueError("Exactly one argument must be 0")
diff --git a/electronics/electrical_impedance.py b/electronics/electrical_impedance.py
new file mode 100644
index 000000000..44041ff79
--- /dev/null
+++ b/electronics/electrical_impedance.py
@@ -0,0 +1,46 @@
+"""Electrical impedance is the measure of the opposition that a
+circuit presents to a current when a voltage is applied.
+Impedance extends the concept of resistance to alternating current (AC) circuits.
+Source: https://en.wikipedia.org/wiki/Electrical_impedance
+"""
+
+from __future__ import annotations
+
+from math import pow, sqrt
+
+
+def electrical_impedance(
+ resistance: float, reactance: float, impedance: float
+) -> dict[str, float]:
+ """
+ Apply Electrical Impedance formula, on any two given electrical values,
+ which can be resistance, reactance, and impedance, and then in a Python dict
+ return name/value pair of the zero value.
+
+ >>> electrical_impedance(3,4,0)
+ {'impedance': 5.0}
+ >>> electrical_impedance(0,4,5)
+ {'resistance': 3.0}
+ >>> electrical_impedance(3,0,5)
+ {'reactance': 4.0}
+ >>> electrical_impedance(3,4,5)
+ Traceback (most recent call last):
+ ...
+ ValueError: One and only one argument must be 0
+ """
+ if (resistance, reactance, impedance).count(0) != 1:
+ raise ValueError("One and only one argument must be 0")
+ if resistance == 0:
+ return {"resistance": sqrt(pow(impedance, 2) - pow(reactance, 2))}
+ elif reactance == 0:
+ return {"reactance": sqrt(pow(impedance, 2) - pow(resistance, 2))}
+ elif impedance == 0:
+ return {"impedance": sqrt(pow(resistance, 2) + pow(reactance, 2))}
+ else:
+ raise ValueError("Exactly one argument must be 0")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/ind_reactance.py b/electronics/ind_reactance.py
new file mode 100644
index 000000000..3f77ef628
--- /dev/null
+++ b/electronics/ind_reactance.py
@@ -0,0 +1,69 @@
+# https://en.wikipedia.org/wiki/Electrical_reactance#Inductive_reactance
+from __future__ import annotations
+
+from math import pi
+
+
+def ind_reactance(
+ inductance: float, frequency: float, reactance: float
+) -> dict[str, float]:
+ """
+ Calculate inductive reactance, frequency or inductance from two given electrical
+ properties then return name/value pair of the zero value in a Python dict.
+
+ Parameters
+ ----------
+ inductance : float with units in Henries
+
+ frequency : float with units in Hertz
+
+ reactance : float with units in Ohms
+
+ >>> ind_reactance(-35e-6, 1e3, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Inductance cannot be negative
+
+ >>> ind_reactance(35e-6, -1e3, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Frequency cannot be negative
+
+ >>> ind_reactance(35e-6, 0, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Inductive reactance cannot be negative
+
+ >>> ind_reactance(0, 10e3, 50)
+ {'inductance': 0.0007957747154594767}
+
+ >>> ind_reactance(35e-3, 0, 50)
+ {'frequency': 227.36420441699332}
+
+ >>> ind_reactance(35e-6, 1e3, 0)
+ {'reactance': 0.2199114857512855}
+
+ """
+
+ if (inductance, frequency, reactance).count(0) != 1:
+ raise ValueError("One and only one argument must be 0")
+ if inductance < 0:
+ raise ValueError("Inductance cannot be negative")
+ if frequency < 0:
+ raise ValueError("Frequency cannot be negative")
+ if reactance < 0:
+ raise ValueError("Inductive reactance cannot be negative")
+ if inductance == 0:
+ return {"inductance": reactance / (2 * pi * frequency)}
+ elif frequency == 0:
+ return {"frequency": reactance / (2 * pi * inductance)}
+ elif reactance == 0:
+ return {"reactance": 2 * pi * frequency * inductance}
+ else:
+ raise ValueError("Exactly one argument must be 0")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/real_and_reactive_power.py b/electronics/real_and_reactive_power.py
new file mode 100644
index 000000000..81dcba800
--- /dev/null
+++ b/electronics/real_and_reactive_power.py
@@ -0,0 +1,49 @@
+import math
+
+
+def real_power(apparent_power: float, power_factor: float) -> float:
+ """
+ Calculate real power from apparent power and power factor.
+
+ Examples:
+ >>> real_power(100, 0.9)
+ 90.0
+ >>> real_power(0, 0.8)
+ 0.0
+ >>> real_power(100, -0.9)
+ -90.0
+ """
+ if (
+ not isinstance(power_factor, (int, float))
+ or power_factor < -1
+ or power_factor > 1
+ ):
+ raise ValueError("power_factor must be a valid float value between -1 and 1.")
+ return apparent_power * power_factor
+
+
+def reactive_power(apparent_power: float, power_factor: float) -> float:
+ """
+ Calculate reactive power from apparent power and power factor.
+
+ Examples:
+ >>> reactive_power(100, 0.9)
+ 43.58898943540673
+ >>> reactive_power(0, 0.8)
+ 0.0
+ >>> reactive_power(100, -0.9)
+ 43.58898943540673
+ """
+ if (
+ not isinstance(power_factor, (int, float))
+ or power_factor < -1
+ or power_factor > 1
+ ):
+ raise ValueError("power_factor must be a valid float value between -1 and 1.")
+ return apparent_power * math.sqrt(1 - power_factor**2)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/resistor_equivalence.py b/electronics/resistor_equivalence.py
new file mode 100644
index 000000000..55e7f2d6b
--- /dev/null
+++ b/electronics/resistor_equivalence.py
@@ -0,0 +1,60 @@
+# https://byjus.com/equivalent-resistance-formula/
+
+from __future__ import annotations
+
+
+def resistor_parallel(resistors: list[float]) -> float:
+ """
+ Req = 1/ (1/R1 + 1/R2 + ... + 1/Rn)
+
+ >>> resistor_parallel([3.21389, 2, 3])
+ 0.8737571620498019
+ >>> resistor_parallel([3.21389, 2, -3])
+ Traceback (most recent call last):
+ ...
+ ValueError: Resistor at index 2 has a negative or zero value!
+ >>> resistor_parallel([3.21389, 2, 0.000])
+ Traceback (most recent call last):
+ ...
+ ValueError: Resistor at index 2 has a negative or zero value!
+ """
+
+ first_sum = 0.00
+ index = 0
+ for resistor in resistors:
+ if resistor <= 0:
+ msg = f"Resistor at index {index} has a negative or zero value!"
+ raise ValueError(msg)
+ first_sum += 1 / float(resistor)
+ index += 1
+ return 1 / first_sum
+
+
+def resistor_series(resistors: list[float]) -> float:
+ """
+ Req = R1 + R2 + ... + Rn
+
+ Calculate the equivalent resistance for any number of resistors in parallel.
+
+ >>> resistor_series([3.21389, 2, 3])
+ 8.21389
+ >>> resistor_series([3.21389, 2, -3])
+ Traceback (most recent call last):
+ ...
+ ValueError: Resistor at index 2 has a negative value!
+ """
+ sum_r = 0.00
+ index = 0
+ for resistor in resistors:
+ sum_r += resistor
+ if resistor < 0:
+ msg = f"Resistor at index {index} has a negative value!"
+ raise ValueError(msg)
+ index += 1
+ return sum_r
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/electronics/resonant_frequency.py b/electronics/resonant_frequency.py
new file mode 100644
index 000000000..4f95043b6
--- /dev/null
+++ b/electronics/resonant_frequency.py
@@ -0,0 +1,50 @@
+# https://en.wikipedia.org/wiki/LC_circuit
+
+"""An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit,
+is an electric circuit consisting of an inductor, represented by the letter L,
+and a capacitor, represented by the letter C, connected together.
+The circuit can act as an electrical resonator, an electrical analogue of a
+tuning fork, storing energy oscillating at the circuit's resonant frequency.
+Source: https://en.wikipedia.org/wiki/LC_circuit
+"""
+
+from __future__ import annotations
+
+from math import pi, sqrt
+
+
+def resonant_frequency(inductance: float, capacitance: float) -> tuple:
+ """
+ This function can calculate the resonant frequency of LC circuit,
+ for the given value of inductance and capacitnace.
+
+ Examples are given below:
+ >>> resonant_frequency(inductance=10, capacitance=5)
+ ('Resonant frequency', 0.022507907903927652)
+ >>> resonant_frequency(inductance=0, capacitance=5)
+ Traceback (most recent call last):
+ ...
+ ValueError: Inductance cannot be 0 or negative
+ >>> resonant_frequency(inductance=10, capacitance=0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Capacitance cannot be 0 or negative
+ """
+
+ if inductance <= 0:
+ raise ValueError("Inductance cannot be 0 or negative")
+
+ elif capacitance <= 0:
+ raise ValueError("Capacitance cannot be 0 or negative")
+
+ else:
+ return (
+ "Resonant frequency",
+ float(1 / (2 * pi * (sqrt(inductance * capacitance)))),
+ )
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/file_transfer/receive_file.py b/file_transfer/receive_file.py
index 37a503036..f50ad9fe1 100644
--- a/file_transfer/receive_file.py
+++ b/file_transfer/receive_file.py
@@ -1,8 +1,9 @@
-if __name__ == "__main__":
- import socket # Import socket module
+import socket
- sock = socket.socket() # Create a socket object
- host = socket.gethostname() # Get local machine name
+
+def main():
+ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ host = socket.gethostname()
port = 12312
sock.connect((host, port))
@@ -13,11 +14,14 @@ if __name__ == "__main__":
print("Receiving data...")
while True:
data = sock.recv(1024)
- print(f"{data = }")
if not data:
break
- out_file.write(data) # Write data to a file
+ out_file.write(data)
- print("Successfully got the file")
+ print("Successfully received the file")
sock.close()
print("Connection closed")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/financial/interest.py b/financial/interest.py
index c69c73045..33d02e27c 100644
--- a/financial/interest.py
+++ b/financial/interest.py
@@ -4,7 +4,7 @@ from __future__ import annotations
def simple_interest(
- principal: float, daily_interest_rate: float, days_between_payments: int
+ principal: float, daily_interest_rate: float, days_between_payments: float
) -> float:
"""
>>> simple_interest(18000.0, 0.06, 3)
@@ -42,7 +42,7 @@ def simple_interest(
def compound_interest(
principal: float,
nominal_annual_interest_rate_percentage: float,
- number_of_compounding_periods: int,
+ number_of_compounding_periods: float,
) -> float:
"""
>>> compound_interest(10000.0, 0.05, 3)
@@ -77,6 +77,43 @@ def compound_interest(
)
+def apr_interest(
+ principal: float,
+ nominal_annual_percentage_rate: float,
+ number_of_years: float,
+) -> float:
+ """
+ >>> apr_interest(10000.0, 0.05, 3)
+ 1618.223072263547
+ >>> apr_interest(10000.0, 0.05, 1)
+ 512.6749646744732
+ >>> apr_interest(0.5, 0.05, 3)
+ 0.08091115361317736
+ >>> apr_interest(10000.0, 0.06, -4)
+ Traceback (most recent call last):
+ ...
+ ValueError: number_of_years must be > 0
+ >>> apr_interest(10000.0, -3.5, 3.0)
+ Traceback (most recent call last):
+ ...
+ ValueError: nominal_annual_percentage_rate must be >= 0
+ >>> apr_interest(-5500.0, 0.01, 5)
+ Traceback (most recent call last):
+ ...
+ ValueError: principal must be > 0
+ """
+ if number_of_years <= 0:
+ raise ValueError("number_of_years must be > 0")
+ if nominal_annual_percentage_rate < 0:
+ raise ValueError("nominal_annual_percentage_rate must be >= 0")
+ if principal <= 0:
+ raise ValueError("principal must be > 0")
+
+ return compound_interest(
+ principal, nominal_annual_percentage_rate / 365, number_of_years * 365
+ )
+
+
if __name__ == "__main__":
import doctest
diff --git a/financial/present_value.py b/financial/present_value.py
new file mode 100644
index 000000000..f74612b92
--- /dev/null
+++ b/financial/present_value.py
@@ -0,0 +1,42 @@
+"""
+Reference: https://www.investopedia.com/terms/p/presentvalue.asp
+
+An algorithm that calculates the present value of a stream of yearly cash flows given...
+1. The discount rate (as a decimal, not a percent)
+2. An array of cash flows, with the index of the cash flow being the associated year
+
+Note: This algorithm assumes that cash flows are paid at the end of the specified year
+"""
+
+
+def present_value(discount_rate: float, cash_flows: list[float]) -> float:
+ """
+ >>> present_value(0.13, [10, 20.70, -293, 297])
+ 4.69
+ >>> present_value(0.07, [-109129.39, 30923.23, 15098.93, 29734,39])
+ -42739.63
+ >>> present_value(0.07, [109129.39, 30923.23, 15098.93, 29734,39])
+ 175519.15
+ >>> present_value(-1, [109129.39, 30923.23, 15098.93, 29734,39])
+ Traceback (most recent call last):
+ ...
+ ValueError: Discount rate cannot be negative
+ >>> present_value(0.03, [])
+ Traceback (most recent call last):
+ ...
+ ValueError: Cash flows list cannot be empty
+ """
+ if discount_rate < 0:
+ raise ValueError("Discount rate cannot be negative")
+ if not cash_flows:
+ raise ValueError("Cash flows list cannot be empty")
+ present_value = sum(
+ cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(cash_flows)
+ )
+ return round(present_value, ndigits=2)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/financial/price_plus_tax.py b/financial/price_plus_tax.py
new file mode 100644
index 000000000..43876d35e
--- /dev/null
+++ b/financial/price_plus_tax.py
@@ -0,0 +1,18 @@
+"""
+Calculate price plus tax of a good or service given its price and a tax rate.
+"""
+
+
+def price_plus_tax(price: float, tax_rate: float) -> float:
+ """
+ >>> price_plus_tax(100, 0.25)
+ 125.0
+ >>> price_plus_tax(125.50, 0.05)
+ 131.775
+ """
+ return price * (1 + tax_rate)
+
+
+if __name__ == "__main__":
+ print(f"{price_plus_tax(100, 0.25) = }")
+ print(f"{price_plus_tax(125.50, 0.05) = }")
diff --git a/fractals/julia_sets.py b/fractals/julia_sets.py
index f27394385..482e1eddf 100644
--- a/fractals/julia_sets.py
+++ b/fractals/julia_sets.py
@@ -12,7 +12,7 @@ The examples presented here are:
https://en.wikipedia.org/wiki/File:Julia_z2%2B0,25.png
- Other examples from https://en.wikipedia.org/wiki/Julia_set
- An exponential map Julia set, ambiantly homeomorphic to the examples in
-http://www.math.univ-toulouse.fr/~cheritat/GalII/galery.html
+https://www.math.univ-toulouse.fr/~cheritat/GalII/galery.html
and
https://ddd.uab.cat/pub/pubmat/02141493v43n1/02141493v43n1p27.pdf
@@ -89,7 +89,7 @@ def iterate_function(
function_params: Any,
nb_iterations: int,
z_0: numpy.ndarray,
- infinity: float = None,
+ infinity: float | None = None,
) -> numpy.ndarray:
"""
Iterate the function "eval_function" exactly nb_iterations times.
@@ -118,7 +118,7 @@ def iterate_function(
"""
z_n = z_0.astype("complex64")
- for i in range(nb_iterations):
+ for _ in range(nb_iterations):
z_n = eval_function(function_params, z_n)
if infinity is not None:
numpy.nan_to_num(z_n, copy=False, nan=infinity)
@@ -170,7 +170,6 @@ def ignore_overflow_warnings() -> None:
if __name__ == "__main__":
-
z_0 = prepare_grid(window_size, nb_pixels)
ignore_overflow_warnings() # See file header for explanations
diff --git a/fractals/koch_snowflake.py b/fractals/koch_snowflake.py
index 07c1835b4..b0aaa86b1 100644
--- a/fractals/koch_snowflake.py
+++ b/fractals/koch_snowflake.py
@@ -46,7 +46,7 @@ def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndar
0.28867513]), array([0.66666667, 0. ]), array([1, 0])]
"""
vectors = initial_vectors
- for i in range(steps):
+ for _ in range(steps):
vectors = iteration_step(vectors)
return vectors
diff --git a/fractals/mandelbrot.py b/fractals/mandelbrot.py
index 5d61b72e1..84dbda997 100644
--- a/fractals/mandelbrot.py
+++ b/fractals/mandelbrot.py
@@ -36,7 +36,7 @@ def get_distance(x: float, y: float, max_step: int) -> float:
"""
a = x
b = y
- for step in range(max_step):
+ for step in range(max_step): # noqa: B007
a_new = a * a - b * b + x
b = 2 * a * b + y
a = a_new
@@ -114,7 +114,6 @@ def get_image(
# loop through the image-coordinates
for image_x in range(image_width):
for image_y in range(image_height):
-
# determine the figure-coordinates based on the image-coordinates
figure_height = figure_width / image_width * image_height
figure_x = figure_center_x + (image_x / image_width - 0.5) * figure_width
diff --git a/fractals/sierpinski_triangle.py b/fractals/sierpinski_triangle.py
index cf41ffa5f..45f7ab84c 100644
--- a/fractals/sierpinski_triangle.py
+++ b/fractals/sierpinski_triangle.py
@@ -1,76 +1,85 @@
-#!/usr/bin/python
+"""
+Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
-"""Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
+Simple example of fractal generation using recursion.
-Simple example of Fractal generation using recursive function.
+What is the Sierpiński Triangle?
+ The Sierpiński triangle (sometimes spelled Sierpinski), also called the
+Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with
+the overall shape of an equilateral triangle, subdivided recursively into
+smaller equilateral triangles. Originally constructed as a curve, this is one of
+the basic examples of self-similar sets—that is, it is a mathematically
+generated pattern that is reproducible at any magnification or reduction. It is
+named after the Polish mathematician Wacław Sierpiński, but appeared as a
+decorative pattern many centuries before the work of Sierpiński.
-What is Sierpinski Triangle?
->>The Sierpinski triangle (also with the original orthography Sierpinski), also called
-the Sierpinski gasket or the Sierpinski Sieve, is a fractal and attractive fixed set
-with the overall shape of an equilateral triangle, subdivided recursively into smaller
-equilateral triangles. Originally constructed as a curve, this is one of the basic
-examples of self-similar sets, i.e., it is a mathematically generated pattern that can
-be reproducible at any magnification or reduction. It is named after the Polish
-mathematician Wacław Sierpinski, but appeared as a decorative pattern many centuries
-prior to the work of Sierpinski.
-Requirements(pip):
- - turtle
-
-Python:
- - 2.6
-
-Usage:
- - $python sierpinski_triangle.py
-
-Credits: This code was written by editing the code from
-http://www.riannetrujillo.com/blog/python-fractal/
+Usage: python sierpinski_triangle.py
+Credits:
+ The above description is taken from
+ https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
+ This code was written by editing the code from
+ https://www.riannetrujillo.com/blog/python-fractal/
"""
import sys
import turtle
-PROGNAME = "Sierpinski Triangle"
-points = [[-175, -125], [0, 175], [175, -125]] # size of triangle
+def get_mid(p1: tuple[float, float], p2: tuple[float, float]) -> tuple[float, float]:
+ """
+ Find the midpoint of two points
+
+ >>> get_mid((0, 0), (2, 2))
+ (1.0, 1.0)
+ >>> get_mid((-3, -3), (3, 3))
+ (0.0, 0.0)
+ >>> get_mid((1, 0), (3, 2))
+ (2.0, 1.0)
+ >>> get_mid((0, 0), (1, 1))
+ (0.5, 0.5)
+ >>> get_mid((0, 0), (0, 0))
+ (0.0, 0.0)
+ """
+ return (p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2
-def getMid(p1, p2):
- return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2) # find midpoint
+def triangle(
+ vertex1: tuple[float, float],
+ vertex2: tuple[float, float],
+ vertex3: tuple[float, float],
+ depth: int,
+) -> None:
+ """
+ Recursively draw the Sierpinski triangle given the vertices of the triangle
+ and the recursion depth
+ """
+ my_pen.up()
+ my_pen.goto(vertex1[0], vertex1[1])
+ my_pen.down()
+ my_pen.goto(vertex2[0], vertex2[1])
+ my_pen.goto(vertex3[0], vertex3[1])
+ my_pen.goto(vertex1[0], vertex1[1])
+ if depth == 0:
+ return
-def triangle(points, depth):
-
- myPen.up()
- myPen.goto(points[0][0], points[0][1])
- myPen.down()
- myPen.goto(points[1][0], points[1][1])
- myPen.goto(points[2][0], points[2][1])
- myPen.goto(points[0][0], points[0][1])
-
- if depth > 0:
- triangle(
- [points[0], getMid(points[0], points[1]), getMid(points[0], points[2])],
- depth - 1,
- )
- triangle(
- [points[1], getMid(points[0], points[1]), getMid(points[1], points[2])],
- depth - 1,
- )
- triangle(
- [points[2], getMid(points[2], points[1]), getMid(points[0], points[2])],
- depth - 1,
- )
+ triangle(vertex1, get_mid(vertex1, vertex2), get_mid(vertex1, vertex3), depth - 1)
+ triangle(vertex2, get_mid(vertex1, vertex2), get_mid(vertex2, vertex3), depth - 1)
+ triangle(vertex3, get_mid(vertex3, vertex2), get_mid(vertex1, vertex3), depth - 1)
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
- "right format for using this script: "
- "$python fractals.py "
+ "Correct format for using this script: "
+ "python fractals.py "
)
- myPen = turtle.Turtle()
- myPen.ht()
- myPen.speed(5)
- myPen.pencolor("red")
- triangle(points, int(sys.argv[1]))
+ my_pen = turtle.Turtle()
+ my_pen.ht()
+ my_pen.speed(5)
+ my_pen.pencolor("red")
+
+ vertices = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
+ triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
+ turtle.Screen().exitonclick()
diff --git a/fuzzy_logic/fuzzy_operations.py b/fuzzy_logic/fuzzy_operations.py
index fbaca9421..0786ef8b0 100644
--- a/fuzzy_logic/fuzzy_operations.py
+++ b/fuzzy_logic/fuzzy_operations.py
@@ -8,11 +8,7 @@ Python:
- 3.5
"""
import numpy as np
-
-try:
- import skfuzzy as fuzz
-except ImportError:
- fuzz = None
+import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
diff --git a/genetic_algorithm/basic_string.py b/genetic_algorithm/basic_string.py
index 97dbe182b..089c5c99a 100644
--- a/genetic_algorithm/basic_string.py
+++ b/genetic_algorithm/basic_string.py
@@ -9,18 +9,66 @@ from __future__ import annotations
import random
-# Maximum size of the population. bigger could be faster but is more memory expensive
+# Maximum size of the population. Bigger could be faster but is more memory expensive.
N_POPULATION = 200
-# Number of elements selected in every generation for evolution the selection takes
-# place from the best to the worst of that generation must be smaller than N_POPULATION
+# Number of elements selected in every generation of evolution. The selection takes
+# place from best to worst of that generation and must be smaller than N_POPULATION.
N_SELECTED = 50
-# Probability that an element of a generation can mutate changing one of its genes this
-# guarantees that all genes will be used during evolution
+# Probability that an element of a generation can mutate, changing one of its genes.
+# This will guarantee that all genes will be used during evolution.
MUTATION_PROBABILITY = 0.4
-# just a seed to improve randomness required by the algorithm
+# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
+def evaluate(item: str, main_target: str) -> tuple[str, float]:
+ """
+ Evaluate how similar the item is with the target by just
+ counting each char in the right position
+ >>> evaluate("Helxo Worlx", "Hello World")
+ ('Helxo Worlx', 9.0)
+ """
+ score = len([g for position, g in enumerate(item) if g == main_target[position]])
+ return (item, float(score))
+
+
+def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
+ """Slice and combine two string at a random point."""
+ random_slice = random.randint(0, len(parent_1) - 1)
+ child_1 = parent_1[:random_slice] + parent_2[random_slice:]
+ child_2 = parent_2[:random_slice] + parent_1[random_slice:]
+ return (child_1, child_2)
+
+
+def mutate(child: str, genes: list[str]) -> str:
+ """Mutate a random gene of a child with another one from the list."""
+ child_list = list(child)
+ if random.uniform(0, 1) < MUTATION_PROBABILITY:
+ child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
+ return "".join(child_list)
+
+
+# Select, crossover and mutate a new population.
+def select(
+ parent_1: tuple[str, float],
+ population_score: list[tuple[str, float]],
+ genes: list[str],
+) -> list[str]:
+ """Select the second parent and generate new population"""
+ pop = []
+ # Generate more children proportionally to the fitness score.
+ child_n = int(parent_1[1] * 100) + 1
+ child_n = 10 if child_n >= 10 else child_n
+ for _ in range(child_n):
+ parent_2 = population_score[random.randint(0, N_SELECTED)][0]
+
+ child_1, child_2 = crossover(parent_1[0], parent_2)
+ # Append new string to the population list.
+ pop.append(mutate(child_1, genes))
+ pop.append(mutate(child_2, genes))
+ return pop
+
+
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
"""
Verify that the target contains no genes besides the ones inside genes variable.
@@ -32,55 +80,44 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
>>> genes.remove("e")
>>> basic("test", genes)
Traceback (most recent call last):
- ...
+ ...
ValueError: ['e'] is not in genes list, evolution cannot converge
>>> genes.remove("s")
>>> basic("test", genes)
Traceback (most recent call last):
- ...
+ ...
ValueError: ['e', 's'] is not in genes list, evolution cannot converge
>>> genes.remove("t")
>>> basic("test", genes)
Traceback (most recent call last):
- ...
+ ...
ValueError: ['e', 's', 't'] is not in genes list, evolution cannot converge
"""
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
- raise ValueError(f"{N_POPULATION} must be bigger than {N_SELECTED}")
+ msg = f"{N_POPULATION} must be bigger than {N_SELECTED}"
+ raise ValueError(msg)
# Verify that the target contains no genes besides the ones inside genes variable.
not_in_genes_list = sorted({c for c in target if c not in genes})
if not_in_genes_list:
- raise ValueError(
- f"{not_in_genes_list} is not in genes list, evolution cannot converge"
- )
+ msg = f"{not_in_genes_list} is not in genes list, evolution cannot converge"
+ raise ValueError(msg)
- # Generate random starting population
+ # Generate random starting population.
population = []
for _ in range(N_POPULATION):
population.append("".join([random.choice(genes) for i in range(len(target))]))
- # Just some logs to know what the algorithms is doing
+ # Just some logs to know what the algorithms is doing.
generation, total_population = 0, 0
- # This loop will end when we will find a perfect match for our target
+ # This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(population)
- # Random population created now it's time to evaluate
- def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
- """
- Evaluate how similar the item is with the target by just
- counting each char in the right position
- >>> evaluate("Helxo Worlx", Hello World)
- ["Helxo Worlx", 9]
- """
- score = len(
- [g for position, g in enumerate(item) if g == main_target[position]]
- )
- return (item, float(score))
+ # Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
@@ -92,17 +129,17 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
- # but with a simple algorithm like this will probably be slower
- # we just need to call evaluate for every item inside population
- population_score = [evaluate(item) for item in population]
+ # but with a simple algorithm like this, it will probably be slower.
+ # We just need to call evaluate for every item inside the population.
+ population_score = [evaluate(item, target) for item in population]
- # Check if there is a matching evolution
+ # Check if there is a matching evolution.
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
- # Print the Best result every 10 generation
- # just to know that the algorithm is working
+ # Print the best result every 10 generation.
+ # Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f"\nGeneration: {generation}"
@@ -111,52 +148,23 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
f"\nBest string: {population_score[0][0]}"
)
- # Flush the old population keeping some of the best evolutions
- # Keeping this avoid regression of evolution
+ # Flush the old population, keeping some of the best evolutions.
+ # Keeping this avoid regression of evolution.
population_best = population[: int(N_POPULATION / 3)]
population.clear()
population.extend(population_best)
- # Normalize population score from 0 to 1
+ # Normalize population score to be between 0 and 1.
population_score = [
(item, score / len(target)) for item, score in population_score
]
- # Select, Crossover and Mutate a new population
- def select(parent_1: tuple[str, float]) -> list[str]:
- """Select the second parent and generate new population"""
- pop = []
- # Generate more child proportionally to the fitness score
- child_n = int(parent_1[1] * 100) + 1
- child_n = 10 if child_n >= 10 else child_n
- for _ in range(child_n):
- parent_2 = population_score[random.randint(0, N_SELECTED)][0]
- child_1, child_2 = crossover(parent_1[0], parent_2)
- # Append new string to the population list
- pop.append(mutate(child_1))
- pop.append(mutate(child_2))
- return pop
-
- def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
- """Slice and combine two string in a random point"""
- random_slice = random.randint(0, len(parent_1) - 1)
- child_1 = parent_1[:random_slice] + parent_2[random_slice:]
- child_2 = parent_2[:random_slice] + parent_1[random_slice:]
- return (child_1, child_2)
-
- def mutate(child: str) -> str:
- """Mutate a random gene of a child with another one from the list"""
- child_list = list(child)
- if random.uniform(0, 1) < MUTATION_PROBABILITY:
- child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
- return "".join(child_list)
-
- # This is Selection
+ # This is selection
for i in range(N_SELECTED):
- population.extend(select(population_score[int(i)]))
+ population.extend(select(population_score[int(i)], population_score, genes))
# Check if the population has already reached the maximum value and if so,
- # break the cycle. if this check is disabled the algorithm will take
- # forever to compute large strings but will also calculate small string in
- # a lot fewer generations
+ # break the cycle. If this check is disabled, the algorithm will take
+ # forever to compute large strings, but will also calculate small strings in
+ # a far fewer generations.
if len(population) > N_POPULATION:
break
@@ -169,7 +177,7 @@ if __name__ == "__main__":
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
+ generation, population, target = basic(target_str, genes_list)
print(
- "\nGeneration: %s\nTotal Population: %s\nTarget: %s"
- % basic(target_str, genes_list)
+ f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"
)
diff --git a/geodesy/haversine_distance.py b/geodesy/haversine_distance.py
index de8ac7f88..93e625770 100644
--- a/geodesy/haversine_distance.py
+++ b/geodesy/haversine_distance.py
@@ -1,5 +1,9 @@
from math import asin, atan, cos, radians, sin, sqrt, tan
+AXIS_A = 6378137.0
+AXIS_B = 6356752.314245
+RADIUS = 6378137
+
def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""
@@ -30,9 +34,6 @@ def haversine_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> fl
"""
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
- AXIS_A = 6378137.0
- AXIS_B = 6356752.314245
- RADIUS = 6378137
# Equation parameters
# Equation https://en.wikipedia.org/wiki/Haversine_formula#Formulation
flattening = (AXIS_A - AXIS_B) / AXIS_A
diff --git a/geodesy/lamberts_ellipsoidal_distance.py b/geodesy/lamberts_ellipsoidal_distance.py
index bf8f1b9a5..4805674e5 100644
--- a/geodesy/lamberts_ellipsoidal_distance.py
+++ b/geodesy/lamberts_ellipsoidal_distance.py
@@ -2,11 +2,14 @@ from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
+AXIS_A = 6378137.0
+AXIS_B = 6356752.314245
+EQUATORIAL_RADIUS = 6378137
+
def lamberts_ellipsoidal_distance(
lat1: float, lon1: float, lat2: float, lon2: float
) -> float:
-
"""
Calculate the shortest distance along the surface of an ellipsoid between
two points on the surface of earth given longitudes and latitudes
@@ -45,10 +48,6 @@ def lamberts_ellipsoidal_distance(
# CONSTANTS per WGS84 https://en.wikipedia.org/wiki/World_Geodetic_System
# Distance in metres(m)
- AXIS_A = 6378137.0
- AXIS_B = 6356752.314245
- EQUATORIAL_RADIUS = 6378137
-
# Equation Parameters
# https://en.wikipedia.org/wiki/Geographical_distance#Lambert's_formula_for_long_lines
flattening = (AXIS_A - AXIS_B) / AXIS_A
@@ -62,22 +61,22 @@ def lamberts_ellipsoidal_distance(
sigma = haversine_distance(lat1, lon1, lat2, lon2) / EQUATORIAL_RADIUS
# Intermediate P and Q values
- P_value = (b_lat1 + b_lat2) / 2
- Q_value = (b_lat2 - b_lat1) / 2
+ p_value = (b_lat1 + b_lat2) / 2
+ q_value = (b_lat2 - b_lat1) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
- X_numerator = (sin(P_value) ** 2) * (cos(Q_value) ** 2)
- X_demonimator = cos(sigma / 2) ** 2
- X_value = (sigma - sin(sigma)) * (X_numerator / X_demonimator)
+ x_numerator = (sin(p_value) ** 2) * (cos(q_value) ** 2)
+ x_demonimator = cos(sigma / 2) ** 2
+ x_value = (sigma - sin(sigma)) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
- Y_numerator = (cos(P_value) ** 2) * (sin(Q_value) ** 2)
- Y_denominator = sin(sigma / 2) ** 2
- Y_value = (sigma + sin(sigma)) * (Y_numerator / Y_denominator)
+ y_numerator = (cos(p_value) ** 2) * (sin(q_value) ** 2)
+ y_denominator = sin(sigma / 2) ** 2
+ y_value = (sigma + sin(sigma)) * (y_numerator / y_denominator)
- return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (X_value + Y_value)))
+ return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
diff --git a/graphics/vector3_for_2d_rendering.py b/graphics/vector3_for_2d_rendering.py
index dfa22262a..a332206e6 100644
--- a/graphics/vector3_for_2d_rendering.py
+++ b/graphics/vector3_for_2d_rendering.py
@@ -28,9 +28,8 @@ def convert_to_2d(
TypeError: Input values must either be float or int: ['1', 2, 3, 10, 10]
"""
if not all(isinstance(val, (float, int)) for val in locals().values()):
- raise TypeError(
- "Input values must either be float or int: " f"{list(locals().values())}"
- )
+ msg = f"Input values must either be float or int: {list(locals().values())}"
+ raise TypeError(msg)
projected_x = ((x * distance) / (z + distance)) * scale
projected_y = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
@@ -71,10 +70,11 @@ def rotate(
input_variables = locals()
del input_variables["axis"]
if not all(isinstance(val, (float, int)) for val in input_variables.values()):
- raise TypeError(
+ msg = (
"Input values except axis must either be float or int: "
f"{list(input_variables.values())}"
)
+ raise TypeError(msg)
angle = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
new_x = x * math.cos(angle) - y * math.sin(angle)
diff --git a/graphs/a_star.py b/graphs/a_star.py
index e0f24734a..e8735179e 100644
--- a/graphs/a_star.py
+++ b/graphs/a_star.py
@@ -16,7 +16,6 @@ def search(
cost: int,
heuristic: list[list[int]],
) -> tuple[list[list[int]], list[list[int]]]:
-
closed = [
[0 for col in range(len(grid[0]))] for row in range(len(grid))
] # the reference grid
@@ -40,10 +39,10 @@ def search(
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
- next = cell.pop()
- x = next[2]
- y = next[3]
- g = next[1]
+ next_cell = cell.pop()
+ x = next_cell[2]
+ y = next_cell[3]
+ g = next_cell[1]
if x == goal[0] and y == goal[1]:
found = True
diff --git a/graphs/articulation_points.py b/graphs/articulation_points.py
index 7197369de..d28045282 100644
--- a/graphs/articulation_points.py
+++ b/graphs/articulation_points.py
@@ -1,14 +1,14 @@
# Finding Articulation Points in Undirected Graph
-def computeAP(l): # noqa: E741
+def compute_ap(l): # noqa: E741
n = len(l)
- outEdgeCount = 0
+ out_edge_count = 0
low = [0] * n
visited = [False] * n
- isArt = [False] * n
+ is_art = [False] * n
- def dfs(root, at, parent, outEdgeCount):
+ def dfs(root, at, parent, out_edge_count):
if parent == root:
- outEdgeCount += 1
+ out_edge_count += 1
visited[at] = True
low[at] = at
@@ -16,27 +16,27 @@ def computeAP(l): # noqa: E741
if to == parent:
pass
elif not visited[to]:
- outEdgeCount = dfs(root, to, at, outEdgeCount)
+ out_edge_count = dfs(root, to, at, out_edge_count)
low[at] = min(low[at], low[to])
# AP found via bridge
if at < low[to]:
- isArt[at] = True
+ is_art[at] = True
# AP found via cycle
if at == low[to]:
- isArt[at] = True
+ is_art[at] = True
else:
low[at] = min(low[at], to)
- return outEdgeCount
+ return out_edge_count
for i in range(n):
if not visited[i]:
- outEdgeCount = 0
- outEdgeCount = dfs(i, i, -1, outEdgeCount)
- isArt[i] = outEdgeCount > 1
+ out_edge_count = 0
+ out_edge_count = dfs(i, i, -1, out_edge_count)
+ is_art[i] = out_edge_count > 1
- for x in range(len(isArt)):
- if isArt[x] is True:
+ for x in range(len(is_art)):
+ if is_art[x] is True:
print(x)
@@ -52,4 +52,4 @@ data = {
7: [6, 8],
8: [5, 7],
}
-computeAP(data)
+compute_ap(data)
diff --git a/graphs/basic_graphs.py b/graphs/basic_graphs.py
index db0ef8e7b..065b6185c 100644
--- a/graphs/basic_graphs.py
+++ b/graphs/basic_graphs.py
@@ -76,20 +76,20 @@ if __name__ == "__main__":
"""
-def dfs(G, s):
- vis, S = {s}, [s]
+def dfs(g, s):
+ vis, _s = {s}, [s]
print(s)
- while S:
+ while _s:
flag = 0
- for i in G[S[-1]]:
+ for i in g[_s[-1]]:
if i not in vis:
- S.append(i)
+ _s.append(i)
vis.add(i)
flag = 1
print(i)
break
if not flag:
- S.pop()
+ _s.pop()
"""
@@ -103,15 +103,15 @@ def dfs(G, s):
"""
-def bfs(G, s):
- vis, Q = {s}, deque([s])
+def bfs(g, s):
+ vis, q = {s}, deque([s])
print(s)
- while Q:
- u = Q.popleft()
- for v in G[u]:
+ while q:
+ u = q.popleft()
+ for v in g[u]:
if v not in vis:
vis.add(v)
- Q.append(v)
+ q.append(v)
print(v)
@@ -127,10 +127,10 @@ def bfs(G, s):
"""
-def dijk(G, s):
+def dijk(g, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
- if len(known) == len(G) - 1:
+ if len(known) == len(g) - 1:
break
mini = 100000
for i in dist:
@@ -138,11 +138,10 @@ def dijk(G, s):
mini = dist[i]
u = i
known.add(u)
- for v in G[u]:
- if v[0] not in known:
- if dist[u] + v[1] < dist.get(v[0], 100000):
- dist[v[0]] = dist[u] + v[1]
- path[v[0]] = u
+ for v in g[u]:
+ if v[0] not in known and dist[u] + v[1] < dist.get(v[0], 100000):
+ dist[v[0]] = dist[u] + v[1]
+ path[v[0]] = u
for i in dist:
if i != s:
print(dist[i])
@@ -155,27 +154,27 @@ def dijk(G, s):
"""
-def topo(G, ind=None, Q=None):
- if Q is None:
- Q = [1]
+def topo(g, ind=None, q=None):
+ if q is None:
+ q = [1]
if ind is None:
- ind = [0] * (len(G) + 1) # SInce oth Index is ignored
- for u in G:
- for v in G[u]:
+ ind = [0] * (len(g) + 1) # SInce oth Index is ignored
+ for u in g:
+ for v in g[u]:
ind[v] += 1
- Q = deque()
- for i in G:
+ q = deque()
+ for i in g:
if ind[i] == 0:
- Q.append(i)
- if len(Q) == 0:
+ q.append(i)
+ if len(q) == 0:
return
- v = Q.popleft()
+ v = q.popleft()
print(v)
- for w in G[v]:
+ for w in g[v]:
ind[w] -= 1
if ind[w] == 0:
- Q.append(w)
- topo(G, ind, Q)
+ q.append(w)
+ topo(g, ind, q)
"""
@@ -188,7 +187,7 @@ def topo(G, ind=None, Q=None):
def adjm():
n = input().strip()
a = []
- for i in range(n):
+ for _ in range(n):
a.append(map(int, input().strip().split()))
return a, n
@@ -206,9 +205,9 @@ def adjm():
"""
-def floy(A_and_n):
- (A, n) = A_and_n
- dist = list(A)
+def floy(a_and_n):
+ (a, n) = a_and_n
+ dist = list(a)
path = [[0] * n for i in range(n)]
for k in range(n):
for i in range(n):
@@ -231,10 +230,10 @@ def floy(A_and_n):
"""
-def prim(G, s):
+def prim(g, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
- if len(known) == len(G) - 1:
+ if len(known) == len(g) - 1:
break
mini = 100000
for i in dist:
@@ -242,11 +241,10 @@ def prim(G, s):
mini = dist[i]
u = i
known.add(u)
- for v in G[u]:
- if v[0] not in known:
- if v[1] < dist.get(v[0], 100000):
- dist[v[0]] = v[1]
- path[v[0]] = u
+ for v in g[u]:
+ if v[0] not in known and v[1] < dist.get(v[0], 100000):
+ dist[v[0]] = v[1]
+ path[v[0]] = u
return dist
@@ -264,7 +262,7 @@ def prim(G, s):
def edglist():
n, m = map(int, input().split(" "))
edges = []
- for i in range(m):
+ for _ in range(m):
edges.append(map(int, input().split(" ")))
return edges, n
@@ -279,16 +277,16 @@ def edglist():
"""
-def krusk(E_and_n):
+def krusk(e_and_n):
# Sort edges on the basis of distance
- (E, n) = E_and_n
- E.sort(reverse=True, key=lambda x: x[2])
+ (e, n) = e_and_n
+ e.sort(reverse=True, key=lambda x: x[2])
s = [{i} for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print(s)
- x = E.pop()
+ x = e.pop()
for i in range(len(s)):
if x[0] in s[i]:
break
diff --git a/graphs/bellman_ford.py b/graphs/bellman_ford.py
index 0f654a510..9ac8bae85 100644
--- a/graphs/bellman_ford.py
+++ b/graphs/bellman_ford.py
@@ -36,7 +36,7 @@ def bellman_ford(
distance = [float("inf")] * vertex_count
distance[src] = 0.0
- for i in range(vertex_count - 1):
+ for _ in range(vertex_count - 1):
for j in range(edge_count):
u, v, w = (graph[j][k] for k in ["src", "dst", "weight"])
@@ -58,7 +58,7 @@ if __name__ == "__main__":
V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip())
- graph: list[dict[str, int]] = [dict() for j in range(E)]
+ graph: list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print("Edge ", i + 1)
diff --git a/graphs/bi_directional_dijkstra.py b/graphs/bi_directional_dijkstra.py
new file mode 100644
index 000000000..529a235db
--- /dev/null
+++ b/graphs/bi_directional_dijkstra.py
@@ -0,0 +1,139 @@
+"""
+Bi-directional Dijkstra's algorithm.
+
+A bi-directional approach is an efficient and
+less time consuming optimization for Dijkstra's
+searching algorithm
+
+Reference: shorturl.at/exHM7
+"""
+
+# Author: Swayam Singh (https://github.com/practice404)
+
+
+from queue import PriorityQueue
+from typing import Any
+
+import numpy as np
+
+
+def pass_and_relaxation(
+ graph: dict,
+ v: str,
+ visited_forward: set,
+ visited_backward: set,
+ cst_fwd: dict,
+ cst_bwd: dict,
+ queue: PriorityQueue,
+ parent: dict,
+ shortest_distance: float,
+) -> float:
+ for nxt, d in graph[v]:
+ if nxt in visited_forward:
+ continue
+ old_cost_f = cst_fwd.get(nxt, np.inf)
+ new_cost_f = cst_fwd[v] + d
+ if new_cost_f < old_cost_f:
+ queue.put((new_cost_f, nxt))
+ cst_fwd[nxt] = new_cost_f
+ parent[nxt] = v
+ if nxt in visited_backward:
+ if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
+ shortest_distance = cst_fwd[v] + d + cst_bwd[nxt]
+ return shortest_distance
+
+
+def bidirectional_dij(
+ source: str, destination: str, graph_forward: dict, graph_backward: dict
+) -> int:
+ """
+ Bi-directional Dijkstra's algorithm.
+
+ Returns:
+ shortest_path_distance (int): length of the shortest path.
+
+ Warnings:
+ If the destination is not reachable, function returns -1
+
+ >>> bidirectional_dij("E", "F", graph_fwd, graph_bwd)
+ 3
+ """
+ shortest_path_distance = -1
+
+ visited_forward = set()
+ visited_backward = set()
+ cst_fwd = {source: 0}
+ cst_bwd = {destination: 0}
+ parent_forward = {source: None}
+ parent_backward = {destination: None}
+ queue_forward: PriorityQueue[Any] = PriorityQueue()
+ queue_backward: PriorityQueue[Any] = PriorityQueue()
+
+ shortest_distance = np.inf
+
+ queue_forward.put((0, source))
+ queue_backward.put((0, destination))
+
+ if source == destination:
+ return 0
+
+ while not queue_forward.empty() and not queue_backward.empty():
+ _, v_fwd = queue_forward.get()
+ visited_forward.add(v_fwd)
+
+ _, v_bwd = queue_backward.get()
+ visited_backward.add(v_bwd)
+
+ shortest_distance = pass_and_relaxation(
+ graph_forward,
+ v_fwd,
+ visited_forward,
+ visited_backward,
+ cst_fwd,
+ cst_bwd,
+ queue_forward,
+ parent_forward,
+ shortest_distance,
+ )
+
+ shortest_distance = pass_and_relaxation(
+ graph_backward,
+ v_bwd,
+ visited_backward,
+ visited_forward,
+ cst_bwd,
+ cst_fwd,
+ queue_backward,
+ parent_backward,
+ shortest_distance,
+ )
+
+ if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
+ break
+
+ if shortest_distance != np.inf:
+ shortest_path_distance = shortest_distance
+ return shortest_path_distance
+
+
+graph_fwd = {
+ "B": [["C", 1]],
+ "C": [["D", 1]],
+ "D": [["F", 1]],
+ "E": [["B", 1], ["G", 2]],
+ "F": [],
+ "G": [["F", 1]],
+}
+graph_bwd = {
+ "B": [["E", 1]],
+ "C": [["B", 1]],
+ "D": [["C", 1]],
+ "F": [["D", 1], ["G", 1]],
+ "E": [[None, np.inf]],
+ "G": [["E", 2]],
+}
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/graphs/breadth_first_search_2.py b/graphs/breadth_first_search_2.py
index 2f060a90d..a0b92b90b 100644
--- a/graphs/breadth_first_search_2.py
+++ b/graphs/breadth_first_search_2.py
@@ -14,7 +14,9 @@ while Q is non-empty:
"""
from __future__ import annotations
+from collections import deque
from queue import Queue
+from timeit import timeit
G = {
"A": ["B", "C"],
@@ -26,12 +28,15 @@ G = {
}
-def breadth_first_search(graph: dict, start: str) -> set[str]:
+def breadth_first_search(graph: dict, start: str) -> list[str]:
"""
- >>> ''.join(sorted(breadth_first_search(G, 'A')))
+ Implementation of breadth first search using queue.Queue.
+
+ >>> ''.join(breadth_first_search(G, 'A'))
'ABCDEF'
"""
explored = {start}
+ result = [start]
queue: Queue = Queue()
queue.put(start)
while not queue.empty():
@@ -39,12 +44,44 @@ def breadth_first_search(graph: dict, start: str) -> set[str]:
for w in graph[v]:
if w not in explored:
explored.add(w)
+ result.append(w)
queue.put(w)
- return explored
+ return result
+
+
+def breadth_first_search_with_deque(graph: dict, start: str) -> list[str]:
+ """
+ Implementation of breadth first search using collection.queue.
+
+ >>> ''.join(breadth_first_search_with_deque(G, 'A'))
+ 'ABCDEF'
+ """
+ visited = {start}
+ result = [start]
+ queue = deque([start])
+ while queue:
+ v = queue.popleft()
+ for child in graph[v]:
+ if child not in visited:
+ visited.add(child)
+ result.append(child)
+ queue.append(child)
+ return result
+
+
+def benchmark_function(name: str) -> None:
+ setup = f"from __main__ import G, {name}"
+ number = 10000
+ res = timeit(f"{name}(G, 'A')", setup=setup, number=number)
+ print(f"{name:<35} finished {number} runs in {res:.5f} seconds")
if __name__ == "__main__":
import doctest
doctest.testmod()
- print(breadth_first_search(G, "A"))
+
+ benchmark_function("breadth_first_search")
+ benchmark_function("breadth_first_search_with_deque")
+ # breadth_first_search finished 10000 runs in 0.20999 seconds
+ # breadth_first_search_with_deque finished 10000 runs in 0.01421 seconds
diff --git a/graphs/breadth_first_search_shortest_path.py b/graphs/breadth_first_search_shortest_path.py
index 697a8c634..d489b110b 100644
--- a/graphs/breadth_first_search_shortest_path.py
+++ b/graphs/breadth_first_search_shortest_path.py
@@ -58,7 +58,9 @@ class Graph:
Case 1 - No path is found.
>>> g.shortest_path("Foo")
- 'No path from vertex:G to vertex:Foo'
+ Traceback (most recent call last):
+ ...
+ ValueError: No path from vertex: G to vertex: Foo
Case 2 - The path is found.
>>> g.shortest_path("D")
@@ -71,7 +73,10 @@ class Graph:
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
- return f"No path from vertex:{self.source_vertex} to vertex:{target_vertex}"
+ msg = (
+ f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
+ )
+ raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"
diff --git a/graphs/bfs_shortest_path.py b/graphs/breadth_first_search_shortest_path_2.py
similarity index 100%
rename from graphs/bfs_shortest_path.py
rename to graphs/breadth_first_search_shortest_path_2.py
diff --git a/graphs/bfs_zero_one_shortest_path.py b/graphs/breadth_first_search_zero_one_shortest_path.py
similarity index 100%
rename from graphs/bfs_zero_one_shortest_path.py
rename to graphs/breadth_first_search_zero_one_shortest_path.py
diff --git a/graphs/check_bipartite_graph_bfs.py b/graphs/check_bipartite_graph_bfs.py
index b5203b4c5..7fc57cbc7 100644
--- a/graphs/check_bipartite_graph_bfs.py
+++ b/graphs/check_bipartite_graph_bfs.py
@@ -9,7 +9,7 @@
from queue import Queue
-def checkBipartite(graph):
+def check_bipartite(graph):
queue = Queue()
visited = [False] * len(graph)
color = [-1] * len(graph)
@@ -20,7 +20,6 @@ def checkBipartite(graph):
visited[u] = True
for neighbour in graph[u]:
-
if neighbour == u:
return False
@@ -45,4 +44,4 @@ def checkBipartite(graph):
if __name__ == "__main__":
# Adjacency List of graph
- print(checkBipartite({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]}))
+ print(check_bipartite({0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2]}))
diff --git a/graphs/check_cycle.py b/graphs/check_cycle.py
index dcc864988..9fd1cd80f 100644
--- a/graphs/check_cycle.py
+++ b/graphs/check_cycle.py
@@ -15,11 +15,10 @@ def check_cycle(graph: dict) -> bool:
visited: set[int] = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
rec_stk: set[int] = set()
- for node in graph:
- if node not in visited:
- if depth_first_search(graph, node, visited, rec_stk):
- return True
- return False
+ return any(
+ node not in visited and depth_first_search(graph, node, visited, rec_stk)
+ for node in graph
+ )
def depth_first_search(graph: dict, vertex: int, visited: set, rec_stk: set) -> bool:
diff --git a/graphs/connected_components.py b/graphs/connected_components.py
index 4af7803d7..15c7633e1 100644
--- a/graphs/connected_components.py
+++ b/graphs/connected_components.py
@@ -27,7 +27,7 @@ def dfs(graph: dict, vert: int, visited: list) -> list:
if not visited[neighbour]:
connected_verts += dfs(graph, neighbour, visited)
- return [vert] + connected_verts
+ return [vert, *connected_verts]
def connected_components(graph: dict) -> list:
diff --git a/graphs/dijkstra.py b/graphs/dijkstra.py
index d15fcbbfe..b0bdfab60 100644
--- a/graphs/dijkstra.py
+++ b/graphs/dijkstra.py
@@ -56,8 +56,8 @@ def dijkstra(graph, start, end):
for v, c in graph[u]:
if v in visited:
continue
- next = cost + c
- heapq.heappush(heap, (next, v))
+ next_item = cost + c
+ heapq.heappush(heap, (next_item, v))
return -1
@@ -103,14 +103,14 @@ G3 = {
"G": [["F", 1]],
}
-shortDistance = dijkstra(G, "E", "C")
-print(shortDistance) # E -- 3 --> F -- 3 --> C == 6
+short_distance = dijkstra(G, "E", "C")
+print(short_distance) # E -- 3 --> F -- 3 --> C == 6
-shortDistance = dijkstra(G2, "E", "F")
-print(shortDistance) # E -- 3 --> F == 3
+short_distance = dijkstra(G2, "E", "F")
+print(short_distance) # E -- 3 --> F == 3
-shortDistance = dijkstra(G3, "E", "F")
-print(shortDistance) # E -- 2 --> G -- 1 --> F == 3
+short_distance = dijkstra(G3, "E", "F")
+print(short_distance) # E -- 2 --> G -- 1 --> F == 3
if __name__ == "__main__":
import doctest
diff --git a/graphs/dijkstra_2.py b/graphs/dijkstra_2.py
index 762884136..f548463ff 100644
--- a/graphs/dijkstra_2.py
+++ b/graphs/dijkstra_2.py
@@ -1,6 +1,6 @@
-def printDist(dist, V):
+def print_dist(dist, v):
print("\nVertex Distance")
- for i in range(V):
+ for i in range(v):
if dist[i] != float("inf"):
print(i, "\t", int(dist[i]), end="\t")
else:
@@ -8,34 +8,34 @@ def printDist(dist, V):
print()
-def minDist(mdist, vset, V):
- minVal = float("inf")
- minInd = -1
- for i in range(V):
- if (not vset[i]) and mdist[i] < minVal:
- minInd = i
- minVal = mdist[i]
- return minInd
+def min_dist(mdist, vset, v):
+ min_val = float("inf")
+ min_ind = -1
+ for i in range(v):
+ if (not vset[i]) and mdist[i] < min_val:
+ min_ind = i
+ min_val = mdist[i]
+ return min_ind
-def Dijkstra(graph, V, src):
- mdist = [float("inf") for i in range(V)]
- vset = [False for i in range(V)]
+def dijkstra(graph, v, src):
+ mdist = [float("inf") for _ in range(v)]
+ vset = [False for _ in range(v)]
mdist[src] = 0.0
- for i in range(V - 1):
- u = minDist(mdist, vset, V)
+ for _ in range(v - 1):
+ u = min_dist(mdist, vset, v)
vset[u] = True
- for v in range(V):
+ for i in range(v):
if (
- (not vset[v])
- and graph[u][v] != float("inf")
- and mdist[u] + graph[u][v] < mdist[v]
+ (not vset[i])
+ and graph[u][i] != float("inf")
+ and mdist[u] + graph[u][i] < mdist[i]
):
- mdist[v] = mdist[u] + graph[u][v]
+ mdist[i] = mdist[u] + graph[u][i]
- printDist(mdist, V)
+ print_dist(mdist, i)
if __name__ == "__main__":
@@ -55,4 +55,4 @@ if __name__ == "__main__":
graph[src][dst] = weight
gsrc = int(input("\nEnter shortest path source:").strip())
- Dijkstra(graph, V, gsrc)
+ dijkstra(graph, V, gsrc)
diff --git a/graphs/dijkstra_algorithm.py b/graphs/dijkstra_algorithm.py
index 6b64834ac..452138fe9 100644
--- a/graphs/dijkstra_algorithm.py
+++ b/graphs/dijkstra_algorithm.py
@@ -15,7 +15,7 @@ class PriorityQueue:
self.array = []
self.pos = {} # To store the pos of node in array
- def isEmpty(self):
+ def is_empty(self):
return self.cur_size == 0
def min_heapify(self, idx):
@@ -89,13 +89,13 @@ class Graph:
# Edge going from node u to v and v to u with weight w
# u (w)-> v, v (w) -> u
# Check if u already in graph
- if u in self.adjList.keys():
+ if u in self.adjList:
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
- if v in self.adjList.keys():
+ if v in self.adjList:
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
@@ -110,24 +110,24 @@ class Graph:
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
- Q = PriorityQueue()
- Q.insert((0, src)) # (dist from src, node)
- for u in self.adjList.keys():
+ q = PriorityQueue()
+ q.insert((0, src)) # (dist from src, node)
+ for u in self.adjList:
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
- while not Q.isEmpty():
- u = Q.extract_min() # Returns node with the min dist from source
+ while not q.is_empty():
+ u = q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
- Q.insert((new_dist, v))
+ q.insert((new_dist, v))
else:
- Q.decrease_key((self.dist[v], v), new_dist)
+ q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
diff --git a/graphs/dijkstra_alternate.py b/graphs/dijkstra_alternate.py
new file mode 100644
index 000000000..7beef6b04
--- /dev/null
+++ b/graphs/dijkstra_alternate.py
@@ -0,0 +1,98 @@
+from __future__ import annotations
+
+
+class Graph:
+ def __init__(self, vertices: int) -> None:
+ """
+ >>> graph = Graph(2)
+ >>> graph.vertices
+ 2
+ >>> len(graph.graph)
+ 2
+ >>> len(graph.graph[0])
+ 2
+ """
+ self.vertices = vertices
+ self.graph = [[0] * vertices for _ in range(vertices)]
+
+ def print_solution(self, distances_from_source: list[int]) -> None:
+ """
+ >>> Graph(0).print_solution([]) # doctest: +NORMALIZE_WHITESPACE
+ Vertex Distance from Source
+ """
+ print("Vertex \t Distance from Source")
+ for vertex in range(self.vertices):
+ print(vertex, "\t\t", distances_from_source[vertex])
+
+ def minimum_distance(
+ self, distances_from_source: list[int], visited: list[bool]
+ ) -> int:
+ """
+ A utility function to find the vertex with minimum distance value, from the set
+ of vertices not yet included in shortest path tree.
+
+ >>> Graph(3).minimum_distance([1, 2, 3], [False, False, True])
+ 0
+ """
+
+ # Initialize minimum distance for next node
+ minimum = 1e7
+ min_index = 0
+
+ # Search not nearest vertex not in the shortest path tree
+ for vertex in range(self.vertices):
+ if distances_from_source[vertex] < minimum and visited[vertex] is False:
+ minimum = distances_from_source[vertex]
+ min_index = vertex
+ return min_index
+
+ def dijkstra(self, source: int) -> None:
+ """
+ Function that implements Dijkstra's single source shortest path algorithm for a
+ graph represented using adjacency matrix representation.
+
+ >>> Graph(4).dijkstra(1) # doctest: +NORMALIZE_WHITESPACE
+ Vertex Distance from Source
+ 0 10000000
+ 1 0
+ 2 10000000
+ 3 10000000
+ """
+
+ distances = [int(1e7)] * self.vertices # distances from the source
+ distances[source] = 0
+ visited = [False] * self.vertices
+
+ for _ in range(self.vertices):
+ u = self.minimum_distance(distances, visited)
+ visited[u] = True
+
+ # Update dist value of the adjacent vertices
+ # of the picked vertex only if the current
+ # distance is greater than new distance and
+ # the vertex in not in the shortest path tree
+ for v in range(self.vertices):
+ if (
+ self.graph[u][v] > 0
+ and visited[v] is False
+ and distances[v] > distances[u] + self.graph[u][v]
+ ):
+ distances[v] = distances[u] + self.graph[u][v]
+
+ self.print_solution(distances)
+
+
+if __name__ == "__main__":
+ graph = Graph(9)
+ graph.graph = [
+ [0, 4, 0, 0, 0, 0, 0, 8, 0],
+ [4, 0, 8, 0, 0, 0, 0, 11, 0],
+ [0, 8, 0, 7, 0, 4, 0, 0, 2],
+ [0, 0, 7, 0, 9, 14, 0, 0, 0],
+ [0, 0, 0, 9, 0, 10, 0, 0, 0],
+ [0, 0, 4, 14, 10, 0, 2, 0, 0],
+ [0, 0, 0, 0, 0, 2, 0, 1, 6],
+ [8, 11, 0, 0, 0, 0, 1, 0, 7],
+ [0, 0, 2, 0, 0, 0, 6, 7, 0],
+ ]
+ graph.dijkstra(0)
diff --git a/graphs/dijkstra_binary_grid.py b/graphs/dijkstra_binary_grid.py
new file mode 100644
index 000000000..c23d82343
--- /dev/null
+++ b/graphs/dijkstra_binary_grid.py
@@ -0,0 +1,89 @@
+"""
+This script implements the Dijkstra algorithm on a binary grid.
+The grid consists of 0s and 1s, where 1 represents
+a walkable node and 0 represents an obstacle.
+The algorithm finds the shortest path from a start node to a destination node.
+Diagonal movement can be allowed or disallowed.
+"""
+
+from heapq import heappop, heappush
+
+import numpy as np
+
+
+def dijkstra(
+ grid: np.ndarray,
+ source: tuple[int, int],
+ destination: tuple[int, int],
+ allow_diagonal: bool,
+) -> tuple[float | int, list[tuple[int, int]]]:
+ """
+ Implements Dijkstra's algorithm on a binary grid.
+
+ Args:
+ grid (np.ndarray): A 2D numpy array representing the grid.
+ 1 represents a walkable node and 0 represents an obstacle.
+ source (Tuple[int, int]): A tuple representing the start node.
+ destination (Tuple[int, int]): A tuple representing the
+ destination node.
+ allow_diagonal (bool): A boolean determining whether
+ diagonal movements are allowed.
+
+ Returns:
+ Tuple[Union[float, int], List[Tuple[int, int]]]:
+ The shortest distance from the start node to the destination node
+ and the shortest path as a list of nodes.
+
+ >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
+ (4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
+
+ >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
+ (2.0, [(0, 0), (1, 1), (2, 2)])
+
+ >>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
+ (4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
+ """
+ rows, cols = grid.shape
+ dx = [-1, 1, 0, 0]
+ dy = [0, 0, -1, 1]
+ if allow_diagonal:
+ dx += [-1, -1, 1, 1]
+ dy += [-1, 1, -1, 1]
+
+ queue, visited = [(0, source)], set()
+ matrix = np.full((rows, cols), np.inf)
+ matrix[source] = 0
+ predecessors = np.empty((rows, cols), dtype=object)
+ predecessors[source] = None
+
+ while queue:
+ (dist, (x, y)) = heappop(queue)
+ if (x, y) in visited:
+ continue
+ visited.add((x, y))
+
+ if (x, y) == destination:
+ path = []
+ while (x, y) != source:
+ path.append((x, y))
+ x, y = predecessors[x, y]
+ path.append(source) # add the source manually
+ path.reverse()
+ return matrix[destination], path
+
+ for i in range(len(dx)):
+ nx, ny = x + dx[i], y + dy[i]
+ if 0 <= nx < rows and 0 <= ny < cols:
+ next_node = grid[nx][ny]
+ if next_node == 1 and matrix[nx, ny] > dist + 1:
+ heappush(queue, (dist + 1, (nx, ny)))
+ matrix[nx, ny] = dist + 1
+ predecessors[nx, ny] = (x, y)
+
+ return np.inf, []
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/graphs/directed_and_undirected_(weighted)_graph.py b/graphs/directed_and_undirected_(weighted)_graph.py
index 5cfa9e13e..8ca645fda 100644
--- a/graphs/directed_and_undirected_(weighted)_graph.py
+++ b/graphs/directed_and_undirected_(weighted)_graph.py
@@ -39,7 +39,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@@ -87,7 +87,7 @@ class DirectedGraph:
d = deque()
visited = []
if s == -2:
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
d.append(s)
visited.append(s)
while d:
@@ -114,7 +114,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@@ -146,7 +146,7 @@ class DirectedGraph:
def cycle_nodes(self):
stack = []
visited = []
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@@ -167,7 +167,7 @@ class DirectedGraph:
and not on_the_way_back
):
len_stack = len(stack) - 1
- while True and len_stack >= 0:
+ while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1])
break
@@ -199,7 +199,7 @@ class DirectedGraph:
def has_cycle(self):
stack = []
visited = []
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@@ -220,15 +220,12 @@ class DirectedGraph:
and not on_the_way_back
):
len_stack_minus_one = len(stack) - 1
- while True and len_stack_minus_one >= 0:
+ while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1])
break
else:
return True
- # TODO:The following code is unreachable.
- anticipating_nodes.add(stack[len_stack_minus_one])
- len_stack_minus_one -= 1
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
@@ -308,7 +305,7 @@ class Graph:
stack = []
visited = []
if s == -2:
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@@ -356,7 +353,7 @@ class Graph:
d = deque()
visited = []
if s == -2:
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
d.append(s)
visited.append(s)
while d:
@@ -374,7 +371,7 @@ class Graph:
def cycle_nodes(self):
stack = []
visited = []
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@@ -395,7 +392,7 @@ class Graph:
and not on_the_way_back
):
len_stack = len(stack) - 1
- while True and len_stack >= 0:
+ while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1])
break
@@ -427,7 +424,7 @@ class Graph:
def has_cycle(self):
stack = []
visited = []
- s = list(self.graph)[0]
+ s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@@ -448,16 +445,12 @@ class Graph:
and not on_the_way_back
):
len_stack_minus_one = len(stack) - 1
- while True and len_stack_minus_one >= 0:
+ while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1])
break
else:
return True
- # TODO: the following code is unreachable
- # is this meant to be called in the else ?
- anticipating_nodes.add(stack[len_stack_minus_one])
- len_stack_minus_one -= 1
if visited.count(node[1]) < 1:
stack.append(node[1])
visited.append(node[1])
diff --git a/graphs/edmonds_karp_multiple_source_and_sink.py b/graphs/edmonds_karp_multiple_source_and_sink.py
index 0f359ff1a..5c774f4b8 100644
--- a/graphs/edmonds_karp_multiple_source_and_sink.py
+++ b/graphs/edmonds_karp_multiple_source_and_sink.py
@@ -1,15 +1,15 @@
class FlowNetwork:
def __init__(self, graph, sources, sinks):
- self.sourceIndex = None
- self.sinkIndex = None
+ self.source_index = None
+ self.sink_index = None
self.graph = graph
- self._normalizeGraph(sources, sinks)
- self.verticesCount = len(graph)
- self.maximumFlowAlgorithm = None
+ self._normalize_graph(sources, sinks)
+ self.vertices_count = len(graph)
+ self.maximum_flow_algorithm = None
# make only one source and one sink
- def _normalizeGraph(self, sources, sinks):
+ def _normalize_graph(self, sources, sinks):
if sources is int:
sources = [sources]
if sinks is int:
@@ -18,54 +18,54 @@ class FlowNetwork:
if len(sources) == 0 or len(sinks) == 0:
return
- self.sourceIndex = sources[0]
- self.sinkIndex = sinks[0]
+ self.source_index = sources[0]
+ self.sink_index = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(sources) > 1 or len(sinks) > 1:
- maxInputFlow = 0
+ max_input_flow = 0
for i in sources:
- maxInputFlow += sum(self.graph[i])
+ max_input_flow += sum(self.graph[i])
size = len(self.graph) + 1
for room in self.graph:
room.insert(0, 0)
self.graph.insert(0, [0] * size)
for i in sources:
- self.graph[0][i + 1] = maxInputFlow
- self.sourceIndex = 0
+ self.graph[0][i + 1] = max_input_flow
+ self.source_index = 0
size = len(self.graph) + 1
for room in self.graph:
room.append(0)
self.graph.append([0] * size)
for i in sinks:
- self.graph[i + 1][size - 1] = maxInputFlow
- self.sinkIndex = size - 1
+ self.graph[i + 1][size - 1] = max_input_flow
+ self.sink_index = size - 1
- def findMaximumFlow(self):
- if self.maximumFlowAlgorithm is None:
+ def find_maximum_flow(self):
+ if self.maximum_flow_algorithm is None:
raise Exception("You need to set maximum flow algorithm before.")
- if self.sourceIndex is None or self.sinkIndex is None:
+ if self.source_index is None or self.sink_index is None:
return 0
- self.maximumFlowAlgorithm.execute()
- return self.maximumFlowAlgorithm.getMaximumFlow()
+ self.maximum_flow_algorithm.execute()
+ return self.maximum_flow_algorithm.getMaximumFlow()
- def setMaximumFlowAlgorithm(self, Algorithm):
- self.maximumFlowAlgorithm = Algorithm(self)
+ def set_maximum_flow_algorithm(self, algorithm):
+ self.maximum_flow_algorithm = algorithm(self)
class FlowNetworkAlgorithmExecutor:
- def __init__(self, flowNetwork):
- self.flowNetwork = flowNetwork
- self.verticesCount = flowNetwork.verticesCount
- self.sourceIndex = flowNetwork.sourceIndex
- self.sinkIndex = flowNetwork.sinkIndex
+ def __init__(self, flow_network):
+ self.flow_network = flow_network
+ self.verticies_count = flow_network.verticesCount
+ self.source_index = flow_network.sourceIndex
+ self.sink_index = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
- self.graph = flowNetwork.graph
+ self.graph = flow_network.graph
self.executed = False
def execute(self):
@@ -79,95 +79,95 @@ class FlowNetworkAlgorithmExecutor:
class MaximumFlowAlgorithmExecutor(FlowNetworkAlgorithmExecutor):
- def __init__(self, flowNetwork):
- super().__init__(flowNetwork)
+ def __init__(self, flow_network):
+ super().__init__(flow_network)
# use this to save your result
- self.maximumFlow = -1
+ self.maximum_flow = -1
- def getMaximumFlow(self):
+ def get_maximum_flow(self):
if not self.executed:
raise Exception("You should execute algorithm before using its result!")
- return self.maximumFlow
+ return self.maximum_flow
class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
- def __init__(self, flowNetwork):
- super().__init__(flowNetwork)
+ def __init__(self, flow_network):
+ super().__init__(flow_network)
- self.preflow = [[0] * self.verticesCount for i in range(self.verticesCount)]
+ self.preflow = [[0] * self.verticies_count for i in range(self.verticies_count)]
- self.heights = [0] * self.verticesCount
- self.excesses = [0] * self.verticesCount
+ self.heights = [0] * self.verticies_count
+ self.excesses = [0] * self.verticies_count
def _algorithm(self):
- self.heights[self.sourceIndex] = self.verticesCount
+ self.heights[self.source_index] = self.verticies_count
# push some substance to graph
- for nextVertexIndex, bandwidth in enumerate(self.graph[self.sourceIndex]):
- self.preflow[self.sourceIndex][nextVertexIndex] += bandwidth
- self.preflow[nextVertexIndex][self.sourceIndex] -= bandwidth
- self.excesses[nextVertexIndex] += bandwidth
+ for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]):
+ self.preflow[self.source_index][nextvertex_index] += bandwidth
+ self.preflow[nextvertex_index][self.source_index] -= bandwidth
+ self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
- verticesList = [
+ vertices_list = [
i
- for i in range(self.verticesCount)
- if i != self.sourceIndex and i != self.sinkIndex
+ for i in range(self.verticies_count)
+ if i not in {self.source_index, self.sink_index}
]
# move through list
i = 0
- while i < len(verticesList):
- vertexIndex = verticesList[i]
- previousHeight = self.heights[vertexIndex]
- self.processVertex(vertexIndex)
- if self.heights[vertexIndex] > previousHeight:
+ while i < len(vertices_list):
+ vertex_index = vertices_list[i]
+ previous_height = self.heights[vertex_index]
+ self.process_vertex(vertex_index)
+ if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
- verticesList.insert(0, verticesList.pop(i))
+ vertices_list.insert(0, vertices_list.pop(i))
i = 0
else:
i += 1
- self.maximumFlow = sum(self.preflow[self.sourceIndex])
+ self.maximum_flow = sum(self.preflow[self.source_index])
- def processVertex(self, vertexIndex):
- while self.excesses[vertexIndex] > 0:
- for neighbourIndex in range(self.verticesCount):
+ def process_vertex(self, vertex_index):
+ while self.excesses[vertex_index] > 0:
+ for neighbour_index in range(self.verticies_count):
# if it's neighbour and current vertex is higher
if (
- self.graph[vertexIndex][neighbourIndex]
- - self.preflow[vertexIndex][neighbourIndex]
+ self.graph[vertex_index][neighbour_index]
+ - self.preflow[vertex_index][neighbour_index]
> 0
- and self.heights[vertexIndex] > self.heights[neighbourIndex]
+ and self.heights[vertex_index] > self.heights[neighbour_index]
):
- self.push(vertexIndex, neighbourIndex)
+ self.push(vertex_index, neighbour_index)
- self.relabel(vertexIndex)
+ self.relabel(vertex_index)
- def push(self, fromIndex, toIndex):
- preflowDelta = min(
- self.excesses[fromIndex],
- self.graph[fromIndex][toIndex] - self.preflow[fromIndex][toIndex],
+ def push(self, from_index, to_index):
+ preflow_delta = min(
+ self.excesses[from_index],
+ self.graph[from_index][to_index] - self.preflow[from_index][to_index],
)
- self.preflow[fromIndex][toIndex] += preflowDelta
- self.preflow[toIndex][fromIndex] -= preflowDelta
- self.excesses[fromIndex] -= preflowDelta
- self.excesses[toIndex] += preflowDelta
+ self.preflow[from_index][to_index] += preflow_delta
+ self.preflow[to_index][from_index] -= preflow_delta
+ self.excesses[from_index] -= preflow_delta
+ self.excesses[to_index] += preflow_delta
- def relabel(self, vertexIndex):
- minHeight = None
- for toIndex in range(self.verticesCount):
+ def relabel(self, vertex_index):
+ min_height = None
+ for to_index in range(self.verticies_count):
if (
- self.graph[vertexIndex][toIndex] - self.preflow[vertexIndex][toIndex]
+ self.graph[vertex_index][to_index]
+ - self.preflow[vertex_index][to_index]
> 0
- ):
- if minHeight is None or self.heights[toIndex] < minHeight:
- minHeight = self.heights[toIndex]
+ ) and (min_height is None or self.heights[to_index] < min_height):
+ min_height = self.heights[to_index]
- if minHeight is not None:
- self.heights[vertexIndex] = minHeight + 1
+ if min_height is not None:
+ self.heights[vertex_index] = min_height + 1
if __name__ == "__main__":
@@ -184,10 +184,10 @@ if __name__ == "__main__":
graph = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
- flowNetwork = FlowNetwork(graph, entrances, exits)
+ flow_network = FlowNetwork(graph, entrances, exits)
# set algorithm
- flowNetwork.setMaximumFlowAlgorithm(PushRelabelExecutor)
+ flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
- maximumFlow = flowNetwork.findMaximumFlow()
+ maximum_flow = flow_network.find_maximum_flow()
- print(f"maximum flow is {maximumFlow}")
+ print(f"maximum flow is {maximum_flow}")
diff --git a/graphs/eulerian_path_and_circuit_for_undirected_graph.py b/graphs/eulerian_path_and_circuit_for_undirected_graph.py
index fa4f73abd..6b4ea8e21 100644
--- a/graphs/eulerian_path_and_circuit_for_undirected_graph.py
+++ b/graphs/eulerian_path_and_circuit_for_undirected_graph.py
@@ -20,7 +20,7 @@ def check_circuit_or_path(graph, max_node):
odd_degree_nodes = 0
odd_node = -1
for i in range(max_node):
- if i not in graph.keys():
+ if i not in graph:
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1
@@ -50,21 +50,21 @@ def check_euler(graph, max_node):
def main():
- G1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
- G2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
- G3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
- G4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
- G5 = {
+ g1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
+ g2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
+ g3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
+ g4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
+ g5 = {
1: [],
2: []
# all degree is zero
}
max_node = 10
- check_euler(G1, max_node)
- check_euler(G2, max_node)
- check_euler(G3, max_node)
- check_euler(G4, max_node)
- check_euler(G5, max_node)
+ check_euler(g1, max_node)
+ check_euler(g2, max_node)
+ check_euler(g3, max_node)
+ check_euler(g4, max_node)
+ check_euler(g5, max_node)
if __name__ == "__main__":
diff --git a/graphs/finding_bridges.py b/graphs/finding_bridges.py
index 3813c4ebb..c17606745 100644
--- a/graphs/finding_bridges.py
+++ b/graphs/finding_bridges.py
@@ -72,22 +72,22 @@ def compute_bridges(graph: dict[int, list[int]]) -> list[tuple[int, int]]:
[]
"""
- id = 0
+ id_ = 0
n = len(graph) # No of vertices in graph
low = [0] * n
visited = [False] * n
- def dfs(at, parent, bridges, id):
+ def dfs(at, parent, bridges, id_):
visited[at] = True
- low[at] = id
- id += 1
+ low[at] = id_
+ id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
- dfs(to, at, bridges, id)
+ dfs(to, at, bridges, id_)
low[at] = min(low[at], low[to])
- if id <= low[to]:
+ if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at))
else:
# This edge is a back edge and cannot be a bridge
@@ -96,7 +96,7 @@ def compute_bridges(graph: dict[int, list[int]]) -> list[tuple[int, int]]:
bridges: list[tuple[int, int]] = []
for i in range(n):
if not visited[i]:
- dfs(i, -1, bridges, id)
+ dfs(i, -1, bridges, id_)
return bridges
diff --git a/graphs/frequent_pattern_graph_miner.py b/graphs/frequent_pattern_graph_miner.py
index 548ce3c54..208e57f9b 100644
--- a/graphs/frequent_pattern_graph_miner.py
+++ b/graphs/frequent_pattern_graph_miner.py
@@ -54,7 +54,7 @@ def get_frequency_table(edge_array):
Returns Frequency Table
"""
distinct_edge = get_distinct_edge(edge_array)
- frequency_table = dict()
+ frequency_table = {}
for item in distinct_edge:
bit = get_bitcode(edge_array, item)
@@ -79,7 +79,7 @@ def get_nodes(frequency_table):
{'11111': ['ab', 'ac', 'df', 'bd', 'bc']}
"""
nodes = {}
- for i, item in enumerate(frequency_table):
+ for _, item in enumerate(frequency_table):
nodes.setdefault(item[2], []).append(item[0])
return nodes
@@ -130,11 +130,11 @@ def create_edge(nodes, graph, cluster, c1):
"""
create edge between the nodes
"""
- for i in cluster[c1].keys():
+ for i in cluster[c1]:
count = 0
c2 = c1 + 1
while c2 < max(cluster.keys()):
- for j in cluster[c2].keys():
+ for j in cluster[c2]:
"""
creates edge only if the condition satisfies
"""
@@ -151,16 +151,16 @@ def create_edge(nodes, graph, cluster, c1):
def construct_graph(cluster, nodes):
- X = cluster[max(cluster.keys())]
+ x = cluster[max(cluster.keys())]
cluster[max(cluster.keys()) + 1] = "Header"
graph = {}
- for i in X:
- if tuple(["Header"]) in graph:
- graph[tuple(["Header"])].append(X[i])
+ for i in x:
+ if (["Header"],) in graph:
+ graph[(["Header"],)].append(x[i])
else:
- graph[tuple(["Header"])] = [X[i]]
- for i in X:
- graph[tuple(X[i])] = [["Header"]]
+ graph[(["Header"],)] = [x[i]]
+ for i in x:
+ graph[(x[i],)] = [["Header"]]
i = 1
while i < max(cluster) - 1:
create_edge(nodes, graph, cluster, i)
@@ -168,7 +168,7 @@ def construct_graph(cluster, nodes):
return graph
-def myDFS(graph, start, end, path=None):
+def my_dfs(graph, start, end, path=None):
"""
find different DFS walk from given node to Header node
"""
@@ -177,7 +177,7 @@ def myDFS(graph, start, end, path=None):
paths.append(path)
for node in graph[start]:
if tuple(node) not in path:
- myDFS(graph, tuple(node), end, path)
+ my_dfs(graph, tuple(node), end, path)
def find_freq_subgraph_given_support(s, cluster, graph):
@@ -185,24 +185,24 @@ def find_freq_subgraph_given_support(s, cluster, graph):
find edges of multiple frequent subgraphs
"""
k = int(s / 100 * (len(cluster) - 1))
- for i in cluster[k].keys():
- myDFS(graph, tuple(cluster[k][i]), tuple(["Header"]))
+ for i in cluster[k]:
+ my_dfs(graph, tuple(cluster[k][i]), (["Header"],))
def freq_subgraphs_edge_list(paths):
"""
returns Edge list for frequent subgraphs
"""
- freq_sub_EL = []
+ freq_sub_el = []
for edges in paths:
- EL = []
+ el = []
for j in range(len(edges) - 1):
temp = list(edges[j])
for e in temp:
edge = (e[0], e[1])
- EL.append(edge)
- freq_sub_EL.append(EL)
- return freq_sub_EL
+ el.append(edge)
+ freq_sub_el.append(el)
+ return freq_sub_el
def preprocess(edge_array):
diff --git a/graphs/gale_shapley_bigraph.py b/graphs/gale_shapley_bigraph.py
index 56b8c6c77..f4b315381 100644
--- a/graphs/gale_shapley_bigraph.py
+++ b/graphs/gale_shapley_bigraph.py
@@ -17,7 +17,7 @@ def stable_matching(
>>> donor_pref = [[0, 1, 3, 2], [0, 2, 3, 1], [1, 0, 2, 3], [0, 3, 1, 2]]
>>> recipient_pref = [[3, 1, 2, 0], [3, 1, 0, 2], [0, 3, 1, 2], [1, 0, 3, 2]]
- >>> print(stable_matching(donor_pref, recipient_pref))
+ >>> stable_matching(donor_pref, recipient_pref)
[1, 2, 3, 0]
"""
assert len(donor_pref) == len(recipient_pref)
diff --git a/graphs/graph_adjacency_list.py b/graphs/graph_adjacency_list.py
new file mode 100644
index 000000000..76f34f845
--- /dev/null
+++ b/graphs/graph_adjacency_list.py
@@ -0,0 +1,589 @@
+#!/usr/bin/env python3
+"""
+Author: Vikram Nithyanandam
+
+Description:
+The following implementation is a robust unweighted Graph data structure
+implemented using an adjacency list. This vertices and edges of this graph can be
+effectively initialized and modified while storing your chosen generic
+value in each vertex.
+
+Adjacency List: https://en.wikipedia.org/wiki/Adjacency_list
+
+Potential Future Ideas:
+- Add a flag to set edge weights on and set edge weights
+- Make edge weights and vertex values customizable to store whatever the client wants
+- Support multigraph functionality if the client wants it
+"""
+from __future__ import annotations
+
+import random
+import unittest
+from pprint import pformat
+from typing import Generic, TypeVar
+
+T = TypeVar("T")
+
+
+class GraphAdjacencyList(Generic[T]):
+ def __init__(
+ self, vertices: list[T], edges: list[list[T]], directed: bool = True
+ ) -> None:
+ """
+ Parameters:
+ - vertices: (list[T]) The list of vertex names the client wants to
+ pass in. Default is empty.
+ - edges: (list[list[T]]) The list of edges the client wants to
+ pass in. Each edge is a 2-element list. Default is empty.
+ - directed: (bool) Indicates if graph is directed or undirected.
+ Default is True.
+ """
+ self.adj_list: dict[T, list[T]] = {} # dictionary of lists of T
+ self.directed = directed
+
+ # Falsey checks
+ edges = edges or []
+ vertices = vertices or []
+
+ for vertex in vertices:
+ self.add_vertex(vertex)
+
+ for edge in edges:
+ if len(edge) != 2:
+ msg = f"Invalid input: {edge} is the wrong length."
+ raise ValueError(msg)
+ self.add_edge(edge[0], edge[1])
+
+ def add_vertex(self, vertex: T) -> None:
+ """
+ Adds a vertex to the graph. If the given vertex already exists,
+ a ValueError will be thrown.
+ """
+ if self.contains_vertex(vertex):
+ msg = f"Incorrect input: {vertex} is already in the graph."
+ raise ValueError(msg)
+ self.adj_list[vertex] = []
+
+ def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
+ """
+ Creates an edge from source vertex to destination vertex. If any
+ given vertex doesn't exist or the edge already exists, a ValueError
+ will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} or "
+ f"{destination_vertex} does not exist"
+ )
+ raise ValueError(msg)
+ if self.contains_edge(source_vertex, destination_vertex):
+ msg = (
+ "Incorrect input: The edge already exists between "
+ f"{source_vertex} and {destination_vertex}"
+ )
+ raise ValueError(msg)
+
+ # add the destination vertex to the list associated with the source vertex
+ # and vice versa if not directed
+ self.adj_list[source_vertex].append(destination_vertex)
+ if not self.directed:
+ self.adj_list[destination_vertex].append(source_vertex)
+
+ def remove_vertex(self, vertex: T) -> None:
+ """
+ Removes the given vertex from the graph and deletes all incoming and
+ outgoing edges from the given vertex as well. If the given vertex
+ does not exist, a ValueError will be thrown.
+ """
+ if not self.contains_vertex(vertex):
+ msg = f"Incorrect input: {vertex} does not exist in this graph."
+ raise ValueError(msg)
+
+ if not self.directed:
+ # If not directed, find all neighboring vertices and delete all references
+ # of edges connecting to the given vertex
+ for neighbor in self.adj_list[vertex]:
+ self.adj_list[neighbor].remove(vertex)
+ else:
+ # If directed, search all neighbors of all vertices and delete all
+ # references of edges connecting to the given vertex
+ for edge_list in self.adj_list.values():
+ if vertex in edge_list:
+ edge_list.remove(vertex)
+
+ # Finally, delete the given vertex and all of its outgoing edge references
+ self.adj_list.pop(vertex)
+
+ def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
+ """
+ Removes the edge between the two vertices. If any given vertex
+ doesn't exist or the edge does not exist, a ValueError will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} or "
+ f"{destination_vertex} does not exist"
+ )
+ raise ValueError(msg)
+ if not self.contains_edge(source_vertex, destination_vertex):
+ msg = (
+ "Incorrect input: The edge does NOT exist between "
+ f"{source_vertex} and {destination_vertex}"
+ )
+ raise ValueError(msg)
+
+ # remove the destination vertex from the list associated with the source
+ # vertex and vice versa if not directed
+ self.adj_list[source_vertex].remove(destination_vertex)
+ if not self.directed:
+ self.adj_list[destination_vertex].remove(source_vertex)
+
+ def contains_vertex(self, vertex: T) -> bool:
+ """
+ Returns True if the graph contains the vertex, False otherwise.
+ """
+ return vertex in self.adj_list
+
+ def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
+ """
+ Returns True if the graph contains the edge from the source_vertex to the
+ destination_vertex, False otherwise. If any given vertex doesn't exist, a
+ ValueError will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} "
+ f"or {destination_vertex} does not exist."
+ )
+ raise ValueError(msg)
+
+ return destination_vertex in self.adj_list[source_vertex]
+
+ def clear_graph(self) -> None:
+ """
+ Clears all vertices and edges.
+ """
+ self.adj_list = {}
+
+ def __repr__(self) -> str:
+ return pformat(self.adj_list)
+
+
+class TestGraphAdjacencyList(unittest.TestCase):
+ def __assert_graph_edge_exists_check(
+ self,
+ undirected_graph: GraphAdjacencyList,
+ directed_graph: GraphAdjacencyList,
+ edge: list[int],
+ ) -> None:
+ self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
+ self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
+ self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
+
+ def __assert_graph_edge_does_not_exist_check(
+ self,
+ undirected_graph: GraphAdjacencyList,
+ directed_graph: GraphAdjacencyList,
+ edge: list[int],
+ ) -> None:
+ self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
+ self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
+ self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
+
+ def __assert_graph_vertex_exists_check(
+ self,
+ undirected_graph: GraphAdjacencyList,
+ directed_graph: GraphAdjacencyList,
+ vertex: int,
+ ) -> None:
+ self.assertTrue(undirected_graph.contains_vertex(vertex))
+ self.assertTrue(directed_graph.contains_vertex(vertex))
+
+ def __assert_graph_vertex_does_not_exist_check(
+ self,
+ undirected_graph: GraphAdjacencyList,
+ directed_graph: GraphAdjacencyList,
+ vertex: int,
+ ) -> None:
+ self.assertFalse(undirected_graph.contains_vertex(vertex))
+ self.assertFalse(directed_graph.contains_vertex(vertex))
+
+ def __generate_random_edges(
+ self, vertices: list[int], edge_pick_count: int
+ ) -> list[list[int]]:
+ self.assertTrue(edge_pick_count <= len(vertices))
+
+ random_source_vertices: list[int] = random.sample(
+ vertices[0 : int(len(vertices) / 2)], edge_pick_count
+ )
+ random_destination_vertices: list[int] = random.sample(
+ vertices[int(len(vertices) / 2) :], edge_pick_count
+ )
+ random_edges: list[list[int]] = []
+
+ for source in random_source_vertices:
+ for dest in random_destination_vertices:
+ random_edges.append([source, dest])
+
+ return random_edges
+
+ def __generate_graphs(
+ self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
+ ) -> tuple[GraphAdjacencyList, GraphAdjacencyList, list[int], list[list[int]]]:
+ if max_val - min_val + 1 < vertex_count:
+ raise ValueError(
+ "Will result in duplicate vertices. Either increase range "
+ "between min_val and max_val or decrease vertex count."
+ )
+
+ # generate graph input
+ random_vertices: list[int] = random.sample(
+ range(min_val, max_val + 1), vertex_count
+ )
+ random_edges: list[list[int]] = self.__generate_random_edges(
+ random_vertices, edge_pick_count
+ )
+
+ # build graphs
+ undirected_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=random_edges, directed=False
+ )
+ directed_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=random_edges, directed=True
+ )
+
+ return undirected_graph, directed_graph, random_vertices, random_edges
+
+ def test_init_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # test graph initialization with vertices and edges
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ for edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+ self.assertFalse(undirected_graph.directed)
+ self.assertTrue(directed_graph.directed)
+
+ def test_contains_vertex(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # Build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # Test contains_vertex
+ for num in range(101):
+ self.assertEqual(
+ num in random_vertices, undirected_graph.contains_vertex(num)
+ )
+ self.assertEqual(
+ num in random_vertices, directed_graph.contains_vertex(num)
+ )
+
+ def test_add_vertices(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # build empty graphs
+ undirected_graph: GraphAdjacencyList = GraphAdjacencyList(
+ vertices=[], edges=[], directed=False
+ )
+ directed_graph: GraphAdjacencyList = GraphAdjacencyList(
+ vertices=[], edges=[], directed=True
+ )
+
+ # run add_vertex
+ for num in random_vertices:
+ undirected_graph.add_vertex(num)
+
+ for num in random_vertices:
+ directed_graph.add_vertex(num)
+
+ # test add_vertex worked
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ def test_remove_vertices(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # test remove_vertex worked
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ undirected_graph.remove_vertex(num)
+ directed_graph.remove_vertex(num)
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, num
+ )
+
+ def test_add_and_remove_vertices_repeatedly(self) -> None:
+ random_vertices1: list[int] = random.sample(range(51), 20)
+ random_vertices2: list[int] = random.sample(range(51, 101), 20)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyList(
+ vertices=random_vertices1, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyList(
+ vertices=random_vertices1, edges=[], directed=True
+ )
+
+ # test adding and removing vertices
+ for i, _ in enumerate(random_vertices1):
+ undirected_graph.add_vertex(random_vertices2[i])
+ directed_graph.add_vertex(random_vertices2[i])
+
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, random_vertices2[i]
+ )
+
+ undirected_graph.remove_vertex(random_vertices1[i])
+ directed_graph.remove_vertex(random_vertices1[i])
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, random_vertices1[i]
+ )
+
+ # remove all vertices
+ for i, _ in enumerate(random_vertices1):
+ undirected_graph.remove_vertex(random_vertices2[i])
+ directed_graph.remove_vertex(random_vertices2[i])
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, random_vertices2[i]
+ )
+
+ def test_contains_edge(self) -> None:
+ # generate graphs and graph input
+ vertex_count = 20
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(vertex_count, 0, 100, 4)
+
+ # generate all possible edges for testing
+ all_possible_edges: list[list[int]] = []
+ for i in range(vertex_count - 1):
+ for j in range(i + 1, vertex_count):
+ all_possible_edges.append([random_vertices[i], random_vertices[j]])
+ all_possible_edges.append([random_vertices[j], random_vertices[i]])
+
+ # test contains_edge function
+ for edge in all_possible_edges:
+ if edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+ elif [edge[1], edge[0]] in random_edges:
+ # since this edge exists for undirected but the reverse
+ # may not exist for directed
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, [edge[1], edge[0]]
+ )
+ else:
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_add_edge(self) -> None:
+ # generate graph input
+ random_vertices: list[int] = random.sample(range(101), 15)
+ random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyList(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # run and test add_edge
+ for edge in random_edges:
+ undirected_graph.add_edge(edge[0], edge[1])
+ directed_graph.add_edge(edge[0], edge[1])
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_remove_edge(self) -> None:
+ # generate graph input and graphs
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # run and test remove_edge
+ for edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+ undirected_graph.remove_edge(edge[0], edge[1])
+ directed_graph.remove_edge(edge[0], edge[1])
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_add_and_remove_edges_repeatedly(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # make some more edge options!
+ more_random_edges: list[list[int]] = []
+
+ while len(more_random_edges) != len(random_edges):
+ edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+ for edge in edges:
+ if len(more_random_edges) == len(random_edges):
+ break
+ elif edge not in more_random_edges and edge not in random_edges:
+ more_random_edges.append(edge)
+
+ for i, _ in enumerate(random_edges):
+ undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
+ directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
+
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, more_random_edges[i]
+ )
+
+ undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
+ directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
+
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, random_edges[i]
+ )
+
+ def test_add_vertex_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for vertex in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.add_vertex(vertex)
+ with self.assertRaises(ValueError):
+ directed_graph.add_vertex(vertex)
+
+ def test_remove_vertex_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for i in range(101):
+ if i not in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.remove_vertex(i)
+ with self.assertRaises(ValueError):
+ directed_graph.remove_vertex(i)
+
+ def test_add_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for edge in random_edges:
+ with self.assertRaises(ValueError):
+ undirected_graph.add_edge(edge[0], edge[1])
+ with self.assertRaises(ValueError):
+ directed_graph.add_edge(edge[0], edge[1])
+
+ def test_remove_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ more_random_edges: list[list[int]] = []
+
+ while len(more_random_edges) != len(random_edges):
+ edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+ for edge in edges:
+ if len(more_random_edges) == len(random_edges):
+ break
+ elif edge not in more_random_edges and edge not in random_edges:
+ more_random_edges.append(edge)
+
+ for edge in more_random_edges:
+ with self.assertRaises(ValueError):
+ undirected_graph.remove_edge(edge[0], edge[1])
+ with self.assertRaises(ValueError):
+ directed_graph.remove_edge(edge[0], edge[1])
+
+ def test_contains_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for vertex in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.contains_edge(vertex, 102)
+ with self.assertRaises(ValueError):
+ directed_graph.contains_edge(vertex, 102)
+
+ with self.assertRaises(ValueError):
+ undirected_graph.contains_edge(103, 102)
+ with self.assertRaises(ValueError):
+ directed_graph.contains_edge(103, 102)
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/graphs/graph_adjacency_matrix.py b/graphs/graph_adjacency_matrix.py
new file mode 100644
index 000000000..4d2e02f73
--- /dev/null
+++ b/graphs/graph_adjacency_matrix.py
@@ -0,0 +1,608 @@
+#!/usr/bin/env python3
+"""
+Author: Vikram Nithyanandam
+
+Description:
+The following implementation is a robust unweighted Graph data structure
+implemented using an adjacency matrix. This vertices and edges of this graph can be
+effectively initialized and modified while storing your chosen generic
+value in each vertex.
+
+Adjacency Matrix: https://mathworld.wolfram.com/AdjacencyMatrix.html
+
+Potential Future Ideas:
+- Add a flag to set edge weights on and set edge weights
+- Make edge weights and vertex values customizable to store whatever the client wants
+- Support multigraph functionality if the client wants it
+"""
+from __future__ import annotations
+
+import random
+import unittest
+from pprint import pformat
+from typing import Generic, TypeVar
+
+T = TypeVar("T")
+
+
+class GraphAdjacencyMatrix(Generic[T]):
+ def __init__(
+ self, vertices: list[T], edges: list[list[T]], directed: bool = True
+ ) -> None:
+ """
+ Parameters:
+ - vertices: (list[T]) The list of vertex names the client wants to
+ pass in. Default is empty.
+ - edges: (list[list[T]]) The list of edges the client wants to
+ pass in. Each edge is a 2-element list. Default is empty.
+ - directed: (bool) Indicates if graph is directed or undirected.
+ Default is True.
+ """
+ self.directed = directed
+ self.vertex_to_index: dict[T, int] = {}
+ self.adj_matrix: list[list[int]] = []
+
+ # Falsey checks
+ edges = edges or []
+ vertices = vertices or []
+
+ for vertex in vertices:
+ self.add_vertex(vertex)
+
+ for edge in edges:
+ if len(edge) != 2:
+ msg = f"Invalid input: {edge} must have length 2."
+ raise ValueError(msg)
+ self.add_edge(edge[0], edge[1])
+
+ def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
+ """
+ Creates an edge from source vertex to destination vertex. If any
+ given vertex doesn't exist or the edge already exists, a ValueError
+ will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} or "
+ f"{destination_vertex} does not exist"
+ )
+ raise ValueError(msg)
+ if self.contains_edge(source_vertex, destination_vertex):
+ msg = (
+ "Incorrect input: The edge already exists between "
+ f"{source_vertex} and {destination_vertex}"
+ )
+ raise ValueError(msg)
+
+ # Get the indices of the corresponding vertices and set their edge value to 1.
+ u: int = self.vertex_to_index[source_vertex]
+ v: int = self.vertex_to_index[destination_vertex]
+ self.adj_matrix[u][v] = 1
+ if not self.directed:
+ self.adj_matrix[v][u] = 1
+
+ def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
+ """
+ Removes the edge between the two vertices. If any given vertex
+ doesn't exist or the edge does not exist, a ValueError will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} or "
+ f"{destination_vertex} does not exist"
+ )
+ raise ValueError(msg)
+ if not self.contains_edge(source_vertex, destination_vertex):
+ msg = (
+ "Incorrect input: The edge does NOT exist between "
+ f"{source_vertex} and {destination_vertex}"
+ )
+ raise ValueError(msg)
+
+ # Get the indices of the corresponding vertices and set their edge value to 0.
+ u: int = self.vertex_to_index[source_vertex]
+ v: int = self.vertex_to_index[destination_vertex]
+ self.adj_matrix[u][v] = 0
+ if not self.directed:
+ self.adj_matrix[v][u] = 0
+
+ def add_vertex(self, vertex: T) -> None:
+ """
+ Adds a vertex to the graph. If the given vertex already exists,
+ a ValueError will be thrown.
+ """
+ if self.contains_vertex(vertex):
+ msg = f"Incorrect input: {vertex} already exists in this graph."
+ raise ValueError(msg)
+
+ # build column for vertex
+ for row in self.adj_matrix:
+ row.append(0)
+
+ # build row for vertex and update other data structures
+ self.adj_matrix.append([0] * (len(self.adj_matrix) + 1))
+ self.vertex_to_index[vertex] = len(self.adj_matrix) - 1
+
+ def remove_vertex(self, vertex: T) -> None:
+ """
+ Removes the given vertex from the graph and deletes all incoming and
+ outgoing edges from the given vertex as well. If the given vertex
+ does not exist, a ValueError will be thrown.
+ """
+ if not self.contains_vertex(vertex):
+ msg = f"Incorrect input: {vertex} does not exist in this graph."
+ raise ValueError(msg)
+
+ # first slide up the rows by deleting the row corresponding to
+ # the vertex being deleted.
+ start_index = self.vertex_to_index[vertex]
+ self.adj_matrix.pop(start_index)
+
+ # next, slide the columns to the left by deleting the values in
+ # the column corresponding to the vertex being deleted
+ for lst in self.adj_matrix:
+ lst.pop(start_index)
+
+ # final clean up
+ self.vertex_to_index.pop(vertex)
+
+ # decrement indices for vertices shifted by the deleted vertex in the adj matrix
+ for vertex in self.vertex_to_index:
+ if self.vertex_to_index[vertex] >= start_index:
+ self.vertex_to_index[vertex] = self.vertex_to_index[vertex] - 1
+
+ def contains_vertex(self, vertex: T) -> bool:
+ """
+ Returns True if the graph contains the vertex, False otherwise.
+ """
+ return vertex in self.vertex_to_index
+
+ def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
+ """
+ Returns True if the graph contains the edge from the source_vertex to the
+ destination_vertex, False otherwise. If any given vertex doesn't exist, a
+ ValueError will be thrown.
+ """
+ if not (
+ self.contains_vertex(source_vertex)
+ and self.contains_vertex(destination_vertex)
+ ):
+ msg = (
+ f"Incorrect input: Either {source_vertex} "
+ f"or {destination_vertex} does not exist."
+ )
+ raise ValueError(msg)
+
+ u = self.vertex_to_index[source_vertex]
+ v = self.vertex_to_index[destination_vertex]
+ return self.adj_matrix[u][v] == 1
+
+ def clear_graph(self) -> None:
+ """
+ Clears all vertices and edges.
+ """
+ self.vertex_to_index = {}
+ self.adj_matrix = []
+
+ def __repr__(self) -> str:
+ first = "Adj Matrix:\n" + pformat(self.adj_matrix)
+ second = "\nVertex to index mapping:\n" + pformat(self.vertex_to_index)
+ return first + second
+
+
+class TestGraphMatrix(unittest.TestCase):
+ def __assert_graph_edge_exists_check(
+ self,
+ undirected_graph: GraphAdjacencyMatrix,
+ directed_graph: GraphAdjacencyMatrix,
+ edge: list[int],
+ ) -> None:
+ self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
+ self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
+ self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
+
+ def __assert_graph_edge_does_not_exist_check(
+ self,
+ undirected_graph: GraphAdjacencyMatrix,
+ directed_graph: GraphAdjacencyMatrix,
+ edge: list[int],
+ ) -> None:
+ self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
+ self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
+ self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
+
+ def __assert_graph_vertex_exists_check(
+ self,
+ undirected_graph: GraphAdjacencyMatrix,
+ directed_graph: GraphAdjacencyMatrix,
+ vertex: int,
+ ) -> None:
+ self.assertTrue(undirected_graph.contains_vertex(vertex))
+ self.assertTrue(directed_graph.contains_vertex(vertex))
+
+ def __assert_graph_vertex_does_not_exist_check(
+ self,
+ undirected_graph: GraphAdjacencyMatrix,
+ directed_graph: GraphAdjacencyMatrix,
+ vertex: int,
+ ) -> None:
+ self.assertFalse(undirected_graph.contains_vertex(vertex))
+ self.assertFalse(directed_graph.contains_vertex(vertex))
+
+ def __generate_random_edges(
+ self, vertices: list[int], edge_pick_count: int
+ ) -> list[list[int]]:
+ self.assertTrue(edge_pick_count <= len(vertices))
+
+ random_source_vertices: list[int] = random.sample(
+ vertices[0 : int(len(vertices) / 2)], edge_pick_count
+ )
+ random_destination_vertices: list[int] = random.sample(
+ vertices[int(len(vertices) / 2) :], edge_pick_count
+ )
+ random_edges: list[list[int]] = []
+
+ for source in random_source_vertices:
+ for dest in random_destination_vertices:
+ random_edges.append([source, dest])
+
+ return random_edges
+
+ def __generate_graphs(
+ self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
+ ) -> tuple[GraphAdjacencyMatrix, GraphAdjacencyMatrix, list[int], list[list[int]]]:
+ if max_val - min_val + 1 < vertex_count:
+ raise ValueError(
+ "Will result in duplicate vertices. Either increase "
+ "range between min_val and max_val or decrease vertex count"
+ )
+
+ # generate graph input
+ random_vertices: list[int] = random.sample(
+ range(min_val, max_val + 1), vertex_count
+ )
+ random_edges: list[list[int]] = self.__generate_random_edges(
+ random_vertices, edge_pick_count
+ )
+
+ # build graphs
+ undirected_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=random_edges, directed=False
+ )
+ directed_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=random_edges, directed=True
+ )
+
+ return undirected_graph, directed_graph, random_vertices, random_edges
+
+ def test_init_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # test graph initialization with vertices and edges
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ for edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ self.assertFalse(undirected_graph.directed)
+ self.assertTrue(directed_graph.directed)
+
+ def test_contains_vertex(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # Build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # Test contains_vertex
+ for num in range(101):
+ self.assertEqual(
+ num in random_vertices, undirected_graph.contains_vertex(num)
+ )
+ self.assertEqual(
+ num in random_vertices, directed_graph.contains_vertex(num)
+ )
+
+ def test_add_vertices(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # build empty graphs
+ undirected_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
+ vertices=[], edges=[], directed=False
+ )
+ directed_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
+ vertices=[], edges=[], directed=True
+ )
+
+ # run add_vertex
+ for num in random_vertices:
+ undirected_graph.add_vertex(num)
+
+ for num in random_vertices:
+ directed_graph.add_vertex(num)
+
+ # test add_vertex worked
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ def test_remove_vertices(self) -> None:
+ random_vertices: list[int] = random.sample(range(101), 20)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # test remove_vertex worked
+ for num in random_vertices:
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, num
+ )
+
+ undirected_graph.remove_vertex(num)
+ directed_graph.remove_vertex(num)
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, num
+ )
+
+ def test_add_and_remove_vertices_repeatedly(self) -> None:
+ random_vertices1: list[int] = random.sample(range(51), 20)
+ random_vertices2: list[int] = random.sample(range(51, 101), 20)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices1, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices1, edges=[], directed=True
+ )
+
+ # test adding and removing vertices
+ for i, _ in enumerate(random_vertices1):
+ undirected_graph.add_vertex(random_vertices2[i])
+ directed_graph.add_vertex(random_vertices2[i])
+
+ self.__assert_graph_vertex_exists_check(
+ undirected_graph, directed_graph, random_vertices2[i]
+ )
+
+ undirected_graph.remove_vertex(random_vertices1[i])
+ directed_graph.remove_vertex(random_vertices1[i])
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, random_vertices1[i]
+ )
+
+ # remove all vertices
+ for i, _ in enumerate(random_vertices1):
+ undirected_graph.remove_vertex(random_vertices2[i])
+ directed_graph.remove_vertex(random_vertices2[i])
+
+ self.__assert_graph_vertex_does_not_exist_check(
+ undirected_graph, directed_graph, random_vertices2[i]
+ )
+
+ def test_contains_edge(self) -> None:
+ # generate graphs and graph input
+ vertex_count = 20
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(vertex_count, 0, 100, 4)
+
+ # generate all possible edges for testing
+ all_possible_edges: list[list[int]] = []
+ for i in range(vertex_count - 1):
+ for j in range(i + 1, vertex_count):
+ all_possible_edges.append([random_vertices[i], random_vertices[j]])
+ all_possible_edges.append([random_vertices[j], random_vertices[i]])
+
+ # test contains_edge function
+ for edge in all_possible_edges:
+ if edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+ elif [edge[1], edge[0]] in random_edges:
+ # since this edge exists for undirected but the reverse may
+ # not exist for directed
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, [edge[1], edge[0]]
+ )
+ else:
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_add_edge(self) -> None:
+ # generate graph input
+ random_vertices: list[int] = random.sample(range(101), 15)
+ random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+
+ # build graphs WITHOUT edges
+ undirected_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=False
+ )
+ directed_graph = GraphAdjacencyMatrix(
+ vertices=random_vertices, edges=[], directed=True
+ )
+
+ # run and test add_edge
+ for edge in random_edges:
+ undirected_graph.add_edge(edge[0], edge[1])
+ directed_graph.add_edge(edge[0], edge[1])
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_remove_edge(self) -> None:
+ # generate graph input and graphs
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # run and test remove_edge
+ for edge in random_edges:
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, edge
+ )
+ undirected_graph.remove_edge(edge[0], edge[1])
+ directed_graph.remove_edge(edge[0], edge[1])
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, edge
+ )
+
+ def test_add_and_remove_edges_repeatedly(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ # make some more edge options!
+ more_random_edges: list[list[int]] = []
+
+ while len(more_random_edges) != len(random_edges):
+ edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+ for edge in edges:
+ if len(more_random_edges) == len(random_edges):
+ break
+ elif edge not in more_random_edges and edge not in random_edges:
+ more_random_edges.append(edge)
+
+ for i, _ in enumerate(random_edges):
+ undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
+ directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
+
+ self.__assert_graph_edge_exists_check(
+ undirected_graph, directed_graph, more_random_edges[i]
+ )
+
+ undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
+ directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
+
+ self.__assert_graph_edge_does_not_exist_check(
+ undirected_graph, directed_graph, random_edges[i]
+ )
+
+ def test_add_vertex_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for vertex in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.add_vertex(vertex)
+ with self.assertRaises(ValueError):
+ directed_graph.add_vertex(vertex)
+
+ def test_remove_vertex_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for i in range(101):
+ if i not in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.remove_vertex(i)
+ with self.assertRaises(ValueError):
+ directed_graph.remove_vertex(i)
+
+ def test_add_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for edge in random_edges:
+ with self.assertRaises(ValueError):
+ undirected_graph.add_edge(edge[0], edge[1])
+ with self.assertRaises(ValueError):
+ directed_graph.add_edge(edge[0], edge[1])
+
+ def test_remove_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ more_random_edges: list[list[int]] = []
+
+ while len(more_random_edges) != len(random_edges):
+ edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
+ for edge in edges:
+ if len(more_random_edges) == len(random_edges):
+ break
+ elif edge not in more_random_edges and edge not in random_edges:
+ more_random_edges.append(edge)
+
+ for edge in more_random_edges:
+ with self.assertRaises(ValueError):
+ undirected_graph.remove_edge(edge[0], edge[1])
+ with self.assertRaises(ValueError):
+ directed_graph.remove_edge(edge[0], edge[1])
+
+ def test_contains_edge_exception_check(self) -> None:
+ (
+ undirected_graph,
+ directed_graph,
+ random_vertices,
+ random_edges,
+ ) = self.__generate_graphs(20, 0, 100, 4)
+
+ for vertex in random_vertices:
+ with self.assertRaises(ValueError):
+ undirected_graph.contains_edge(vertex, 102)
+ with self.assertRaises(ValueError):
+ directed_graph.contains_edge(vertex, 102)
+
+ with self.assertRaises(ValueError):
+ undirected_graph.contains_edge(103, 102)
+ with self.assertRaises(ValueError):
+ directed_graph.contains_edge(103, 102)
+
+
+if __name__ == "__main__":
+ unittest.main()
diff --git a/graphs/graph_list.py b/graphs/graph_list.py
index f04b7a923..e871f3b8a 100644
--- a/graphs/graph_list.py
+++ b/graphs/graph_list.py
@@ -18,7 +18,7 @@ class GraphAdjacencyList(Generic[T]):
Directed graph example:
>>> d_graph = GraphAdjacencyList()
- >>> d_graph
+ >>> print(d_graph)
{}
>>> d_graph.add_edge(0, 1)
{0: [1], 1: []}
@@ -26,7 +26,7 @@ class GraphAdjacencyList(Generic[T]):
{0: [1], 1: [2, 4, 5], 2: [], 4: [], 5: []}
>>> d_graph.add_edge(2, 0).add_edge(2, 6).add_edge(2, 7)
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
- >>> print(d_graph)
+ >>> d_graph
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
>>> print(repr(d_graph))
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
@@ -68,7 +68,7 @@ class GraphAdjacencyList(Generic[T]):
{'a': ['b'], 'b': ['a']}
>>> char_graph.add_edge('b', 'c').add_edge('b', 'e').add_edge('b', 'f')
{'a': ['b'], 'b': ['a', 'c', 'e', 'f'], 'c': ['b'], 'e': ['b'], 'f': ['b']}
- >>> print(char_graph)
+ >>> char_graph
{'a': ['b'], 'b': ['a', 'c', 'e', 'f'], 'c': ['b'], 'e': ['b'], 'f': ['b']}
"""
diff --git a/graphs/graph_matrix.py b/graphs/graph_matrix.py
deleted file mode 100644
index 987168426..000000000
--- a/graphs/graph_matrix.py
+++ /dev/null
@@ -1,25 +0,0 @@
-class Graph:
- def __init__(self, vertex):
- self.vertex = vertex
- self.graph = [[0] * vertex for i in range(vertex)]
-
- def add_edge(self, u, v):
- self.graph[u - 1][v - 1] = 1
- self.graph[v - 1][u - 1] = 1
-
- def show(self):
-
- for i in self.graph:
- for j in i:
- print(j, end=" ")
- print(" ")
-
-
-g = Graph(100)
-
-g.add_edge(1, 4)
-g.add_edge(4, 2)
-g.add_edge(4, 5)
-g.add_edge(2, 5)
-g.add_edge(5, 3)
-g.show()
diff --git a/graphs/greedy_best_first.py b/graphs/greedy_best_first.py
index d49e65b9d..bb3160047 100644
--- a/graphs/greedy_best_first.py
+++ b/graphs/greedy_best_first.py
@@ -6,14 +6,32 @@ from __future__ import annotations
Path = list[tuple[int, int]]
-grid = [
- [0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [1, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0],
+# 0's are free path whereas 1's are obstacles
+TEST_GRIDS = [
+ [
+ [0, 0, 0, 0, 0, 0, 0],
+ [0, 1, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 1, 0, 0, 0, 0],
+ [1, 0, 1, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 1, 0, 0],
+ ],
+ [
+ [0, 0, 0, 1, 1, 0, 0],
+ [0, 0, 0, 0, 1, 0, 1],
+ [0, 0, 0, 1, 1, 0, 0],
+ [0, 1, 0, 0, 1, 0, 0],
+ [1, 0, 0, 1, 1, 0, 1],
+ [0, 0, 0, 0, 0, 0, 0],
+ ],
+ [
+ [0, 0, 1, 0, 0],
+ [0, 1, 0, 0, 0],
+ [0, 0, 1, 0, 1],
+ [1, 0, 0, 1, 1],
+ [0, 0, 0, 0, 0],
+ ],
]
delta = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
@@ -58,17 +76,21 @@ class Node:
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
- dy = abs(self.pos_x - self.goal_x)
- dx = abs(self.pos_y - self.goal_y)
+ dx = abs(self.pos_x - self.goal_x)
+ dy = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other) -> bool:
return self.f_cost < other.f_cost
+ def __eq__(self, other) -> bool:
+ return self.pos == other.pos
+
class GreedyBestFirst:
"""
- >>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
+ >>> grid = TEST_GRIDS[2]
+ >>> gbf = GreedyBestFirst(grid, (0, 0), (len(grid) - 1, len(grid[0]) - 1))
>>> [x.pos for x in gbf.get_successors(gbf.start)]
[(1, 0), (0, 1)]
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
@@ -78,11 +100,14 @@ class GreedyBestFirst:
>>> gbf.retrace_path(gbf.start)
[(0, 0)]
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
- [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
- (6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
+ [(0, 0), (1, 0), (2, 0), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3),
+ (4, 4)]
"""
- def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
+ def __init__(
+ self, grid: list[list[int]], start: tuple[int, int], goal: tuple[int, int]
+ ):
+ self.grid = grid
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
@@ -114,14 +139,6 @@ class GreedyBestFirst:
if child_node not in self.open_nodes:
self.open_nodes.append(child_node)
- else:
- # retrieve the best current path
- better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
-
- if child_node.g_cost < better_node.g_cost:
- self.open_nodes.append(child_node)
- else:
- self.open_nodes.append(better_node)
if not self.reached:
return [self.start.pos]
@@ -131,28 +148,22 @@ class GreedyBestFirst:
"""
Returns a list of successors (both in the grid and free spaces)
"""
- successors = []
- for action in delta:
- pos_x = parent.pos_x + action[1]
- pos_y = parent.pos_y + action[0]
-
- if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
- continue
-
- if grid[pos_y][pos_x] != 0:
- continue
-
- successors.append(
- Node(
- pos_x,
- pos_y,
- self.target.pos_y,
- self.target.pos_x,
- parent.g_cost + 1,
- parent,
- )
+ return [
+ Node(
+ pos_x,
+ pos_y,
+ self.target.pos_x,
+ self.target.pos_y,
+ parent.g_cost + 1,
+ parent,
)
- return successors
+ for action in delta
+ if (
+ 0 <= (pos_x := parent.pos_x + action[1]) < len(self.grid[0])
+ and 0 <= (pos_y := parent.pos_y + action[0]) < len(self.grid)
+ and self.grid[pos_y][pos_x] == 0
+ )
+ ]
def retrace_path(self, node: Node | None) -> Path:
"""
@@ -168,18 +179,21 @@ class GreedyBestFirst:
if __name__ == "__main__":
- init = (0, 0)
- goal = (len(grid) - 1, len(grid[0]) - 1)
- for elem in grid:
- print(elem)
-
- print("------")
-
- greedy_bf = GreedyBestFirst(init, goal)
- path = greedy_bf.search()
- if path:
- for pos_x, pos_y in path:
- grid[pos_x][pos_y] = 2
+ for idx, grid in enumerate(TEST_GRIDS):
+ print(f"==grid-{idx + 1}==")
+ init = (0, 0)
+ goal = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
+
+ print("------")
+
+ greedy_bf = GreedyBestFirst(grid, init, goal)
+ path = greedy_bf.search()
+ if path:
+ for pos_x, pos_y in path:
+ grid[pos_x][pos_y] = 2
+
+ for elem in grid:
+ print(elem)
diff --git a/graphs/kahns_algorithm_long.py b/graphs/kahns_algorithm_long.py
index fed7517a2..63cbeb909 100644
--- a/graphs/kahns_algorithm_long.py
+++ b/graphs/kahns_algorithm_long.py
@@ -1,10 +1,10 @@
# Finding longest distance in Directed Acyclic Graph using KahnsAlgorithm
-def longestDistance(graph):
+def longest_distance(graph):
indegree = [0] * len(graph)
queue = []
- longDist = [1] * len(graph)
+ long_dist = [1] * len(graph)
- for key, values in graph.items():
+ for values in graph.values():
for i in values:
indegree[i] += 1
@@ -17,15 +17,15 @@ def longestDistance(graph):
for x in graph[vertex]:
indegree[x] -= 1
- if longDist[vertex] + 1 > longDist[x]:
- longDist[x] = longDist[vertex] + 1
+ if long_dist[vertex] + 1 > long_dist[x]:
+ long_dist[x] = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(x)
- print(max(longDist))
+ print(max(long_dist))
# Adjacency list of Graph
graph = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
-longestDistance(graph)
+longest_distance(graph)
diff --git a/graphs/kahns_algorithm_topo.py b/graphs/kahns_algorithm_topo.py
index bf9f90299..b1260bd5b 100644
--- a/graphs/kahns_algorithm_topo.py
+++ b/graphs/kahns_algorithm_topo.py
@@ -1,4 +1,4 @@
-def topologicalSort(graph):
+def topological_sort(graph):
"""
Kahn's Algorithm is used to find Topological ordering of Directed Acyclic Graph
using BFS
@@ -8,7 +8,7 @@ def topologicalSort(graph):
topo = []
cnt = 0
- for key, values in graph.items():
+ for values in graph.values():
for i in values:
indegree[i] += 1
@@ -33,4 +33,4 @@ def topologicalSort(graph):
# Adjacency List of Graph
graph = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
-topologicalSort(graph)
+topological_sort(graph)
diff --git a/graphs/karger.py b/graphs/karger.py
index f72128c81..3ef65c0d6 100644
--- a/graphs/karger.py
+++ b/graphs/karger.py
@@ -47,7 +47,6 @@ def partition_graph(graph: dict[str, list[str]]) -> set[tuple[str, str]]:
graph_copy = {node: graph[node][:] for node in graph}
while len(graph_copy) > 2:
-
# Choose a random edge.
u = random.choice(list(graph_copy.keys()))
v = random.choice(graph_copy[u])
diff --git a/graphs/minimum_spanning_tree_boruvka.py b/graphs/minimum_spanning_tree_boruvka.py
index 32548b2ec..3c6888037 100644
--- a/graphs/minimum_spanning_tree_boruvka.py
+++ b/graphs/minimum_spanning_tree_boruvka.py
@@ -4,7 +4,6 @@ class Graph:
"""
def __init__(self):
-
self.num_vertices = 0
self.num_edges = 0
self.adjacency = {}
@@ -63,7 +62,7 @@ class Graph:
for tail in self.adjacency:
for head in self.adjacency[tail]:
weight = self.adjacency[head][tail]
- string += "%d -> %d == %d\n" % (head, tail, weight)
+ string += f"{head} -> {tail} == {weight}\n"
return string.rstrip("\n")
def get_edges(self):
@@ -145,6 +144,7 @@ class Graph:
self.rank[root1] += 1
self.parent[root2] = root1
return root1
+ return None
@staticmethod
def boruvka_mst(graph):
diff --git a/graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py
index 16b428614..5a08ec57f 100644
--- a/graphs/minimum_spanning_tree_prims.py
+++ b/graphs/minimum_spanning_tree_prims.py
@@ -2,115 +2,135 @@ import sys
from collections import defaultdict
-def PrimsAlgorithm(l): # noqa: E741
+class Heap:
+ def __init__(self):
+ self.node_position = []
- nodePosition = []
+ def get_position(self, vertex):
+ return self.node_position[vertex]
- def get_position(vertex):
- return nodePosition[vertex]
+ def set_position(self, vertex, pos):
+ self.node_position[vertex] = pos
- def set_position(vertex, pos):
- nodePosition[vertex] = pos
-
- def top_to_bottom(heap, start, size, positions):
+ def top_to_bottom(self, heap, start, size, positions):
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
- m = 2 * start + 1
+ smallest_child = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
- m = 2 * start + 1
+ smallest_child = 2 * start + 1
else:
- m = 2 * start + 2
- if heap[m] < heap[start]:
- temp, temp1 = heap[m], positions[m]
- heap[m], positions[m] = heap[start], positions[start]
+ smallest_child = 2 * start + 2
+ if heap[smallest_child] < heap[start]:
+ temp, temp1 = heap[smallest_child], positions[smallest_child]
+ heap[smallest_child], positions[smallest_child] = (
+ heap[start],
+ positions[start],
+ )
heap[start], positions[start] = temp, temp1
- temp = get_position(positions[m])
- set_position(positions[m], get_position(positions[start]))
- set_position(positions[start], temp)
+ temp = self.get_position(positions[smallest_child])
+ self.set_position(
+ positions[smallest_child], self.get_position(positions[start])
+ )
+ self.set_position(positions[start], temp)
- top_to_bottom(heap, m, size, positions)
+ self.top_to_bottom(heap, smallest_child, size, positions)
# Update function if value of any node in min-heap decreases
- def bottom_to_top(val, index, heap, position):
+ def bottom_to_top(self, val, index, heap, position):
temp = position[index]
while index != 0:
- if index % 2 == 0:
- parent = int((index - 2) / 2)
- else:
- parent = int((index - 1) / 2)
+ parent = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2)
if val < heap[parent]:
heap[index] = heap[parent]
position[index] = position[parent]
- set_position(position[parent], index)
+ self.set_position(position[parent], index)
else:
heap[index] = val
position[index] = temp
- set_position(temp, index)
+ self.set_position(temp, index)
break
index = parent
else:
heap[0] = val
position[0] = temp
- set_position(temp, 0)
+ self.set_position(temp, 0)
- def heapify(heap, positions):
+ def heapify(self, heap, positions):
start = len(heap) // 2 - 1
for i in range(start, -1, -1):
- top_to_bottom(heap, i, len(heap), positions)
+ self.top_to_bottom(heap, i, len(heap), positions)
- def deleteMinimum(heap, positions):
+ def delete_minimum(self, heap, positions):
temp = positions[0]
heap[0] = sys.maxsize
- top_to_bottom(heap, 0, len(heap), positions)
+ self.top_to_bottom(heap, 0, len(heap), positions)
return temp
- visited = [0 for i in range(len(l))]
- Nbr_TV = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex
+
+def prisms_algorithm(adjacency_list):
+ """
+ >>> adjacency_list = {0: [[1, 1], [3, 3]],
+ ... 1: [[0, 1], [2, 6], [3, 5], [4, 1]],
+ ... 2: [[1, 6], [4, 5], [5, 2]],
+ ... 3: [[0, 3], [1, 5], [4, 1]],
+ ... 4: [[1, 1], [2, 5], [3, 1], [5, 4]],
+ ... 5: [[2, 2], [4, 4]]}
+ >>> prisms_algorithm(adjacency_list)
+ [(0, 1), (1, 4), (4, 3), (4, 5), (5, 2)]
+ """
+
+ heap = Heap()
+
+ visited = [0] * len(adjacency_list)
+ nbr_tv = [-1] * len(adjacency_list) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
- Distance_TV = [] # Heap of Distance of vertices from their neighboring vertex
- Positions = []
+ distance_tv = [] # Heap of Distance of vertices from their neighboring vertex
+ positions = []
- for x in range(len(l)):
- p = sys.maxsize
- Distance_TV.append(p)
- Positions.append(x)
- nodePosition.append(x)
+ for vertex in range(len(adjacency_list)):
+ distance_tv.append(sys.maxsize)
+ positions.append(vertex)
+ heap.node_position.append(vertex)
- TreeEdges = []
+ tree_edges = []
visited[0] = 1
- Distance_TV[0] = sys.maxsize
- for x in l[0]:
- Nbr_TV[x[0]] = 0
- Distance_TV[x[0]] = x[1]
- heapify(Distance_TV, Positions)
+ distance_tv[0] = sys.maxsize
+ for neighbor, distance in adjacency_list[0]:
+ nbr_tv[neighbor] = 0
+ distance_tv[neighbor] = distance
+ heap.heapify(distance_tv, positions)
- for i in range(1, len(l)):
- vertex = deleteMinimum(Distance_TV, Positions)
+ for _ in range(1, len(adjacency_list)):
+ vertex = heap.delete_minimum(distance_tv, positions)
if visited[vertex] == 0:
- TreeEdges.append((Nbr_TV[vertex], vertex))
+ tree_edges.append((nbr_tv[vertex], vertex))
visited[vertex] = 1
- for v in l[vertex]:
- if visited[v[0]] == 0 and v[1] < Distance_TV[get_position(v[0])]:
- Distance_TV[get_position(v[0])] = v[1]
- bottom_to_top(v[1], get_position(v[0]), Distance_TV, Positions)
- Nbr_TV[v[0]] = vertex
- return TreeEdges
+ for neighbor, distance in adjacency_list[vertex]:
+ if (
+ visited[neighbor] == 0
+ and distance < distance_tv[heap.get_position(neighbor)]
+ ):
+ distance_tv[heap.get_position(neighbor)] = distance
+ heap.bottom_to_top(
+ distance, heap.get_position(neighbor), distance_tv, positions
+ )
+ nbr_tv[neighbor] = vertex
+ return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
- n = int(input("Enter number of vertices: ").strip())
- e = int(input("Enter number of edges: ").strip())
- adjlist = defaultdict(list)
- for x in range(e):
- l = [int(x) for x in input().strip().split()] # noqa: E741
- adjlist[l[0]].append([l[1], l[2]])
- adjlist[l[1]].append([l[0], l[2]])
- print(PrimsAlgorithm(adjlist))
+ edges_number = int(input("Enter number of edges: ").strip())
+ adjacency_list = defaultdict(list)
+ for _ in range(edges_number):
+ edge = [int(x) for x in input().strip().split()]
+ adjacency_list[edge[0]].append([edge[1], edge[2]])
+ adjacency_list[edge[1]].append([edge[0], edge[2]])
+ print(prisms_algorithm(adjacency_list))
diff --git a/graphs/minimum_spanning_tree_prims2.py b/graphs/minimum_spanning_tree_prims2.py
index d924ee3db..81f30ef61 100644
--- a/graphs/minimum_spanning_tree_prims2.py
+++ b/graphs/minimum_spanning_tree_prims2.py
@@ -69,16 +69,16 @@ class MinPriorityQueue(Generic[T]):
>>> queue.push(3, 4000)
>>> queue.push(4, 3000)
- >>> print(queue.extract_min())
+ >>> queue.extract_min()
2
>>> queue.update_key(4, 50)
- >>> print(queue.extract_min())
+ >>> queue.extract_min()
4
- >>> print(queue.extract_min())
+ >>> queue.extract_min()
1
- >>> print(queue.extract_min())
+ >>> queue.extract_min()
3
"""
@@ -135,14 +135,14 @@ class MinPriorityQueue(Generic[T]):
# only]
curr_pos = self.position_map[elem]
if curr_pos == 0:
- return
+ return None
parent_position = get_parent_position(curr_pos)
_, weight = self.heap[curr_pos]
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(parent_position, curr_pos)
return self._bubble_up(elem)
- return
+ return None
def _bubble_down(self, elem: T) -> None:
# Place a node at the proper position (downward movement) [to be used
@@ -154,24 +154,22 @@ class MinPriorityQueue(Generic[T]):
if child_left_position < self.elements and child_right_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
_, child_right_weight = self.heap[child_right_position]
- if child_right_weight < child_left_weight:
- if child_right_weight < weight:
- self._swap_nodes(child_right_position, curr_pos)
- return self._bubble_down(elem)
+ if child_right_weight < child_left_weight and child_right_weight < weight:
+ self._swap_nodes(child_right_position, curr_pos)
+ return self._bubble_down(elem)
if child_left_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(child_left_position, curr_pos)
return self._bubble_down(elem)
else:
- return
+ return None
if child_right_position < self.elements:
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
- else:
- return
+ return None
def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
# Swap the nodes at the given positions
diff --git a/graphs/multi_heuristic_astar.py b/graphs/multi_heuristic_astar.py
index 8607f51d8..0a18ede6e 100644
--- a/graphs/multi_heuristic_astar.py
+++ b/graphs/multi_heuristic_astar.py
@@ -1,4 +1,5 @@
import heapq
+import sys
import numpy as np
@@ -32,7 +33,7 @@ class PriorityQueue:
temp.append((pri, x))
(pri, x) = heapq.heappop(self.elements)
temp.append((priority, item))
- for (pro, xxx) in temp:
+ for pro, xxx in temp:
heapq.heappush(self.elements, (pro, xxx))
def remove_element(self, item):
@@ -43,7 +44,7 @@ class PriorityQueue:
while x != item:
temp.append((pro, x))
(pro, x) = heapq.heappop(self.elements)
- for (prito, yyy) in temp:
+ for prito, yyy in temp:
heapq.heappush(self.elements, (prito, yyy))
def top_show(self):
@@ -55,21 +56,21 @@ class PriorityQueue:
return (priority, item)
-def consistent_heuristic(P: TPos, goal: TPos):
+def consistent_heuristic(p: TPos, goal: TPos):
# euclidean distance
- a = np.array(P)
+ a = np.array(p)
b = np.array(goal)
return np.linalg.norm(a - b)
-def heuristic_2(P: TPos, goal: TPos):
+def heuristic_2(p: TPos, goal: TPos):
# integer division by time variable
- return consistent_heuristic(P, goal) // t
+ return consistent_heuristic(p, goal) // t
-def heuristic_1(P: TPos, goal: TPos):
+def heuristic_1(p: TPos, goal: TPos):
# manhattan distance
- return abs(P[0] - goal[0]) + abs(P[1] - goal[1])
+ return abs(p[0] - goal[0]) + abs(p[1] - goal[1])
def key(start: TPos, i: int, goal: TPos, g_function: dict[TPos, float]):
@@ -116,7 +117,7 @@ def do_something(back_pointer, goal, start):
print(x, end=" ")
x = back_pointer[x]
print(x)
- quit()
+ sys.exit()
def valid(p: TPos):
diff --git a/graphs/page_rank.py b/graphs/page_rank.py
index 672405b73..b9e4c4a72 100644
--- a/graphs/page_rank.py
+++ b/graphs/page_rank.py
@@ -27,7 +27,7 @@ class Node:
self.outbound.append(node)
def __repr__(self):
- return f"Node {self.name}: Inbound: {self.inbound} ; Outbound: {self.outbound}"
+ return f""
def page_rank(nodes, limit=3, d=0.85):
@@ -41,7 +41,7 @@ def page_rank(nodes, limit=3, d=0.85):
for i in range(limit):
print(f"======= Iteration {i + 1} =======")
- for j, node in enumerate(nodes):
+ for _, node in enumerate(nodes):
ranks[node.name] = (1 - d) + d * sum(
ranks[ib] / outbounds[ib] for ib in node.inbound
)
diff --git a/graphs/prim.py b/graphs/prim.py
index 55d0fbfa8..6cb1a6def 100644
--- a/graphs/prim.py
+++ b/graphs/prim.py
@@ -13,7 +13,7 @@ from collections.abc import Iterator
class Vertex:
"""Class Vertex."""
- def __init__(self, id):
+ def __init__(self, id_):
"""
Arguments:
id - input an id to identify the vertex
@@ -21,7 +21,7 @@ class Vertex:
neighbors - a list of the vertices it is linked to
edges - a dict to store the edges's weight
"""
- self.id = str(id)
+ self.id = str(id_)
self.key = None
self.pi = None
self.neighbors = []
diff --git a/graphs/random_graph_generator.py b/graphs/random_graph_generator.py
index 15ccee5b3..0e7e18bc8 100644
--- a/graphs/random_graph_generator.py
+++ b/graphs/random_graph_generator.py
@@ -53,7 +53,7 @@ def complete_graph(vertices_number: int) -> dict:
@input: vertices_number (number of vertices),
directed (False if the graph is undirected, True otherwise)
@example:
- >>> print(complete_graph(3))
+ >>> complete_graph(3)
{0: [1, 2], 1: [0, 2], 2: [0, 1]}
"""
return {
diff --git a/graphs/scc_kosaraju.py b/graphs/scc_kosaraju.py
index fa182aa2f..39211c64b 100644
--- a/graphs/scc_kosaraju.py
+++ b/graphs/scc_kosaraju.py
@@ -2,7 +2,7 @@ from __future__ import annotations
def dfs(u):
- global graph, reversedGraph, scc, component, visit, stack
+ global graph, reversed_graph, scc, component, visit, stack
if visit[u]:
return
visit[u] = True
@@ -12,17 +12,17 @@ def dfs(u):
def dfs2(u):
- global graph, reversedGraph, scc, component, visit, stack
+ global graph, reversed_graph, scc, component, visit, stack
if visit[u]:
return
visit[u] = True
component.append(u)
- for v in reversedGraph[u]:
+ for v in reversed_graph[u]:
dfs2(v)
def kosaraju():
- global graph, reversedGraph, scc, component, visit, stack
+ global graph, reversed_graph, scc, component, visit, stack
for i in range(n):
dfs(i)
visit = [False] * n
@@ -39,13 +39,13 @@ if __name__ == "__main__":
# n - no of nodes, m - no of edges
n, m = list(map(int, input().strip().split()))
- graph: list[list[int]] = [[] for i in range(n)] # graph
- reversedGraph: list[list[int]] = [[] for i in range(n)] # reversed graph
+ graph: list[list[int]] = [[] for _ in range(n)] # graph
+ reversed_graph: list[list[int]] = [[] for i in range(n)] # reversed graph
# input graph data (edges)
- for i in range(m):
+ for _ in range(m):
u, v = list(map(int, input().strip().split()))
graph[u].append(v)
- reversedGraph[v].append(u)
+ reversed_graph[v].append(u)
stack: list[int] = []
visit: list[bool] = [False] * n
diff --git a/graphs/tests/__init__.py b/graphs/tests/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/graphs/tests/test_min_spanning_tree_prim.py b/graphs/tests/test_min_spanning_tree_prim.py
index 048fbf595..91feab28f 100644
--- a/graphs/tests/test_min_spanning_tree_prim.py
+++ b/graphs/tests/test_min_spanning_tree_prim.py
@@ -1,6 +1,6 @@
from collections import defaultdict
-from graphs.minimum_spanning_tree_prims import PrimsAlgorithm as mst
+from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def test_prim_successful_result():
diff --git a/dynamic_programming/fractional_knapsack.py b/greedy_methods/fractional_knapsack.py
similarity index 56%
rename from dynamic_programming/fractional_knapsack.py
rename to greedy_methods/fractional_knapsack.py
index c74af7ef8..58976d40c 100644
--- a/dynamic_programming/fractional_knapsack.py
+++ b/greedy_methods/fractional_knapsack.py
@@ -2,20 +2,20 @@ from bisect import bisect
from itertools import accumulate
-def fracKnapsack(vl, wt, W, n):
+def frac_knapsack(vl, wt, w, n):
"""
- >>> fracKnapsack([60, 100, 120], [10, 20, 30], 50, 3)
+ >>> frac_knapsack([60, 100, 120], [10, 20, 30], 50, 3)
240.0
"""
- r = list(sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True))
+ r = sorted(zip(vl, wt), key=lambda x: x[0] / x[1], reverse=True)
vl, wt = [i[0] for i in r], [i[1] for i in r]
acc = list(accumulate(wt))
- k = bisect(acc, W)
+ k = bisect(acc, w)
return (
0
if k == 0
- else sum(vl[:k]) + (W - acc[k - 1]) * (vl[k]) / (wt[k])
+ else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k])
)
diff --git a/dynamic_programming/fractional_knapsack_2.py b/greedy_methods/fractional_knapsack_2.py
similarity index 96%
rename from dynamic_programming/fractional_knapsack_2.py
rename to greedy_methods/fractional_knapsack_2.py
index bd776723c..6d9ed2ec3 100644
--- a/dynamic_programming/fractional_knapsack_2.py
+++ b/greedy_methods/fractional_knapsack_2.py
@@ -1,53 +1,53 @@
-# https://en.wikipedia.org/wiki/Continuous_knapsack_problem
-# https://www.guru99.com/fractional-knapsack-problem-greedy.html
-# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93
-
-from __future__ import annotations
-
-
-def fractional_knapsack(
- value: list[int], weight: list[int], capacity: int
-) -> tuple[float, list[float]]:
- """
- >>> value = [1, 3, 5, 7, 9]
- >>> weight = [0.9, 0.7, 0.5, 0.3, 0.1]
- >>> fractional_knapsack(value, weight, 5)
- (25, [1, 1, 1, 1, 1])
- >>> fractional_knapsack(value, weight, 15)
- (25, [1, 1, 1, 1, 1])
- >>> fractional_knapsack(value, weight, 25)
- (25, [1, 1, 1, 1, 1])
- >>> fractional_knapsack(value, weight, 26)
- (25, [1, 1, 1, 1, 1])
- >>> fractional_knapsack(value, weight, -1)
- (-90.0, [0, 0, 0, 0, -10.0])
- >>> fractional_knapsack([1, 3, 5, 7], weight, 30)
- (16, [1, 1, 1, 1])
- >>> fractional_knapsack(value, [0.9, 0.7, 0.5, 0.3, 0.1], 30)
- (25, [1, 1, 1, 1, 1])
- >>> fractional_knapsack([], [], 30)
- (0, [])
- """
- index = list(range(len(value)))
- ratio = [v / w for v, w in zip(value, weight)]
- index.sort(key=lambda i: ratio[i], reverse=True)
-
- max_value: float = 0
- fractions: list[float] = [0] * len(value)
- for i in index:
- if weight[i] <= capacity:
- fractions[i] = 1
- max_value += value[i]
- capacity -= weight[i]
- else:
- fractions[i] = capacity / weight[i]
- max_value += value[i] * capacity / weight[i]
- break
-
- return max_value, fractions
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod()
+# https://en.wikipedia.org/wiki/Continuous_knapsack_problem
+# https://www.guru99.com/fractional-knapsack-problem-greedy.html
+# https://medium.com/walkinthecode/greedy-algorithm-fractional-knapsack-problem-9aba1daecc93
+
+from __future__ import annotations
+
+
+def fractional_knapsack(
+ value: list[int], weight: list[int], capacity: int
+) -> tuple[float, list[float]]:
+ """
+ >>> value = [1, 3, 5, 7, 9]
+ >>> weight = [0.9, 0.7, 0.5, 0.3, 0.1]
+ >>> fractional_knapsack(value, weight, 5)
+ (25, [1, 1, 1, 1, 1])
+ >>> fractional_knapsack(value, weight, 15)
+ (25, [1, 1, 1, 1, 1])
+ >>> fractional_knapsack(value, weight, 25)
+ (25, [1, 1, 1, 1, 1])
+ >>> fractional_knapsack(value, weight, 26)
+ (25, [1, 1, 1, 1, 1])
+ >>> fractional_knapsack(value, weight, -1)
+ (-90.0, [0, 0, 0, 0, -10.0])
+ >>> fractional_knapsack([1, 3, 5, 7], weight, 30)
+ (16, [1, 1, 1, 1])
+ >>> fractional_knapsack(value, [0.9, 0.7, 0.5, 0.3, 0.1], 30)
+ (25, [1, 1, 1, 1, 1])
+ >>> fractional_knapsack([], [], 30)
+ (0, [])
+ """
+ index = list(range(len(value)))
+ ratio = [v / w for v, w in zip(value, weight)]
+ index.sort(key=lambda i: ratio[i], reverse=True)
+
+ max_value: float = 0
+ fractions: list[float] = [0] * len(value)
+ for i in index:
+ if weight[i] <= capacity:
+ fractions[i] = 1
+ max_value += value[i]
+ capacity -= weight[i]
+ else:
+ fractions[i] = capacity / weight[i]
+ max_value += value[i] * capacity / weight[i]
+ break
+
+ return max_value, fractions
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/greedy_methods/minimum_waiting_time.py b/greedy_methods/minimum_waiting_time.py
new file mode 100644
index 000000000..aaae8cf8f
--- /dev/null
+++ b/greedy_methods/minimum_waiting_time.py
@@ -0,0 +1,48 @@
+"""
+Calculate the minimum waiting time using a greedy algorithm.
+reference: https://www.youtube.com/watch?v=Sf3eiO12eJs
+
+For doctests run following command:
+python -m doctest -v minimum_waiting_time.py
+
+The minimum_waiting_time function uses a greedy algorithm to calculate the minimum
+time for queries to complete. It sorts the list in non-decreasing order, calculates
+the waiting time for each query by multiplying its position in the list with the
+sum of all remaining query times, and returns the total waiting time. A doctest
+ensures that the function produces the correct output.
+"""
+
+
+def minimum_waiting_time(queries: list[int]) -> int:
+ """
+ This function takes a list of query times and returns the minimum waiting time
+ for all queries to be completed.
+
+ Args:
+ queries: A list of queries measured in picoseconds
+
+ Returns:
+ total_waiting_time: Minimum waiting time measured in picoseconds
+
+ Examples:
+ >>> minimum_waiting_time([3, 2, 1, 2, 6])
+ 17
+ >>> minimum_waiting_time([3, 2, 1])
+ 4
+ >>> minimum_waiting_time([1, 2, 3, 4])
+ 10
+ >>> minimum_waiting_time([5, 5, 5, 5])
+ 30
+ >>> minimum_waiting_time([])
+ 0
+ """
+ n = len(queries)
+ if n in (0, 1):
+ return 0
+ return sum(query * (n - i - 1) for i, query in enumerate(sorted(queries)))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/greedy_methods/optimal_merge_pattern.py b/greedy_methods/optimal_merge_pattern.py
index 911e1966f..a1c934f84 100644
--- a/greedy_methods/optimal_merge_pattern.py
+++ b/greedy_methods/optimal_merge_pattern.py
@@ -41,7 +41,7 @@ def optimal_merge_pattern(files: list) -> float:
while len(files) > 1:
temp = 0
# Consider two files with minimum cost to be merged
- for i in range(2):
+ for _ in range(2):
min_index = files.index(min(files))
temp += files[min_index]
files.pop(min_index)
diff --git a/hashes/README.md b/hashes/README.md
new file mode 100644
index 000000000..6df9a2fb6
--- /dev/null
+++ b/hashes/README.md
@@ -0,0 +1,17 @@
+# Hashes
+Hashing is the process of mapping any amount of data to a specified size using an algorithm. This is known as a hash value (or, if you're feeling fancy, a hash code, hash sums, or even a hash digest). Hashing is a one-way function, whereas encryption is a two-way function. While it is functionally conceivable to reverse-hash stuff, the required computing power makes it impractical. Hashing is a one-way street.
+Unlike encryption, which is intended to protect data in transit, hashing is intended to authenticate that a file or piece of data has not been altered—that it is authentic. In other words, it functions as a checksum.
+
+## Common hashing algorithms
+### MD5
+This is one of the first algorithms that has gained widespread acceptance. MD5 is hashing algorithm made by Ray Rivest that is known to suffer vulnerabilities. It was created in 1992 as the successor to MD4. Currently MD6 is in the works, but as of 2009 Rivest had removed it from NIST consideration for SHA-3.
+
+### SHA
+SHA stands for Security Hashing Algorithm and it’s probably best known as the hashing algorithm used in most SSL/TLS cipher suites. A cipher suite is a collection of ciphers and algorithms that are used for SSL/TLS connections. SHA handles the hashing aspects. SHA-1, as we mentioned earlier, is now deprecated. SHA-2 is now mandatory. SHA-2 is sometimes known has SHA-256, though variants with longer bit lengths are also available.
+
+### SHA256
+SHA 256 is a member of the SHA 2 algorithm family, under which SHA stands for Secure Hash Algorithm. It was a collaborative effort between both the NSA and NIST to implement a successor to the SHA 1 family, which was beginning to lose potency against brute force attacks. It was published in 2001.
+The importance of the 256 in the name refers to the final hash digest value, i.e. the hash value will remain 256 bits regardless of the size of the plaintext/cleartext. Other algorithms in the SHA family are similar to SHA 256 in some ways.
+
+### Luhn
+The Luhn algorithm, also renowned as the modulus 10 or mod 10 algorithm, is a straightforward checksum formula used to validate a wide range of identification numbers, including credit card numbers, IMEI numbers, and Canadian Social Insurance Numbers. A community of mathematicians developed the LUHN formula in the late 1960s. Companies offering credit cards quickly followed suit. Since the algorithm is in the public interest, anyone can use it. The algorithm is used by most credit cards and many government identification numbers as a simple method of differentiating valid figures from mistyped or otherwise incorrect numbers. It was created to guard against unintentional errors, not malicious attacks.
\ No newline at end of file
diff --git a/hashes/adler32.py b/hashes/adler32.py
index 4a61b97e3..611ebc88b 100644
--- a/hashes/adler32.py
+++ b/hashes/adler32.py
@@ -8,6 +8,8 @@
source: https://en.wikipedia.org/wiki/Adler-32
"""
+MOD_ADLER = 65521
+
def adler32(plain_text: str) -> int:
"""
@@ -20,7 +22,6 @@ def adler32(plain_text: str) -> int:
>>> adler32('go adler em all')
708642122
"""
- MOD_ADLER = 65521
a = 1
b = 0
for plain_chr in plain_text:
diff --git a/hashes/chaos_machine.py b/hashes/chaos_machine.py
index a6d476eb7..238fdb1c0 100644
--- a/hashes/chaos_machine.py
+++ b/hashes/chaos_machine.py
@@ -43,17 +43,17 @@ def pull():
global buffer_space, params_space, machine_time, K, m, t
# PRNG (Xorshift by George Marsaglia)
- def xorshift(X, Y):
- X ^= Y >> 13
- Y ^= X << 17
- X ^= Y >> 5
- return X
+ def xorshift(x, y):
+ x ^= y >> 13
+ y ^= x << 17
+ x ^= y >> 5
+ return x
# Choosing Dynamical Systems (Increment)
key = machine_time % m
# Evolution (Time Length)
- for i in range(0, t):
+ for _ in range(0, t):
# Variables (Position + Parameters)
r = params_space[key]
value = buffer_space[key]
@@ -63,13 +63,13 @@ def pull():
params_space[key] = (machine_time * 0.01 + r * 1.01) % 1 + 3
# Choosing Chaotic Data
- X = int(buffer_space[(key + 2) % m] * (10**10))
- Y = int(buffer_space[(key - 2) % m] * (10**10))
+ x = int(buffer_space[(key + 2) % m] * (10**10))
+ y = int(buffer_space[(key - 2) % m] * (10**10))
# Machine Time
machine_time += 1
- return xorshift(X, Y) % 0xFFFFFFFF
+ return xorshift(x, y) % 0xFFFFFFFF
def reset():
diff --git a/hashes/djb2.py b/hashes/djb2.py
index 2d1c9aabb..4c8463509 100644
--- a/hashes/djb2.py
+++ b/hashes/djb2.py
@@ -29,7 +29,7 @@ def djb2(s: str) -> int:
>>> djb2('scramble bits')
1609059040
"""
- hash = 5381
+ hash_value = 5381
for x in s:
- hash = ((hash << 5) + hash) + ord(x)
- return hash & 0xFFFFFFFF
+ hash_value = ((hash_value << 5) + hash_value) + ord(x)
+ return hash_value & 0xFFFFFFFF
diff --git a/hashes/elf.py b/hashes/elf.py
new file mode 100644
index 000000000..e4bfcec22
--- /dev/null
+++ b/hashes/elf.py
@@ -0,0 +1,21 @@
+def elf_hash(data: str) -> int:
+ """
+ Implementation of ElfHash Algorithm, a variant of PJW hash function.
+
+ >>> elf_hash('lorem ipsum')
+ 253956621
+ """
+ hash_ = x = 0
+ for letter in data:
+ hash_ = (hash_ << 4) + ord(letter)
+ x = hash_ & 0xF0000000
+ if x != 0:
+ hash_ ^= x >> 24
+ hash_ &= ~x
+ return hash_
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/hashes/enigma_machine.py b/hashes/enigma_machine.py
index b0d45718e..d95437d12 100644
--- a/hashes/enigma_machine.py
+++ b/hashes/enigma_machine.py
@@ -1,8 +1,8 @@
alphabets = [chr(i) for i in range(32, 126)]
-gear_one = [i for i in range(len(alphabets))]
-gear_two = [i for i in range(len(alphabets))]
-gear_three = [i for i in range(len(alphabets))]
-reflector = [i for i in reversed(range(len(alphabets)))]
+gear_one = list(range(len(alphabets)))
+gear_two = list(range(len(alphabets)))
+gear_three = list(range(len(alphabets)))
+reflector = list(reversed(range(len(alphabets))))
code = []
gear_one_pos = gear_two_pos = gear_three_pos = 0
@@ -48,7 +48,7 @@ if __name__ == "__main__":
break
except Exception as error:
print(error)
- for i in range(token):
+ for _ in range(token):
rotator()
for j in decode:
engine(j)
diff --git a/hashes/hamming_code.py b/hashes/hamming_code.py
index ac20fe03b..dc9303218 100644
--- a/hashes/hamming_code.py
+++ b/hashes/hamming_code.py
@@ -68,177 +68,175 @@ def text_from_bits(bits, encoding="utf-8", errors="surrogatepass"):
# Functions of hamming code-------------------------------------------
-def emitterConverter(sizePar, data):
+def emitter_converter(size_par, data):
"""
- :param sizePar: how many parity bits the message must have
+ :param size_par: how many parity bits the message must have
:param data: information bits
:return: message to be transmitted by unreliable medium
- bits of information merged with parity bits
- >>> emitterConverter(4, "101010111111")
+ >>> emitter_converter(4, "101010111111")
['1', '1', '1', '1', '0', '1', '0', '0', '1', '0', '1', '1', '1', '1', '1', '1']
"""
- if sizePar + len(data) <= 2**sizePar - (len(data) - 1):
- print("ERROR - size of parity don't match with size of data")
- exit(0)
+ if size_par + len(data) <= 2**size_par - (len(data) - 1):
+ raise ValueError("size of parity don't match with size of data")
- dataOut = []
+ data_out = []
parity = []
- binPos = [bin(x)[2:] for x in range(1, sizePar + len(data) + 1)]
+ bin_pos = [bin(x)[2:] for x in range(1, size_par + len(data) + 1)]
# sorted information data for the size of the output data
- dataOrd = []
+ data_ord = []
# data position template + parity
- dataOutGab = []
+ data_out_gab = []
# parity bit counter
- qtdBP = 0
+ qtd_bp = 0
# counter position of data bits
- contData = 0
+ cont_data = 0
- for x in range(1, sizePar + len(data) + 1):
+ for x in range(1, size_par + len(data) + 1):
# Performs a template of bit positions - who should be given,
# and who should be parity
- if qtdBP < sizePar:
+ if qtd_bp < size_par:
if (np.log(x) / np.log(2)).is_integer():
- dataOutGab.append("P")
- qtdBP = qtdBP + 1
+ data_out_gab.append("P")
+ qtd_bp = qtd_bp + 1
else:
- dataOutGab.append("D")
+ data_out_gab.append("D")
else:
- dataOutGab.append("D")
+ data_out_gab.append("D")
# Sorts the data to the new output size
- if dataOutGab[-1] == "D":
- dataOrd.append(data[contData])
- contData += 1
+ if data_out_gab[-1] == "D":
+ data_ord.append(data[cont_data])
+ cont_data += 1
else:
- dataOrd.append(None)
+ data_ord.append(None)
# Calculates parity
- qtdBP = 0 # parity bit counter
- for bp in range(1, sizePar + 1):
+ qtd_bp = 0 # parity bit counter
+ for bp in range(1, size_par + 1):
# Bit counter one for a given parity
- contBO = 0
+ cont_bo = 0
# counter to control the loop reading
- contLoop = 0
- for x in dataOrd:
+ cont_loop = 0
+ for x in data_ord:
if x is not None:
try:
- aux = (binPos[contLoop])[-1 * (bp)]
+ aux = (bin_pos[cont_loop])[-1 * (bp)]
except IndexError:
aux = "0"
- if aux == "1":
- if x == "1":
- contBO += 1
- contLoop += 1
- parity.append(contBO % 2)
+ if aux == "1" and x == "1":
+ cont_bo += 1
+ cont_loop += 1
+ parity.append(cont_bo % 2)
- qtdBP += 1
+ qtd_bp += 1
# Mount the message
- ContBP = 0 # parity bit counter
- for x in range(0, sizePar + len(data)):
- if dataOrd[x] is None:
- dataOut.append(str(parity[ContBP]))
- ContBP += 1
+ cont_bp = 0 # parity bit counter
+ for x in range(0, size_par + len(data)):
+ if data_ord[x] is None:
+ data_out.append(str(parity[cont_bp]))
+ cont_bp += 1
else:
- dataOut.append(dataOrd[x])
+ data_out.append(data_ord[x])
- return dataOut
+ return data_out
-def receptorConverter(sizePar, data):
+def receptor_converter(size_par, data):
"""
- >>> receptorConverter(4, "1111010010111111")
+ >>> receptor_converter(4, "1111010010111111")
(['1', '0', '1', '0', '1', '0', '1', '1', '1', '1', '1', '1'], True)
"""
# data position template + parity
- dataOutGab = []
+ data_out_gab = []
# Parity bit counter
- qtdBP = 0
+ qtd_bp = 0
# Counter p data bit reading
- contData = 0
+ cont_data = 0
# list of parity received
- parityReceived = []
- dataOutput = []
+ parity_received = []
+ data_output = []
for x in range(1, len(data) + 1):
# Performs a template of bit positions - who should be given,
# and who should be parity
- if qtdBP < sizePar and (np.log(x) / np.log(2)).is_integer():
- dataOutGab.append("P")
- qtdBP = qtdBP + 1
+ if qtd_bp < size_par and (np.log(x) / np.log(2)).is_integer():
+ data_out_gab.append("P")
+ qtd_bp = qtd_bp + 1
else:
- dataOutGab.append("D")
+ data_out_gab.append("D")
# Sorts the data to the new output size
- if dataOutGab[-1] == "D":
- dataOutput.append(data[contData])
+ if data_out_gab[-1] == "D":
+ data_output.append(data[cont_data])
else:
- parityReceived.append(data[contData])
- contData += 1
+ parity_received.append(data[cont_data])
+ cont_data += 1
# -----------calculates the parity with the data
- dataOut = []
+ data_out = []
parity = []
- binPos = [bin(x)[2:] for x in range(1, sizePar + len(dataOutput) + 1)]
+ bin_pos = [bin(x)[2:] for x in range(1, size_par + len(data_output) + 1)]
# sorted information data for the size of the output data
- dataOrd = []
+ data_ord = []
# Data position feedback + parity
- dataOutGab = []
+ data_out_gab = []
# Parity bit counter
- qtdBP = 0
+ qtd_bp = 0
# Counter p data bit reading
- contData = 0
+ cont_data = 0
- for x in range(1, sizePar + len(dataOutput) + 1):
+ for x in range(1, size_par + len(data_output) + 1):
# Performs a template position of bits - who should be given,
# and who should be parity
- if qtdBP < sizePar and (np.log(x) / np.log(2)).is_integer():
- dataOutGab.append("P")
- qtdBP = qtdBP + 1
+ if qtd_bp < size_par and (np.log(x) / np.log(2)).is_integer():
+ data_out_gab.append("P")
+ qtd_bp = qtd_bp + 1
else:
- dataOutGab.append("D")
+ data_out_gab.append("D")
# Sorts the data to the new output size
- if dataOutGab[-1] == "D":
- dataOrd.append(dataOutput[contData])
- contData += 1
+ if data_out_gab[-1] == "D":
+ data_ord.append(data_output[cont_data])
+ cont_data += 1
else:
- dataOrd.append(None)
+ data_ord.append(None)
# Calculates parity
- qtdBP = 0 # parity bit counter
- for bp in range(1, sizePar + 1):
+ qtd_bp = 0 # parity bit counter
+ for bp in range(1, size_par + 1):
# Bit counter one for a certain parity
- contBO = 0
+ cont_bo = 0
# Counter to control loop reading
- contLoop = 0
- for x in dataOrd:
+ cont_loop = 0
+ for x in data_ord:
if x is not None:
try:
- aux = (binPos[contLoop])[-1 * (bp)]
+ aux = (bin_pos[cont_loop])[-1 * (bp)]
except IndexError:
aux = "0"
if aux == "1" and x == "1":
- contBO += 1
- contLoop += 1
- parity.append(str(contBO % 2))
+ cont_bo += 1
+ cont_loop += 1
+ parity.append(str(cont_bo % 2))
- qtdBP += 1
+ qtd_bp += 1
# Mount the message
- ContBP = 0 # Parity bit counter
- for x in range(0, sizePar + len(dataOutput)):
- if dataOrd[x] is None:
- dataOut.append(str(parity[ContBP]))
- ContBP += 1
+ cont_bp = 0 # Parity bit counter
+ for x in range(0, size_par + len(data_output)):
+ if data_ord[x] is None:
+ data_out.append(str(parity[cont_bp]))
+ cont_bp += 1
else:
- dataOut.append(dataOrd[x])
+ data_out.append(data_ord[x])
- ack = parityReceived == parity
- return dataOutput, ack
+ ack = parity_received == parity
+ return data_output, ack
# ---------------------------------------------------------------------
diff --git a/hashes/md5.py b/hashes/md5.py
index c56c073cc..2187006ec 100644
--- a/hashes/md5.py
+++ b/hashes/md5.py
@@ -1,91 +1,223 @@
-import math
+"""
+The MD5 algorithm is a hash function that's commonly used as a checksum to
+detect data corruption. The algorithm works by processing a given message in
+blocks of 512 bits, padding the message as needed. It uses the blocks to operate
+a 128-bit state and performs a total of 64 such operations. Note that all values
+are little-endian, so inputs are converted as needed.
+
+Although MD5 was used as a cryptographic hash function in the past, it's since
+been cracked, so it shouldn't be used for security purposes.
+
+For more info, see https://en.wikipedia.org/wiki/MD5
+"""
+
+from collections.abc import Generator
+from math import sin
-def rearrange(bitString32):
- """[summary]
- Regroups the given binary string.
+def to_little_endian(string_32: bytes) -> bytes:
+ """
+ Converts the given string to little-endian in groups of 8 chars.
Arguments:
- bitString32 {[string]} -- [32 bit binary]
+ string_32 {[string]} -- [32-char string]
Raises:
- ValueError -- [if the given string not are 32 bit binary string]
+ ValueError -- [input is not 32 char]
Returns:
- [string] -- [32 bit binary string]
- >>> rearrange('1234567890abcdfghijklmnopqrstuvw')
- 'pqrstuvwhijklmno90abcdfg12345678'
+ 32-char little-endian string
+ >>> to_little_endian(b'1234567890abcdfghijklmnopqrstuvw')
+ b'pqrstuvwhijklmno90abcdfg12345678'
+ >>> to_little_endian(b'1234567890')
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be of length 32
"""
+ if len(string_32) != 32:
+ raise ValueError("Input must be of length 32")
- if len(bitString32) != 32:
- raise ValueError("Need length 32")
- newString = ""
+ little_endian = b""
for i in [3, 2, 1, 0]:
- newString += bitString32[8 * i : 8 * i + 8]
- return newString
+ little_endian += string_32[8 * i : 8 * i + 8]
+ return little_endian
-def reformatHex(i):
- """[summary]
- Converts the given integer into 8-digit hex number.
+def reformat_hex(i: int) -> bytes:
+ """
+ Converts the given non-negative integer to hex string.
+
+ Example: Suppose the input is the following:
+ i = 1234
+
+ The input is 0x000004d2 in hex, so the little-endian hex string is
+ "d2040000".
Arguments:
- i {[int]} -- [integer]
- >>> reformatHex(666)
- '9a020000'
- """
+ i {[int]} -- [integer]
- hexrep = format(i, "08x")
- thing = ""
- for i in [3, 2, 1, 0]:
- thing += hexrep[2 * i : 2 * i + 2]
- return thing
-
-
-def pad(bitString):
- """[summary]
- Fills up the binary string to a 512 bit binary string
-
- Arguments:
- bitString {[string]} -- [binary string]
+ Raises:
+ ValueError -- [input is negative]
Returns:
- [string] -- [binary string]
+ 8-char little-endian hex string
+
+ >>> reformat_hex(1234)
+ b'd2040000'
+ >>> reformat_hex(666)
+ b'9a020000'
+ >>> reformat_hex(0)
+ b'00000000'
+ >>> reformat_hex(1234567890)
+ b'd2029649'
+ >>> reformat_hex(1234567890987654321)
+ b'b11c6cb1'
+ >>> reformat_hex(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be non-negative
"""
- startLength = len(bitString)
- bitString += "1"
- while len(bitString) % 512 != 448:
- bitString += "0"
- lastPart = format(startLength, "064b")
- bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32])
- return bitString
+ if i < 0:
+ raise ValueError("Input must be non-negative")
+
+ hex_rep = format(i, "08x")[-8:]
+ little_endian_hex = b""
+ for i in [3, 2, 1, 0]:
+ little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8")
+ return little_endian_hex
-def getBlock(bitString):
- """[summary]
- Iterator:
- Returns by each call a list of length 16 with the 32 bit
- integer blocks.
+def preprocess(message: bytes) -> bytes:
+ """
+ Preprocesses the message string:
+ - Convert message to bit string
+ - Pad bit string to a multiple of 512 chars:
+ - Append a 1
+ - Append 0's until length = 448 (mod 512)
+ - Append length of original message (64 chars)
+
+ Example: Suppose the input is the following:
+ message = "a"
+
+ The message bit string is "01100001", which is 8 bits long. Thus, the
+ bit string needs 439 bits of padding so that
+ (bit_string + "1" + padding) = 448 (mod 512).
+ The message length is "000010000...0" in 64-bit little-endian binary.
+ The combined bit string is then 512 bits long.
Arguments:
- bitString {[string]} -- [binary string >= 512]
+ message {[string]} -- [message string]
+
+ Returns:
+ processed bit string padded to a multiple of 512 chars
+
+ >>> preprocess(b"a") == (b"01100001" + b"1" +
+ ... (b"0" * 439) + b"00001000" + (b"0" * 56))
+ True
+ >>> preprocess(b"") == b"1" + (b"0" * 447) + (b"0" * 64)
+ True
"""
+ bit_string = b""
+ for char in message:
+ bit_string += format(char, "08b").encode("utf-8")
+ start_len = format(len(bit_string), "064b").encode("utf-8")
- currPos = 0
- while currPos < len(bitString):
- currPart = bitString[currPos : currPos + 512]
- mySplits = []
- for i in range(16):
- mySplits.append(int(rearrange(currPart[32 * i : 32 * i + 32]), 2))
- yield mySplits
- currPos += 512
+ # Pad bit_string to a multiple of 512 chars
+ bit_string += b"1"
+ while len(bit_string) % 512 != 448:
+ bit_string += b"0"
+ bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32])
+
+ return bit_string
-def not32(i):
+def get_block_words(bit_string: bytes) -> Generator[list[int], None, None]:
"""
- >>> not32(34)
+ Splits bit string into blocks of 512 chars and yields each block as a list
+ of 32-bit words
+
+ Example: Suppose the input is the following:
+ bit_string =
+ "000000000...0" + # 0x00 (32 bits, padded to the right)
+ "000000010...0" + # 0x01 (32 bits, padded to the right)
+ "000000100...0" + # 0x02 (32 bits, padded to the right)
+ "000000110...0" + # 0x03 (32 bits, padded to the right)
+ ...
+ "000011110...0" # 0x0a (32 bits, padded to the right)
+
+ Then len(bit_string) == 512, so there'll be 1 block. The block is split
+ into 32-bit words, and each word is converted to little endian. The
+ first word is interpreted as 0 in decimal, the second word is
+ interpreted as 1 in decimal, etc.
+
+ Thus, block_words == [[0, 1, 2, 3, ..., 15]].
+
+ Arguments:
+ bit_string {[string]} -- [bit string with multiple of 512 as length]
+
+ Raises:
+ ValueError -- [length of bit string isn't multiple of 512]
+
+ Yields:
+ a list of 16 32-bit words
+
+ >>> test_string = ("".join(format(n << 24, "032b") for n in range(16))
+ ... .encode("utf-8"))
+ >>> list(get_block_words(test_string))
+ [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]
+ >>> list(get_block_words(test_string * 4)) == [list(range(16))] * 4
+ True
+ >>> list(get_block_words(b"1" * 512)) == [[4294967295] * 16]
+ True
+ >>> list(get_block_words(b""))
+ []
+ >>> list(get_block_words(b"1111"))
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must have length that's a multiple of 512
+ """
+ if len(bit_string) % 512 != 0:
+ raise ValueError("Input must have length that's a multiple of 512")
+
+ for pos in range(0, len(bit_string), 512):
+ block = bit_string[pos : pos + 512]
+ block_words = []
+ for i in range(0, 512, 32):
+ block_words.append(int(to_little_endian(block[i : i + 32]), 2))
+ yield block_words
+
+
+def not_32(i: int) -> int:
+ """
+ Perform bitwise NOT on given int.
+
+ Arguments:
+ i {[int]} -- [given int]
+
+ Raises:
+ ValueError -- [input is negative]
+
+ Returns:
+ Result of bitwise NOT on i
+
+ >>> not_32(34)
4294967261
+ >>> not_32(1234)
+ 4294966061
+ >>> not_32(4294966061)
+ 1234
+ >>> not_32(0)
+ 4294967295
+ >>> not_32(1)
+ 4294967294
+ >>> not_32(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be non-negative
"""
+ if i < 0:
+ raise ValueError("Input must be non-negative")
+
i_str = format(i, "032b")
new_str = ""
for c in i_str:
@@ -93,35 +225,114 @@ def not32(i):
return int(new_str, 2)
-def sum32(a, b):
+def sum_32(a: int, b: int) -> int:
+ """
+ Add two numbers as 32-bit ints.
+
+ Arguments:
+ a {[int]} -- [first given int]
+ b {[int]} -- [second given int]
+
+ Returns:
+ (a + b) as an unsigned 32-bit int
+
+ >>> sum_32(1, 1)
+ 2
+ >>> sum_32(2, 3)
+ 5
+ >>> sum_32(0, 0)
+ 0
+ >>> sum_32(-1, -1)
+ 4294967294
+ >>> sum_32(4294967295, 1)
+ 0
+ """
return (a + b) % 2**32
-def leftrot32(i, s):
- return (i << s) ^ (i >> (32 - s))
-
-
-def md5me(testString):
- """[summary]
- Returns a 32-bit hash code of the string 'testString'
+def left_rotate_32(i: int, shift: int) -> int:
+ """
+ Rotate the bits of a given int left by a given amount.
Arguments:
- testString {[string]} -- [message]
+ i {[int]} -- [given int]
+ shift {[int]} -- [shift amount]
+
+ Raises:
+ ValueError -- [either given int or shift is negative]
+
+ Returns:
+ `i` rotated to the left by `shift` bits
+
+ >>> left_rotate_32(1234, 1)
+ 2468
+ >>> left_rotate_32(1111, 4)
+ 17776
+ >>> left_rotate_32(2147483648, 1)
+ 1
+ >>> left_rotate_32(2147483648, 3)
+ 4
+ >>> left_rotate_32(4294967295, 4)
+ 4294967295
+ >>> left_rotate_32(1234, 0)
+ 1234
+ >>> left_rotate_32(0, 0)
+ 0
+ >>> left_rotate_32(-1, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be non-negative
+ >>> left_rotate_32(0, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Shift must be non-negative
+ """
+ if i < 0:
+ raise ValueError("Input must be non-negative")
+ if shift < 0:
+ raise ValueError("Shift must be non-negative")
+ return ((i << shift) ^ (i >> (32 - shift))) % 2**32
+
+
+def md5_me(message: bytes) -> bytes:
+ """
+ Returns the 32-char MD5 hash of a given message.
+
+ Reference: https://en.wikipedia.org/wiki/MD5#Algorithm
+
+ Arguments:
+ message {[string]} -- [message]
+
+ Returns:
+ 32-char MD5 hash string
+
+ >>> md5_me(b"")
+ b'd41d8cd98f00b204e9800998ecf8427e'
+ >>> md5_me(b"The quick brown fox jumps over the lazy dog")
+ b'9e107d9d372bb6826bd81d3542a419d6'
+ >>> md5_me(b"The quick brown fox jumps over the lazy dog.")
+ b'e4d909c290d0fb1ca068ffaddf22cbd0'
+
+ >>> import hashlib
+ >>> from string import ascii_letters
+ >>> msgs = [b"", ascii_letters.encode("utf-8"), "Üñîçø∂é".encode("utf-8"),
+ ... b"The quick brown fox jumps over the lazy dog."]
+ >>> all(md5_me(msg) == hashlib.md5(msg).hexdigest().encode("utf-8") for msg in msgs)
+ True
"""
- bs = ""
- for i in testString:
- bs += format(ord(i), "08b")
- bs = pad(bs)
+ # Convert to bit string, add padding and append message length
+ bit_string = preprocess(message)
- tvals = [int(2**32 * abs(math.sin(i + 1))) for i in range(64)]
+ added_consts = [int(2**32 * abs(sin(i + 1))) for i in range(64)]
+ # Starting states
a0 = 0x67452301
b0 = 0xEFCDAB89
c0 = 0x98BADCFE
d0 = 0x10325476
- s = [
+ shift_amounts = [
7,
12,
17,
@@ -188,51 +399,46 @@ def md5me(testString):
21,
]
- for m in getBlock(bs):
- A = a0
- B = b0
- C = c0
- D = d0
+ # Process bit string in chunks, each with 16 32-char words
+ for block_words in get_block_words(bit_string):
+ a = a0
+ b = b0
+ c = c0
+ d = d0
+
+ # Hash current chunk
for i in range(64):
if i <= 15:
- # f = (B & C) | (not32(B) & D)
- f = D ^ (B & (C ^ D))
+ # f = (b & c) | (not_32(b) & d) # Alternate definition for f
+ f = d ^ (b & (c ^ d))
g = i
elif i <= 31:
- # f = (D & B) | (not32(D) & C)
- f = C ^ (D & (B ^ C))
+ # f = (d & b) | (not_32(d) & c) # Alternate definition for f
+ f = c ^ (d & (b ^ c))
g = (5 * i + 1) % 16
elif i <= 47:
- f = B ^ C ^ D
+ f = b ^ c ^ d
g = (3 * i + 5) % 16
else:
- f = C ^ (B | not32(D))
+ f = c ^ (b | not_32(d))
g = (7 * i) % 16
- dtemp = D
- D = C
- C = B
- B = sum32(B, leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i]))
- A = dtemp
- a0 = sum32(a0, A)
- b0 = sum32(b0, B)
- c0 = sum32(c0, C)
- d0 = sum32(d0, D)
+ f = (f + a + added_consts[i] + block_words[g]) % 2**32
+ a = d
+ d = c
+ c = b
+ b = sum_32(b, left_rotate_32(f, shift_amounts[i]))
- digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0)
+ # Add hashed chunk to running total
+ a0 = sum_32(a0, a)
+ b0 = sum_32(b0, b)
+ c0 = sum_32(c0, c)
+ d0 = sum_32(d0, d)
+
+ digest = reformat_hex(a0) + reformat_hex(b0) + reformat_hex(c0) + reformat_hex(d0)
return digest
-def test():
- assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e"
- assert (
- md5me("The quick brown fox jumps over the lazy dog")
- == "9e107d9d372bb6826bd81d3542a419d6"
- )
- print("Success.")
-
-
if __name__ == "__main__":
- test()
import doctest
doctest.testmod()
diff --git a/hashes/sdbm.py b/hashes/sdbm.py
index daf292717..a5432874b 100644
--- a/hashes/sdbm.py
+++ b/hashes/sdbm.py
@@ -31,7 +31,9 @@ def sdbm(plain_text: str) -> int:
>>> sdbm('scramble bits')
730247649148944819640658295400555317318720608290373040936089
"""
- hash = 0
+ hash_value = 0
for plain_chr in plain_text:
- hash = ord(plain_chr) + (hash << 6) + (hash << 16) - hash
- return hash
+ hash_value = (
+ ord(plain_chr) + (hash_value << 6) + (hash_value << 16) - hash_value
+ )
+ return hash_value
diff --git a/hashes/sha1.py b/hashes/sha1.py
index dde1efc55..b325ce3e4 100644
--- a/hashes/sha1.py
+++ b/hashes/sha1.py
@@ -26,7 +26,6 @@ Reference: https://deadhacker.com/2006/02/21/sha-1-illustrated/
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
-import unittest
class SHA1Hash:
@@ -125,17 +124,12 @@ class SHA1Hash:
self.h[3] + d & 0xFFFFFFFF,
self.h[4] + e & 0xFFFFFFFF,
)
- return "%08x%08x%08x%08x%08x" % tuple(self.h)
+ return ("{:08x}" * 5).format(*self.h)
-class SHA1HashTest(unittest.TestCase):
- """
- Test class for the SHA1Hash class. Inherits the TestCase class from unittest
- """
-
- def testMatchHashes(self):
- msg = bytes("Test String", "utf-8")
- self.assertEqual(SHA1Hash(msg).final_hash(), hashlib.sha1(msg).hexdigest())
+def test_sha1_hash():
+ msg = b"Test String"
+ assert SHA1Hash(msg).final_hash() == hashlib.sha1(msg).hexdigest() # noqa: S324
def main():
diff --git a/hashes/sha256.py b/hashes/sha256.py
index 9d4f250fe..98f7c096e 100644
--- a/hashes/sha256.py
+++ b/hashes/sha256.py
@@ -157,14 +157,14 @@ class SHA256:
) % 0x100000000
# Compression
- S1 = self.ror(e, 6) ^ self.ror(e, 11) ^ self.ror(e, 25)
+ s1 = self.ror(e, 6) ^ self.ror(e, 11) ^ self.ror(e, 25)
ch = (e & f) ^ ((~e & (0xFFFFFFFF)) & g)
temp1 = (
- h + S1 + ch + self.round_constants[index] + words[index]
+ h + s1 + ch + self.round_constants[index] + words[index]
) % 0x100000000
- S0 = self.ror(a, 2) ^ self.ror(a, 13) ^ self.ror(a, 22)
+ s0 = self.ror(a, 2) ^ self.ror(a, 13) ^ self.ror(a, 22)
maj = (a & b) ^ (a & c) ^ (b & c)
- temp2 = (S0 + maj) % 0x100000000
+ temp2 = (s0 + maj) % 0x100000000
h, g, f, e, d, c, b, a = (
g,
diff --git a/knapsack/recursive_approach_knapsack.py b/knapsack/recursive_approach_knapsack.py
new file mode 100644
index 000000000..9a8ed1886
--- /dev/null
+++ b/knapsack/recursive_approach_knapsack.py
@@ -0,0 +1,51 @@
+# To get an insight into naive recursive way to solve the Knapsack problem
+
+
+"""
+A shopkeeper has bags of wheat that each have different weights and different profits.
+eg.
+no_of_items 4
+profit 5 4 8 6
+weight 1 2 4 5
+max_weight 5
+Constraints:
+max_weight > 0
+profit[i] >= 0
+weight[i] >= 0
+Calculate the maximum profit that the shopkeeper can make given maxmum weight that can
+be carried.
+"""
+
+
+def knapsack(
+ weights: list, values: list, number_of_items: int, max_weight: int, index: int
+) -> int:
+ """
+ Function description is as follows-
+ :param weights: Take a list of weights
+ :param values: Take a list of profits corresponding to the weights
+ :param number_of_items: number of items available to pick from
+ :param max_weight: Maximum weight that could be carried
+ :param index: the element we are looking at
+ :return: Maximum expected gain
+ >>> knapsack([1, 2, 4, 5], [5, 4, 8, 6], 4, 5, 0)
+ 13
+ >>> knapsack([3 ,4 , 5], [10, 9 , 8], 3, 25, 0)
+ 27
+ """
+ if index == number_of_items:
+ return 0
+ ans1 = 0
+ ans2 = 0
+ ans1 = knapsack(weights, values, number_of_items, max_weight, index + 1)
+ if weights[index] <= max_weight:
+ ans2 = values[index] + knapsack(
+ weights, values, number_of_items, max_weight - weights[index], index + 1
+ )
+ return max(ans1, ans2)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/linear_algebra/src/conjugate_gradient.py b/linear_algebra/src/conjugate_gradient.py
index 418ae88a5..4cf566ec9 100644
--- a/linear_algebra/src/conjugate_gradient.py
+++ b/linear_algebra/src/conjugate_gradient.py
@@ -115,7 +115,6 @@ def conjugate_gradient(
iterations = 0
while error > tol:
-
# Save this value so we only calculate the matrix-vector product once.
w = np.dot(spd_matrix, p0)
diff --git a/linear_algebra/src/lib.py b/linear_algebra/src/lib.py
index b9791c860..e3556e74c 100644
--- a/linear_algebra/src/lib.py
+++ b/linear_algebra/src/lib.py
@@ -40,7 +40,6 @@ class Vector:
__sub__(other: Vector): vector subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): dot product
- set(components: Collection[float]): changes the vector components
copy(): copies this vector and returns it
component(i): gets the i-th component (0-indexed)
change_component(pos: int, value: float): changes specified component
@@ -109,7 +108,7 @@ class Vector:
mul implements the scalar multiplication
and the dot-product
"""
- if isinstance(other, float) or isinstance(other, int):
+ if isinstance(other, (float, int)):
ans = [c * other for c in self.__components]
return Vector(ans)
elif isinstance(other, Vector) and len(self) == len(other):
@@ -119,17 +118,6 @@ class Vector:
else: # error case
raise Exception("invalid operand!")
- def set(self, components: Collection[float]) -> None:
- """
- input: new components
- changes the components of the vector.
- replaces the components with newer one.
- """
- if len(components) > 0:
- self.__components = list(components)
- else:
- raise Exception("please give any vector")
-
def copy(self) -> Vector:
"""
copies this vector and returns it.
@@ -141,7 +129,7 @@ class Vector:
input: index (0-indexed)
output: the i-th component of the vector.
"""
- if type(i) is int and -len(self.__components) <= i < len(self.__components):
+ if isinstance(i, int) and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
@@ -168,7 +156,7 @@ class Vector:
9.539392014169456
>>> Vector([]).euclidean_length()
Traceback (most recent call last):
- ...
+ ...
Exception: Vector is empty
"""
if len(self.__components) == 0:
@@ -186,7 +174,7 @@ class Vector:
85.40775111366095
>>> Vector([3, 4, -1]).angle(Vector([2, -1]))
Traceback (most recent call last):
- ...
+ ...
Exception: invalid operand!
"""
num = self * other
@@ -228,7 +216,7 @@ def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
assert (
isinstance(x, Vector)
and isinstance(y, Vector)
- and (isinstance(scalar, int) or isinstance(scalar, float))
+ and (isinstance(scalar, (int, float)))
)
return x * scalar + y
@@ -349,12 +337,13 @@ class Matrix:
"vector must have the same size as the "
"number of columns of the matrix!"
)
- elif isinstance(other, int) or isinstance(other, float): # matrix-scalar
+ elif isinstance(other, (int, float)): # matrix-scalar
matrix = [
[self.__matrix[i][j] * other for j in range(self.__width)]
for i in range(self.__height)
]
return Matrix(matrix, self.__width, self.__height)
+ return None
def height(self) -> int:
"""
diff --git a/linear_algebra/src/polynom_for_points.py b/linear_algebra/src/polynom_for_points.py
index 091849542..a9a9a8117 100644
--- a/linear_algebra/src/polynom_for_points.py
+++ b/linear_algebra/src/polynom_for_points.py
@@ -4,9 +4,13 @@ def points_to_polynomial(coordinates: list[list[int]]) -> str:
number of points you want to use
>>> print(points_to_polynomial([]))
- The program cannot work out a fitting polynomial.
+ Traceback (most recent call last):
+ ...
+ ValueError: The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[]]))
- The program cannot work out a fitting polynomial.
+ Traceback (most recent call last):
+ ...
+ ValueError: The program cannot work out a fitting polynomial.
>>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
f(x)=x^2*0.0+x^1*-0.0+x^0*0.0
>>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
@@ -24,96 +28,60 @@ def points_to_polynomial(coordinates: list[list[int]]) -> str:
>>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
f(x)=x^2*5.0+x^1*-18.0+x^0*18.0
"""
- try:
- check = 1
- more_check = 0
- d = coordinates[0][0]
- for j in range(len(coordinates)):
- if j == 0:
- continue
- if d == coordinates[j][0]:
- more_check += 1
- solved = "x=" + str(coordinates[j][0])
- if more_check == len(coordinates) - 1:
- check = 2
- break
- elif more_check > 0 and more_check != len(coordinates) - 1:
- check = 3
- else:
- check = 1
+ if len(coordinates) == 0 or not all(len(pair) == 2 for pair in coordinates):
+ raise ValueError("The program cannot work out a fitting polynomial.")
- if len(coordinates) == 1 and coordinates[0][0] == 0:
- check = 2
- solved = "x=0"
- except Exception:
- check = 3
+ if len({tuple(pair) for pair in coordinates}) != len(coordinates):
+ raise ValueError("The program cannot work out a fitting polynomial.")
+
+ set_x = {x for x, _ in coordinates}
+ if len(set_x) == 1:
+ return f"x={coordinates[0][0]}"
+
+ if len(set_x) != len(coordinates):
+ raise ValueError("The program cannot work out a fitting polynomial.")
x = len(coordinates)
- if check == 1:
- count_of_line = 0
- matrix: list[list[float]] = []
- # put the x and x to the power values in a matrix
- while count_of_line < x:
- count_in_line = 0
- a = coordinates[count_of_line][0]
- count_line: list[float] = []
- while count_in_line < x:
- count_line.append(a ** (x - (count_in_line + 1)))
- count_in_line += 1
- matrix.append(count_line)
- count_of_line += 1
+ # put the x and x to the power values in a matrix
+ matrix: list[list[float]] = [
+ [
+ coordinates[count_of_line][0] ** (x - (count_in_line + 1))
+ for count_in_line in range(x)
+ ]
+ for count_of_line in range(x)
+ ]
- count_of_line = 0
- # put the y values into a vector
- vector: list[float] = []
- while count_of_line < x:
- vector.append(coordinates[count_of_line][1])
- count_of_line += 1
+ # put the y values into a vector
+ vector: list[float] = [coordinates[count_of_line][1] for count_of_line in range(x)]
- count = 0
+ for count in range(x):
+ for number in range(x):
+ if count == number:
+ continue
+ fraction = matrix[number][count] / matrix[count][count]
+ for counting_columns, item in enumerate(matrix[count]):
+ # manipulating all the values in the matrix
+ matrix[number][counting_columns] -= item * fraction
+ # manipulating the values in the vector
+ vector[number] -= vector[count] * fraction
- while count < x:
- zahlen = 0
- while zahlen < x:
- if count == zahlen:
- zahlen += 1
- if zahlen == x:
- break
- bruch = matrix[zahlen][count] / matrix[count][count]
- for counting_columns, item in enumerate(matrix[count]):
- # manipulating all the values in the matrix
- matrix[zahlen][counting_columns] -= item * bruch
- # manipulating the values in the vector
- vector[zahlen] -= vector[count] * bruch
- zahlen += 1
- count += 1
+ # make solutions
+ solution: list[str] = [
+ str(vector[count] / matrix[count][count]) for count in range(x)
+ ]
- count = 0
- # make solutions
- solution: list[str] = []
- while count < x:
- solution.append(str(vector[count] / matrix[count][count]))
- count += 1
+ solved = "f(x)="
- count = 0
- solved = "f(x)="
+ for count in range(x):
+ remove_e: list[str] = solution[count].split("E")
+ if len(remove_e) > 1:
+ solution[count] = f"{remove_e[0]}*10^{remove_e[1]}"
+ solved += f"x^{x - (count + 1)}*{solution[count]}"
+ if count + 1 != x:
+ solved += "+"
- while count < x:
- remove_e: list[str] = solution[count].split("E")
- if len(remove_e) > 1:
- solution[count] = remove_e[0] + "*10^" + remove_e[1]
- solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count])
- if count + 1 != x:
- solved += "+"
- count += 1
-
- return solved
-
- elif check == 2:
- return solved
- else:
- return "The program cannot work out a fitting polynomial."
+ return solved
if __name__ == "__main__":
diff --git a/linear_algebra/src/power_iteration.py b/linear_algebra/src/power_iteration.py
index 4c6525b6e..24fbd9a5e 100644
--- a/linear_algebra/src/power_iteration.py
+++ b/linear_algebra/src/power_iteration.py
@@ -52,7 +52,7 @@ def power_iteration(
# or when we have small changes from one iteration to next.
convergence = False
- lamda_previous = 0
+ lambda_previous = 0
iterations = 0
error = 1e12
@@ -63,22 +63,22 @@ def power_iteration(
vector = w / np.linalg.norm(w)
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
- vectorH = vector.conj().T if is_complex else vector.T
- lamda = np.dot(vectorH, np.dot(input_matrix, vector))
+ vector_h = vector.conj().T if is_complex else vector.T
+ lambda_ = np.dot(vector_h, np.dot(input_matrix, vector))
# Check convergence.
- error = np.abs(lamda - lamda_previous) / lamda
+ error = np.abs(lambda_ - lambda_previous) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
convergence = True
- lamda_previous = lamda
+ lambda_previous = lambda_
if is_complex:
- lamda = np.real(lamda)
+ lambda_ = np.real(lambda_)
- return lamda, vector
+ return lambda_, vector
def test_power_iteration() -> None:
diff --git a/linear_algebra/src/rank_of_matrix.py b/linear_algebra/src/rank_of_matrix.py
new file mode 100644
index 000000000..7ff3c1699
--- /dev/null
+++ b/linear_algebra/src/rank_of_matrix.py
@@ -0,0 +1,89 @@
+"""
+Calculate the rank of a matrix.
+
+See: https://en.wikipedia.org/wiki/Rank_(linear_algebra)
+"""
+
+
+def rank_of_matrix(matrix: list[list[int | float]]) -> int:
+ """
+ Finds the rank of a matrix.
+ Args:
+ matrix: The matrix as a list of lists.
+ Returns:
+ The rank of the matrix.
+ Example:
+ >>> matrix1 = [[1, 2, 3],
+ ... [4, 5, 6],
+ ... [7, 8, 9]]
+ >>> rank_of_matrix(matrix1)
+ 2
+ >>> matrix2 = [[1, 0, 0],
+ ... [0, 1, 0],
+ ... [0, 0, 0]]
+ >>> rank_of_matrix(matrix2)
+ 2
+ >>> matrix3 = [[1, 2, 3, 4],
+ ... [5, 6, 7, 8],
+ ... [9, 10, 11, 12]]
+ >>> rank_of_matrix(matrix3)
+ 2
+ >>> rank_of_matrix([[2,3,-1,-1],
+ ... [1,-1,-2,4],
+ ... [3,1,3,-2],
+ ... [6,3,0,-7]])
+ 4
+ >>> rank_of_matrix([[2,1,-3,-6],
+ ... [3,-3,1,2],
+ ... [1,1,1,2]])
+ 3
+ >>> rank_of_matrix([[2,-1,0],
+ ... [1,3,4],
+ ... [4,1,-3]])
+ 3
+ >>> rank_of_matrix([[3,2,1],
+ ... [-6,-4,-2]])
+ 1
+ >>> rank_of_matrix([[],[]])
+ 0
+ >>> rank_of_matrix([[1]])
+ 1
+ >>> rank_of_matrix([[]])
+ 0
+ """
+
+ rows = len(matrix)
+ columns = len(matrix[0])
+ rank = min(rows, columns)
+
+ for row in range(rank):
+ # Check if diagonal element is not zero
+ if matrix[row][row] != 0:
+ # Eliminate all the elements below the diagonal
+ for col in range(row + 1, rows):
+ multiplier = matrix[col][row] / matrix[row][row]
+ for i in range(row, columns):
+ matrix[col][i] -= multiplier * matrix[row][i]
+ else:
+ # Find a non-zero diagonal element to swap rows
+ reduce = True
+ for i in range(row + 1, rows):
+ if matrix[i][row] != 0:
+ matrix[row], matrix[i] = matrix[i], matrix[row]
+ reduce = False
+ break
+ if reduce:
+ rank -= 1
+ for i in range(rows):
+ matrix[i][row] = matrix[i][rank]
+
+ # Reduce the row pointer by one to stay on the same row
+ row -= 1
+
+ return rank
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/linear_algebra/src/rayleigh_quotient.py b/linear_algebra/src/rayleigh_quotient.py
index 78083aa75..4773429cb 100644
--- a/linear_algebra/src/rayleigh_quotient.py
+++ b/linear_algebra/src/rayleigh_quotient.py
@@ -26,7 +26,7 @@ def is_hermitian(matrix: np.ndarray) -> bool:
return np.array_equal(matrix, matrix.conjugate().T)
-def rayleigh_quotient(A: np.ndarray, v: np.ndarray) -> Any:
+def rayleigh_quotient(a: np.ndarray, v: np.ndarray) -> Any:
"""
Returns the Rayleigh quotient of a Hermitian matrix A and
vector v.
@@ -45,20 +45,20 @@ def rayleigh_quotient(A: np.ndarray, v: np.ndarray) -> Any:
array([[3.]])
"""
v_star = v.conjugate().T
- v_star_dot = v_star.dot(A)
+ v_star_dot = v_star.dot(a)
assert isinstance(v_star_dot, np.ndarray)
return (v_star_dot.dot(v)) / (v_star.dot(v))
def tests() -> None:
- A = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
+ a = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
v = np.array([[1], [2], [3]])
- assert is_hermitian(A), f"{A} is not hermitian."
- print(rayleigh_quotient(A, v))
+ assert is_hermitian(a), f"{a} is not hermitian."
+ print(rayleigh_quotient(a, v))
- A = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
- assert is_hermitian(A), f"{A} is not hermitian."
- assert rayleigh_quotient(A, v) == float(3)
+ a = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
+ assert is_hermitian(a), f"{a} is not hermitian."
+ assert rayleigh_quotient(a, v) == float(3)
if __name__ == "__main__":
diff --git a/linear_algebra/src/schur_complement.py b/linear_algebra/src/schur_complement.py
index f3cb736d9..750f4de5e 100644
--- a/linear_algebra/src/schur_complement.py
+++ b/linear_algebra/src/schur_complement.py
@@ -7,7 +7,7 @@ def schur_complement(
mat_a: np.ndarray,
mat_b: np.ndarray,
mat_c: np.ndarray,
- pseudo_inv: np.ndarray = None,
+ pseudo_inv: np.ndarray | None = None,
) -> np.ndarray:
"""
Schur complement of a symmetric matrix X given as a 2x2 block matrix
@@ -31,16 +31,18 @@ def schur_complement(
shape_c = np.shape(mat_c)
if shape_a[0] != shape_b[0]:
- raise ValueError(
- f"Expected the same number of rows for A and B. \
- Instead found A of size {shape_a} and B of size {shape_b}"
+ msg = (
+ "Expected the same number of rows for A and B. "
+ f"Instead found A of size {shape_a} and B of size {shape_b}"
)
+ raise ValueError(msg)
if shape_b[1] != shape_c[1]:
- raise ValueError(
- f"Expected the same number of columns for B and C. \
- Instead found B of size {shape_b} and C of size {shape_c}"
+ msg = (
+ "Expected the same number of columns for B and C. "
+ f"Instead found B of size {shape_b} and C of size {shape_c}"
)
+ raise ValueError(msg)
a_inv = pseudo_inv
if a_inv is None:
diff --git a/linear_algebra/src/test_linear_algebra.py b/linear_algebra/src/test_linear_algebra.py
index 724ceef25..50d079572 100644
--- a/linear_algebra/src/test_linear_algebra.py
+++ b/linear_algebra/src/test_linear_algebra.py
@@ -85,13 +85,13 @@ class Test(unittest.TestCase):
self.assertEqual(str(x * 3.0), "(3.0,6.0,9.0)")
self.assertEqual((a * b), 0)
- def test_zeroVector(self) -> None:
+ def test_zero_vector(self) -> None:
"""
test for global function zero_vector()
"""
- self.assertTrue(str(zero_vector(10)).count("0") == 10)
+ self.assertEqual(str(zero_vector(10)).count("0"), 10)
- def test_unitBasisVector(self) -> None:
+ def test_unit_basis_vector(self) -> None:
"""
test for global function unit_basis_vector()
"""
@@ -113,7 +113,7 @@ class Test(unittest.TestCase):
y = x.copy()
self.assertEqual(str(x), str(y))
- def test_changeComponent(self) -> None:
+ def test_change_component(self) -> None:
"""
test for method change_component()
"""
@@ -126,77 +126,77 @@ class Test(unittest.TestCase):
"""
test for Matrix method str()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(A))
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n", str(a))
def test_minor(self) -> None:
"""
test for Matrix method minor()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
minors = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
- for x in range(A.height()):
- for y in range(A.width()):
- self.assertEqual(minors[x][y], A.minor(x, y))
+ for x in range(a.height()):
+ for y in range(a.width()):
+ self.assertEqual(minors[x][y], a.minor(x, y))
def test_cofactor(self) -> None:
"""
test for Matrix method cofactor()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
cofactors = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
- for x in range(A.height()):
- for y in range(A.width()):
- self.assertEqual(cofactors[x][y], A.cofactor(x, y))
+ for x in range(a.height()):
+ for y in range(a.width()):
+ self.assertEqual(cofactors[x][y], a.cofactor(x, y))
def test_determinant(self) -> None:
"""
test for Matrix method determinant()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- self.assertEqual(-5, A.determinant())
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ self.assertEqual(-5, a.determinant())
def test__mul__matrix(self) -> None:
"""
test for Matrix * operator
"""
- A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3)
+ a = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3, 3)
x = Vector([1, 2, 3])
- self.assertEqual("(14,32,50)", str(A * x))
- self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(A * 2))
+ self.assertEqual("(14,32,50)", str(a * x))
+ self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n", str(a * 2))
def test_change_component_matrix(self) -> None:
"""
test for Matrix method change_component()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- A.change_component(0, 2, 5)
- self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(A))
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ a.change_component(0, 2, 5)
+ self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n", str(a))
def test_component_matrix(self) -> None:
"""
test for Matrix method component()
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- self.assertEqual(7, A.component(2, 1), 0.01)
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ self.assertEqual(7, a.component(2, 1), 0.01)
def test__add__matrix(self) -> None:
"""
test for Matrix + operator
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
- self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(A + B))
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ b = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
+ self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n", str(a + b))
def test__sub__matrix(self) -> None:
"""
test for Matrix - operator
"""
- A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
- B = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
- self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(A - B))
+ a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]], 3, 3)
+ b = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]], 3, 3)
+ self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n", str(a - b))
- def test_squareZeroMatrix(self) -> None:
+ def test_square_zero_matrix(self) -> None:
"""
test for global function square_zero_matrix()
"""
diff --git a/linear_programming/simplex.py b/linear_programming/simplex.py
new file mode 100644
index 000000000..ba64add40
--- /dev/null
+++ b/linear_programming/simplex.py
@@ -0,0 +1,311 @@
+"""
+Python implementation of the simplex algorithm for solving linear programs in
+tabular form with
+- `>=`, `<=`, and `=` constraints and
+- each variable `x1, x2, ...>= 0`.
+
+See https://gist.github.com/imengus/f9619a568f7da5bc74eaf20169a24d98 for how to
+convert linear programs to simplex tableaus, and the steps taken in the simplex
+algorithm.
+
+Resources:
+https://en.wikipedia.org/wiki/Simplex_algorithm
+https://tinyurl.com/simplex4beginners
+"""
+from typing import Any
+
+import numpy as np
+
+
+class Tableau:
+ """Operate on simplex tableaus
+
+ >>> t = Tableau(np.array([[-1,-1,0,0,-1],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
+ Traceback (most recent call last):
+ ...
+ ValueError: RHS must be > 0
+ """
+
+ def __init__(self, tableau: np.ndarray, n_vars: int) -> None:
+ # Check if RHS is negative
+ if np.any(tableau[:, -1], where=tableau[:, -1] < 0):
+ raise ValueError("RHS must be > 0")
+
+ self.tableau = tableau
+ self.n_rows, _ = tableau.shape
+
+ # Number of decision variables x1, x2, x3...
+ self.n_vars = n_vars
+
+ # Number of artificial variables to be minimised
+ self.n_art_vars = len(np.where(tableau[self.n_vars : -1] == -1)[0])
+
+ # 2 if there are >= or == constraints (nonstandard), 1 otherwise (std)
+ self.n_stages = (self.n_art_vars > 0) + 1
+
+ # Number of slack variables added to make inequalities into equalities
+ self.n_slack = self.n_rows - self.n_stages
+
+ # Objectives for each stage
+ self.objectives = ["max"]
+
+ # In two stage simplex, first minimise then maximise
+ if self.n_art_vars:
+ self.objectives.append("min")
+
+ self.col_titles = [""]
+
+ # Index of current pivot row and column
+ self.row_idx = None
+ self.col_idx = None
+
+ # Does objective row only contain (non)-negative values?
+ self.stop_iter = False
+
+ @staticmethod
+ def generate_col_titles(*args: int) -> list[str]:
+ """Generate column titles for tableau of specific dimensions
+
+ >>> Tableau.generate_col_titles(2, 3, 1)
+ ['x1', 'x2', 's1', 's2', 's3', 'a1', 'RHS']
+
+ >>> Tableau.generate_col_titles()
+ Traceback (most recent call last):
+ ...
+ ValueError: Must provide n_vars, n_slack, and n_art_vars
+ >>> Tableau.generate_col_titles(-2, 3, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: All arguments must be non-negative integers
+ """
+ if len(args) != 3:
+ raise ValueError("Must provide n_vars, n_slack, and n_art_vars")
+
+ if not all(x >= 0 and isinstance(x, int) for x in args):
+ raise ValueError("All arguments must be non-negative integers")
+
+ # decision | slack | artificial
+ string_starts = ["x", "s", "a"]
+ titles = []
+ for i in range(3):
+ for j in range(args[i]):
+ titles.append(string_starts[i] + str(j + 1))
+ titles.append("RHS")
+ return titles
+
+ def find_pivot(self, tableau: np.ndarray) -> tuple[Any, Any]:
+ """Finds the pivot row and column.
+ >>> t = Tableau(np.array([[-2,1,0,0,0], [3,1,1,0,6], [1,2,0,1,7.]]), 2)
+ >>> t.find_pivot(t.tableau)
+ (1, 0)
+ """
+ objective = self.objectives[-1]
+
+ # Find entries of highest magnitude in objective rows
+ sign = (objective == "min") - (objective == "max")
+ col_idx = np.argmax(sign * tableau[0, : self.n_vars])
+
+ # Choice is only valid if below 0 for maximise, and above for minimise
+ if sign * self.tableau[0, col_idx] <= 0:
+ self.stop_iter = True
+ return 0, 0
+
+ # Pivot row is chosen as having the lowest quotient when elements of
+ # the pivot column divide the right-hand side
+
+ # Slice excluding the objective rows
+ s = slice(self.n_stages, self.n_rows)
+
+ # RHS
+ dividend = tableau[s, -1]
+
+ # Elements of pivot column within slice
+ divisor = tableau[s, col_idx]
+
+ # Array filled with nans
+ nans = np.full(self.n_rows - self.n_stages, np.nan)
+
+ # If element in pivot column is greater than zeron_stages, return
+ # quotient or nan otherwise
+ quotients = np.divide(dividend, divisor, out=nans, where=divisor > 0)
+
+ # Arg of minimum quotient excluding the nan values. n_stages is added
+ # to compensate for earlier exclusion of objective columns
+ row_idx = np.nanargmin(quotients) + self.n_stages
+ return row_idx, col_idx
+
+ def pivot(self, tableau: np.ndarray, row_idx: int, col_idx: int) -> np.ndarray:
+ """Pivots on value on the intersection of pivot row and column.
+
+ >>> t = Tableau(np.array([[-2,-3,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
+ >>> t.pivot(t.tableau, 1, 0).tolist()
+ ... # doctest: +NORMALIZE_WHITESPACE
+ [[0.0, 3.0, 2.0, 0.0, 8.0],
+ [1.0, 3.0, 1.0, 0.0, 4.0],
+ [0.0, -8.0, -3.0, 1.0, -8.0]]
+ """
+ # Avoid changes to original tableau
+ piv_row = tableau[row_idx].copy()
+
+ piv_val = piv_row[col_idx]
+
+ # Entry becomes 1
+ piv_row *= 1 / piv_val
+
+ # Variable in pivot column becomes basic, ie the only non-zero entry
+ for idx, coeff in enumerate(tableau[:, col_idx]):
+ tableau[idx] += -coeff * piv_row
+ tableau[row_idx] = piv_row
+ return tableau
+
+ def change_stage(self, tableau: np.ndarray) -> np.ndarray:
+ """Exits first phase of the two-stage method by deleting artificial
+ rows and columns, or completes the algorithm if exiting the standard
+ case.
+
+ >>> t = Tableau(np.array([
+ ... [3, 3, -1, -1, 0, 0, 4],
+ ... [2, 1, 0, 0, 0, 0, 0.],
+ ... [1, 2, -1, 0, 1, 0, 2],
+ ... [2, 1, 0, -1, 0, 1, 2]
+ ... ]), 2)
+ >>> t.change_stage(t.tableau).tolist()
+ ... # doctest: +NORMALIZE_WHITESPACE
+ [[2.0, 1.0, 0.0, 0.0, 0.0, 0.0],
+ [1.0, 2.0, -1.0, 0.0, 1.0, 2.0],
+ [2.0, 1.0, 0.0, -1.0, 0.0, 2.0]]
+ """
+ # Objective of original objective row remains
+ self.objectives.pop()
+
+ if not self.objectives:
+ return tableau
+
+ # Slice containing ids for artificial columns
+ s = slice(-self.n_art_vars - 1, -1)
+
+ # Delete the artificial variable columns
+ tableau = np.delete(tableau, s, axis=1)
+
+ # Delete the objective row of the first stage
+ tableau = np.delete(tableau, 0, axis=0)
+
+ self.n_stages = 1
+ self.n_rows -= 1
+ self.n_art_vars = 0
+ self.stop_iter = False
+ return tableau
+
+ def run_simplex(self) -> dict[Any, Any]:
+ """Operate on tableau until objective function cannot be
+ improved further.
+
+ # Standard linear program:
+ Max: x1 + x2
+ ST: x1 + 3x2 <= 4
+ 3x1 + x2 <= 4
+ >>> Tableau(np.array([[-1,-1,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]),
+ ... 2).run_simplex()
+ {'P': 2.0, 'x1': 1.0, 'x2': 1.0}
+
+ # Optimal tableau input:
+ >>> Tableau(np.array([
+ ... [0, 0, 0.25, 0.25, 2],
+ ... [0, 1, 0.375, -0.125, 1],
+ ... [1, 0, -0.125, 0.375, 1]
+ ... ]), 2).run_simplex()
+ {'P': 2.0, 'x1': 1.0, 'x2': 1.0}
+
+ # Non-standard: >= constraints
+ Max: 2x1 + 3x2 + x3
+ ST: x1 + x2 + x3 <= 40
+ 2x1 + x2 - x3 >= 10
+ - x2 + x3 >= 10
+ >>> Tableau(np.array([
+ ... [2, 0, 0, 0, -1, -1, 0, 0, 20],
+ ... [-2, -3, -1, 0, 0, 0, 0, 0, 0],
+ ... [1, 1, 1, 1, 0, 0, 0, 0, 40],
+ ... [2, 1, -1, 0, -1, 0, 1, 0, 10],
+ ... [0, -1, 1, 0, 0, -1, 0, 1, 10.]
+ ... ]), 3).run_simplex()
+ {'P': 70.0, 'x1': 10.0, 'x2': 10.0, 'x3': 20.0}
+
+ # Non standard: minimisation and equalities
+ Min: x1 + x2
+ ST: 2x1 + x2 = 12
+ 6x1 + 5x2 = 40
+ >>> Tableau(np.array([
+ ... [8, 6, 0, -1, 0, -1, 0, 0, 52],
+ ... [1, 1, 0, 0, 0, 0, 0, 0, 0],
+ ... [2, 1, 1, 0, 0, 0, 0, 0, 12],
+ ... [2, 1, 0, -1, 0, 0, 1, 0, 12],
+ ... [6, 5, 0, 0, 1, 0, 0, 0, 40],
+ ... [6, 5, 0, 0, 0, -1, 0, 1, 40.]
+ ... ]), 2).run_simplex()
+ {'P': 7.0, 'x1': 5.0, 'x2': 2.0}
+ """
+ # Stop simplex algorithm from cycling.
+ for _ in range(100):
+ # Completion of each stage removes an objective. If both stages
+ # are complete, then no objectives are left
+ if not self.objectives:
+ self.col_titles = self.generate_col_titles(
+ self.n_vars, self.n_slack, self.n_art_vars
+ )
+
+ # Find the values of each variable at optimal solution
+ return self.interpret_tableau(self.tableau, self.col_titles)
+
+ row_idx, col_idx = self.find_pivot(self.tableau)
+
+ # If there are no more negative values in objective row
+ if self.stop_iter:
+ # Delete artificial variable columns and rows. Update attributes
+ self.tableau = self.change_stage(self.tableau)
+ else:
+ self.tableau = self.pivot(self.tableau, row_idx, col_idx)
+ return {}
+
+ def interpret_tableau(
+ self, tableau: np.ndarray, col_titles: list[str]
+ ) -> dict[str, float]:
+ """Given the final tableau, add the corresponding values of the basic
+ decision variables to the `output_dict`
+ >>> tableau = np.array([
+ ... [0,0,0.875,0.375,5],
+ ... [0,1,0.375,-0.125,1],
+ ... [1,0,-0.125,0.375,1]
+ ... ])
+ >>> t = Tableau(tableau, 2)
+ >>> t.interpret_tableau(tableau, ["x1", "x2", "s1", "s2", "RHS"])
+ {'P': 5.0, 'x1': 1.0, 'x2': 1.0}
+ """
+ # P = RHS of final tableau
+ output_dict = {"P": abs(tableau[0, -1])}
+
+ for i in range(self.n_vars):
+ # Gives ids of nonzero entries in the ith column
+ nonzero = np.nonzero(tableau[:, i])
+ n_nonzero = len(nonzero[0])
+
+ # First entry in the nonzero ids
+ nonzero_rowidx = nonzero[0][0]
+ nonzero_val = tableau[nonzero_rowidx, i]
+
+ # If there is only one nonzero value in column, which is one
+ if n_nonzero == nonzero_val == 1:
+ rhs_val = tableau[nonzero_rowidx, -1]
+ output_dict[col_titles[i]] = rhs_val
+
+ # Check for basic variables
+ for title in col_titles:
+ # Don't add RHS or slack variables to output dict
+ if title[0] not in "R-s-a":
+ output_dict.setdefault(title, 0)
+ return output_dict
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/machine_learning/astar.py b/machine_learning/astar.py
index ee3fcff0b..7a60ed225 100644
--- a/machine_learning/astar.py
+++ b/machine_learning/astar.py
@@ -1,41 +1,38 @@
"""
-The A* algorithm combines features of uniform-cost search and pure
-heuristic search to efficiently compute optimal solutions.
-A* algorithm is a best-first search algorithm in which the cost
-associated with a node is f(n) = g(n) + h(n),
-where g(n) is the cost of the path from the initial state to node n and
-h(n) is the heuristic estimate or the cost or a path
-from node n to a goal.A* algorithm introduces a heuristic into a
-regular graph-searching algorithm,
-essentially planning ahead at each step so a more optimal decision
-is made.A* also known as the algorithm with brains
+The A* algorithm combines features of uniform-cost search and pure heuristic search to
+efficiently compute optimal solutions.
+
+The A* algorithm is a best-first search algorithm in which the cost associated with a
+node is f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial state to
+node n and h(n) is the heuristic estimate or the cost or a path from node n to a goal.
+
+The A* algorithm introduces a heuristic into a regular graph-searching algorithm,
+essentially planning ahead at each step so a more optimal decision is made. For this
+reason, A* is known as an algorithm with brains.
+
+https://en.wikipedia.org/wiki/A*_search_algorithm
"""
import numpy as np
class Cell:
"""
- Class cell represents a cell in the world which have the property
- position : The position of the represented by tupleof x and y
- coordinates initially set to (0,0)
- parent : This contains the parent cell object which we visited
- before arrinving this cell
- g,h,f : The parameters for constructing the heuristic function
- which can be any function. for simplicity used line
- distance
+ Class cell represents a cell in the world which have the properties:
+ position: represented by tuple of x and y coordinates initially set to (0,0).
+ parent: Contains the parent cell object visited before we arrived at this cell.
+ g, h, f: Parameters used when calling our heuristic function.
"""
def __init__(self):
self.position = (0, 0)
self.parent = None
-
self.g = 0
self.h = 0
self.f = 0
"""
- overrides equals method because otherwise cell assign will give
- wrong results
+ Overrides equals method because otherwise cell assign will give
+ wrong results.
"""
def __eq__(self, cell):
@@ -48,8 +45,8 @@ class Cell:
class Gridworld:
"""
Gridworld class represents the external world here a grid M*M
- matrix
- world_size: create a numpy array with the given world_size default is 5
+ matrix.
+ world_size: create a numpy array with the given world_size default is 5.
"""
def __init__(self, world_size=(5, 5)):
@@ -90,10 +87,10 @@ class Gridworld:
def astar(world, start, goal):
"""
- Implementation of a start algorithm
- world : Object of the world object
- start : Object of the cell as start position
- stop : Object of the cell as goal position
+ Implementation of a start algorithm.
+ world : Object of the world object.
+ start : Object of the cell as start position.
+ stop : Object of the cell as goal position.
>>> p = Gridworld()
>>> start = Cell()
@@ -137,14 +134,14 @@ def astar(world, start, goal):
if __name__ == "__main__":
world = Gridworld()
- # stat position and Goal
+ # Start position and goal
start = Cell()
start.position = (0, 0)
goal = Cell()
goal.position = (4, 4)
print(f"path from {start.position} to {goal.position}")
s = astar(world, start, goal)
- # Just for visual reasons
+ # Just for visual reasons.
for i in s:
world.w[i] = 1
print(world.w)
diff --git a/machine_learning/data_transformations.py b/machine_learning/data_transformations.py
index 9e0d747e9..ecfd3b9e2 100644
--- a/machine_learning/data_transformations.py
+++ b/machine_learning/data_transformations.py
@@ -1,5 +1,7 @@
"""
-Normalization Wikipedia: https://en.wikipedia.org/wiki/Normalization
+Normalization.
+
+Wikipedia: https://en.wikipedia.org/wiki/Normalization
Normalization is the process of converting numerical data to a standard range of values.
This range is typically between [0, 1] or [-1, 1]. The equation for normalization is
x_norm = (x - x_min)/(x_max - x_min) where x_norm is the normalized value, x is the
@@ -28,7 +30,8 @@ from statistics import mean, stdev
def normalization(data: list, ndigits: int = 3) -> list:
"""
- Returns a normalized list of values
+ Return a normalized list of values.
+
@params: data, a list of values to normalize
@returns: a list of normalized values (rounded to ndigits decimal places)
@examples:
@@ -46,7 +49,8 @@ def normalization(data: list, ndigits: int = 3) -> list:
def standardization(data: list, ndigits: int = 3) -> list:
"""
- Returns a standardized list of values
+ Return a standardized list of values.
+
@params: data, a list of values to standardize
@returns: a list of standardized values (rounded to ndigits decimal places)
@examples:
diff --git a/machine_learning/decision_tree.py b/machine_learning/decision_tree.py
index ace6fb0fa..7cd1b02c4 100644
--- a/machine_learning/decision_tree.py
+++ b/machine_learning/decision_tree.py
@@ -6,7 +6,7 @@ Output: The decision tree maps a real number input to a real number output.
import numpy as np
-class Decision_Tree:
+class DecisionTree:
def __init__(self, depth=5, min_leaf_size=5):
self.depth = depth
self.decision_boundary = 0
@@ -22,17 +22,17 @@ class Decision_Tree:
@param prediction: a floating point value
return value: mean_squared_error calculates the error if prediction is used to
estimate the labels
- >>> tester = Decision_Tree()
+ >>> tester = DecisionTree()
>>> test_labels = np.array([1,2,3,4,5,6,7,8,9,10])
- >>> test_prediction = np.float(6)
+ >>> test_prediction = float(6)
>>> tester.mean_squared_error(test_labels, test_prediction) == (
- ... Test_Decision_Tree.helper_mean_squared_error_test(test_labels,
+ ... TestDecisionTree.helper_mean_squared_error_test(test_labels,
... test_prediction))
True
>>> test_labels = np.array([1,2,3])
- >>> test_prediction = np.float(2)
+ >>> test_prediction = float(2)
>>> tester.mean_squared_error(test_labels, test_prediction) == (
- ... Test_Decision_Tree.helper_mean_squared_error_test(test_labels,
+ ... TestDecisionTree.helper_mean_squared_error_test(test_labels,
... test_prediction))
True
"""
@@ -41,10 +41,10 @@ class Decision_Tree:
return np.mean((labels - prediction) ** 2)
- def train(self, X, y):
+ def train(self, x, y):
"""
train:
- @param X: a one dimensional numpy array
+ @param x: a one dimensional numpy array
@param y: a one dimensional numpy array.
The contents of y are the labels for the corresponding X values
@@ -55,17 +55,17 @@ class Decision_Tree:
this section is to check that the inputs conform to our dimensionality
constraints
"""
- if X.ndim != 1:
+ if x.ndim != 1:
print("Error: Input data set must be one dimensional")
return
- if len(X) != len(y):
+ if len(x) != len(y):
print("Error: X and y have different lengths")
return
if y.ndim != 1:
print("Error: Data set labels must be one dimensional")
return
- if len(X) < 2 * self.min_leaf_size:
+ if len(x) < 2 * self.min_leaf_size:
self.prediction = np.mean(y)
return
@@ -74,7 +74,7 @@ class Decision_Tree:
return
best_split = 0
- min_error = self.mean_squared_error(X, np.mean(y)) * 2
+ min_error = self.mean_squared_error(x, np.mean(y)) * 2
"""
loop over all possible splits for the decision tree. find the best split.
@@ -82,34 +82,34 @@ class Decision_Tree:
then the data set is not split and the average for the entire array is used as
the predictor
"""
- for i in range(len(X)):
- if len(X[:i]) < self.min_leaf_size:
+ for i in range(len(x)):
+ if len(x[:i]) < self.min_leaf_size:
continue
- elif len(X[i:]) < self.min_leaf_size:
+ elif len(x[i:]) < self.min_leaf_size:
continue
else:
- error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
- error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
+ error_left = self.mean_squared_error(x[:i], np.mean(y[:i]))
+ error_right = self.mean_squared_error(x[i:], np.mean(y[i:]))
error = error_left + error_right
if error < min_error:
best_split = i
min_error = error
if best_split != 0:
- left_X = X[:best_split]
+ left_x = x[:best_split]
left_y = y[:best_split]
- right_X = X[best_split:]
+ right_x = x[best_split:]
right_y = y[best_split:]
- self.decision_boundary = X[best_split]
- self.left = Decision_Tree(
+ self.decision_boundary = x[best_split]
+ self.left = DecisionTree(
depth=self.depth - 1, min_leaf_size=self.min_leaf_size
)
- self.right = Decision_Tree(
+ self.right = DecisionTree(
depth=self.depth - 1, min_leaf_size=self.min_leaf_size
)
- self.left.train(left_X, left_y)
- self.right.train(right_X, right_y)
+ self.left.train(left_x, left_y)
+ self.right.train(right_x, right_y)
else:
self.prediction = np.mean(y)
@@ -134,7 +134,7 @@ class Decision_Tree:
return None
-class Test_Decision_Tree:
+class TestDecisionTree:
"""Decision Tres test class"""
@staticmethod
@@ -145,11 +145,11 @@ class Test_Decision_Tree:
@param prediction: a floating point value
return value: helper_mean_squared_error_test calculates the mean squared error
"""
- squared_error_sum = np.float(0)
+ squared_error_sum = float(0)
for label in labels:
squared_error_sum += (label - prediction) ** 2
- return np.float(squared_error_sum / labels.size)
+ return float(squared_error_sum / labels.size)
def main():
@@ -159,11 +159,11 @@ def main():
predict the label of 10 different test values. Then the mean squared error over
this test is displayed.
"""
- X = np.arange(-1.0, 1.0, 0.005)
- y = np.sin(X)
+ x = np.arange(-1.0, 1.0, 0.005)
+ y = np.sin(x)
- tree = Decision_Tree(depth=10, min_leaf_size=10)
- tree.train(X, y)
+ tree = DecisionTree(depth=10, min_leaf_size=10)
+ tree.train(x, y)
test_cases = (np.random.rand(10) * 2) - 1
predictions = np.array([tree.predict(x) for x in test_cases])
diff --git a/machine_learning/dimensionality_reduction.py b/machine_learning/dimensionality_reduction.py
new file mode 100644
index 000000000..d2046f81a
--- /dev/null
+++ b/machine_learning/dimensionality_reduction.py
@@ -0,0 +1,198 @@
+# Copyright (c) 2023 Diego Gasco (diego.gasco99@gmail.com), Diegomangasco on GitHub
+
+"""
+Requirements:
+ - numpy version 1.21
+ - scipy version 1.3.3
+Notes:
+ - Each column of the features matrix corresponds to a class item
+"""
+
+import logging
+
+import numpy as np
+import pytest
+from scipy.linalg import eigh
+
+logging.basicConfig(level=logging.INFO, format="%(message)s")
+
+
+def column_reshape(input_array: np.ndarray) -> np.ndarray:
+ """Function to reshape a row Numpy array into a column Numpy array
+ >>> input_array = np.array([1, 2, 3])
+ >>> column_reshape(input_array)
+ array([[1],
+ [2],
+ [3]])
+ """
+
+ return input_array.reshape((input_array.size, 1))
+
+
+def covariance_within_classes(
+ features: np.ndarray, labels: np.ndarray, classes: int
+) -> np.ndarray:
+ """Function to compute the covariance matrix inside each class.
+ >>> features = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ >>> labels = np.array([0, 1, 0])
+ >>> covariance_within_classes(features, labels, 2)
+ array([[0.66666667, 0.66666667, 0.66666667],
+ [0.66666667, 0.66666667, 0.66666667],
+ [0.66666667, 0.66666667, 0.66666667]])
+ """
+
+ covariance_sum = np.nan
+ for i in range(classes):
+ data = features[:, labels == i]
+ data_mean = data.mean(1)
+ # Centralize the data of class i
+ centered_data = data - column_reshape(data_mean)
+ if i > 0:
+ # If covariance_sum is not None
+ covariance_sum += np.dot(centered_data, centered_data.T)
+ else:
+ # If covariance_sum is np.nan (i.e. first loop)
+ covariance_sum = np.dot(centered_data, centered_data.T)
+
+ return covariance_sum / features.shape[1]
+
+
+def covariance_between_classes(
+ features: np.ndarray, labels: np.ndarray, classes: int
+) -> np.ndarray:
+ """Function to compute the covariance matrix between multiple classes
+ >>> features = np.array([[9, 2, 3], [4, 3, 6], [1, 8, 9]])
+ >>> labels = np.array([0, 1, 0])
+ >>> covariance_between_classes(features, labels, 2)
+ array([[ 3.55555556, 1.77777778, -2.66666667],
+ [ 1.77777778, 0.88888889, -1.33333333],
+ [-2.66666667, -1.33333333, 2. ]])
+ """
+
+ general_data_mean = features.mean(1)
+ covariance_sum = np.nan
+ for i in range(classes):
+ data = features[:, labels == i]
+ device_data = data.shape[1]
+ data_mean = data.mean(1)
+ if i > 0:
+ # If covariance_sum is not None
+ covariance_sum += device_data * np.dot(
+ column_reshape(data_mean) - column_reshape(general_data_mean),
+ (column_reshape(data_mean) - column_reshape(general_data_mean)).T,
+ )
+ else:
+ # If covariance_sum is np.nan (i.e. first loop)
+ covariance_sum = device_data * np.dot(
+ column_reshape(data_mean) - column_reshape(general_data_mean),
+ (column_reshape(data_mean) - column_reshape(general_data_mean)).T,
+ )
+
+ return covariance_sum / features.shape[1]
+
+
+def principal_component_analysis(features: np.ndarray, dimensions: int) -> np.ndarray:
+ """
+ Principal Component Analysis.
+
+ For more details, see: https://en.wikipedia.org/wiki/Principal_component_analysis.
+ Parameters:
+ * features: the features extracted from the dataset
+ * dimensions: to filter the projected data for the desired dimension
+
+ >>> test_principal_component_analysis()
+ """
+
+ # Check if the features have been loaded
+ if features.any():
+ data_mean = features.mean(1)
+ # Center the dataset
+ centered_data = features - np.reshape(data_mean, (data_mean.size, 1))
+ covariance_matrix = np.dot(centered_data, centered_data.T) / features.shape[1]
+ _, eigenvectors = np.linalg.eigh(covariance_matrix)
+ # Take all the columns in the reverse order (-1), and then takes only the first
+ filtered_eigenvectors = eigenvectors[:, ::-1][:, 0:dimensions]
+ # Project the database on the new space
+ projected_data = np.dot(filtered_eigenvectors.T, features)
+ logging.info("Principal Component Analysis computed")
+
+ return projected_data
+ else:
+ logging.basicConfig(level=logging.ERROR, format="%(message)s", force=True)
+ logging.error("Dataset empty")
+ raise AssertionError
+
+
+def linear_discriminant_analysis(
+ features: np.ndarray, labels: np.ndarray, classes: int, dimensions: int
+) -> np.ndarray:
+ """
+ Linear Discriminant Analysis.
+
+ For more details, see: https://en.wikipedia.org/wiki/Linear_discriminant_analysis.
+ Parameters:
+ * features: the features extracted from the dataset
+ * labels: the class labels of the features
+ * classes: the number of classes present in the dataset
+ * dimensions: to filter the projected data for the desired dimension
+
+ >>> test_linear_discriminant_analysis()
+ """
+
+ # Check if the dimension desired is less than the number of classes
+ assert classes > dimensions
+
+ # Check if features have been already loaded
+ if features.any:
+ _, eigenvectors = eigh(
+ covariance_between_classes(features, labels, classes),
+ covariance_within_classes(features, labels, classes),
+ )
+ filtered_eigenvectors = eigenvectors[:, ::-1][:, :dimensions]
+ svd_matrix, _, _ = np.linalg.svd(filtered_eigenvectors)
+ filtered_svd_matrix = svd_matrix[:, 0:dimensions]
+ projected_data = np.dot(filtered_svd_matrix.T, features)
+ logging.info("Linear Discriminant Analysis computed")
+
+ return projected_data
+ else:
+ logging.basicConfig(level=logging.ERROR, format="%(message)s", force=True)
+ logging.error("Dataset empty")
+ raise AssertionError
+
+
+def test_linear_discriminant_analysis() -> None:
+ # Create dummy dataset with 2 classes and 3 features
+ features = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]])
+ labels = np.array([0, 0, 0, 1, 1])
+ classes = 2
+ dimensions = 2
+
+ # Assert that the function raises an AssertionError if dimensions > classes
+ with pytest.raises(AssertionError) as error_info:
+ projected_data = linear_discriminant_analysis(
+ features, labels, classes, dimensions
+ )
+ if isinstance(projected_data, np.ndarray):
+ raise AssertionError(
+ "Did not raise AssertionError for dimensions > classes"
+ )
+ assert error_info.type is AssertionError
+
+
+def test_principal_component_analysis() -> None:
+ features = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
+ dimensions = 2
+ expected_output = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]])
+
+ with pytest.raises(AssertionError) as error_info:
+ output = principal_component_analysis(features, dimensions)
+ if not np.allclose(expected_output, output):
+ raise AssertionError
+ assert error_info.type is AssertionError
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/machine_learning/forecasting/ex_data.csv b/machine_learning/forecasting/ex_data.csv
index 1c429e649..e6e73c4a1 100644
--- a/machine_learning/forecasting/ex_data.csv
+++ b/machine_learning/forecasting/ex_data.csv
@@ -1,4 +1,4 @@
-total_user,total_events,days
+total_users,total_events,days
18231,0.0,1
22621,1.0,2
15675,0.0,3
diff --git a/machine_learning/forecasting/run.py b/machine_learning/forecasting/run.py
index b11a23012..64e719daa 100644
--- a/machine_learning/forecasting/run.py
+++ b/machine_learning/forecasting/run.py
@@ -1,7 +1,7 @@
"""
this is code for forecasting
-but i modified it and used it for safety checker of data
-for ex: you have a online shop and for some reason some data are
+but I modified it and used it for safety checker of data
+for ex: you have an online shop and for some reason some data are
missing (the amount of data that u expected are not supposed to be)
then we can use it
*ps : 1. ofc we can use normal statistic method but in this case
@@ -11,6 +11,8 @@ missing (the amount of data that u expected are not supposed to be)
u can just adjust it for ur own purpose
"""
+from warnings import simplefilter
+
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
@@ -45,8 +47,10 @@ def sarimax_predictor(train_user: list, train_match: list, test_match: list) ->
>>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2])
6.6666671111109626
"""
+ # Suppress the User Warning raised by SARIMAX due to insufficient observations
+ simplefilter("ignore", UserWarning)
order = (1, 2, 1)
- seasonal_order = (1, 1, 0, 7)
+ seasonal_order = (1, 1, 1, 7)
model = SARIMAX(
train_user, exog=train_match, order=order, seasonal_order=seasonal_order
)
@@ -91,66 +95,69 @@ def interquartile_range_checker(train_user: list) -> float:
return low_lim
-def data_safety_checker(list_vote: list, actual_result: float) -> None:
+def data_safety_checker(list_vote: list, actual_result: float) -> bool:
"""
Used to review all the votes (list result prediction)
and compare it to the actual result.
input : list of predictions
output : print whether it's safe or not
- >>> data_safety_checker([2,3,4],5.0)
- Today's data is not safe.
+ >>> data_safety_checker([2, 3, 4], 5.0)
+ False
"""
safe = 0
not_safe = 0
+
+ if not isinstance(actual_result, float):
+ raise TypeError("Actual result should be float. Value passed is a list")
+
for i in list_vote:
if i > actual_result:
safe = not_safe + 1
else:
if abs(abs(i) - abs(actual_result)) <= 0.1:
- safe = safe + 1
+ safe += 1
else:
- not_safe = not_safe + 1
- print(f"Today's data is {'not ' if safe <= not_safe else ''}safe.")
+ not_safe += 1
+ return safe > not_safe
-# data_input_df = pd.read_csv("ex_data.csv", header=None)
-data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
-data_input_df = pd.DataFrame(data_input, columns=["total_user", "total_even", "days"])
+if __name__ == "__main__":
+ """
+ data column = total user in a day, how much online event held in one day,
+ what day is that(sunday-saturday)
+ """
+ data_input_df = pd.read_csv("ex_data.csv")
-"""
-data column = total user in a day, how much online event held in one day,
-what day is that(sunday-saturday)
-"""
+ # start normalization
+ normalize_df = Normalizer().fit_transform(data_input_df.values)
+ # split data
+ total_date = normalize_df[:, 2].tolist()
+ total_user = normalize_df[:, 0].tolist()
+ total_match = normalize_df[:, 1].tolist()
-# start normalization
-normalize_df = Normalizer().fit_transform(data_input_df.values)
-# split data
-total_date = normalize_df[:, 2].tolist()
-total_user = normalize_df[:, 0].tolist()
-total_match = normalize_df[:, 1].tolist()
+ # for svr (input variable = total date and total match)
+ x = normalize_df[:, [1, 2]].tolist()
+ x_train = x[: len(x) - 1]
+ x_test = x[len(x) - 1 :]
-# for svr (input variable = total date and total match)
-x = normalize_df[:, [1, 2]].tolist()
-x_train = x[: len(x) - 1]
-x_test = x[len(x) - 1 :]
+ # for linear regression & sarimax
+ train_date = total_date[: len(total_date) - 1]
+ train_user = total_user[: len(total_user) - 1]
+ train_match = total_match[: len(total_match) - 1]
-# for linear reression & sarimax
-trn_date = total_date[: len(total_date) - 1]
-trn_user = total_user[: len(total_user) - 1]
-trn_match = total_match[: len(total_match) - 1]
+ test_date = total_date[len(total_date) - 1 :]
+ test_user = total_user[len(total_user) - 1 :]
+ test_match = total_match[len(total_match) - 1 :]
-tst_date = total_date[len(total_date) - 1 :]
-tst_user = total_user[len(total_user) - 1 :]
-tst_match = total_match[len(total_match) - 1 :]
+ # voting system with forecasting
+ res_vote = [
+ linear_regression_prediction(
+ train_date, train_user, train_match, test_date, test_match
+ ),
+ sarimax_predictor(train_user, train_match, test_match),
+ support_vector_regressor(x_train, x_test, train_user),
+ ]
-
-# voting system with forecasting
-res_vote = []
-res_vote.append(
- linear_regression_prediction(trn_date, trn_user, trn_match, tst_date, tst_match)
-)
-res_vote.append(sarimax_predictor(trn_user, trn_match, tst_match))
-res_vote.append(support_vector_regressor(x_train, x_test, trn_user))
-
-# check the safety of todays'data^^
-data_safety_checker(res_vote, tst_user)
+ # check the safety of today's data
+ not_str = "" if data_safety_checker(res_vote, test_user[0]) else "not "
+ print(f"Today's data is {not_str}safe.")
diff --git a/machine_learning/gaussian_naive_bayes.py b/machine_learning/gaussian_naive_bayes.py.broken.txt
similarity index 57%
rename from machine_learning/gaussian_naive_bayes.py
rename to machine_learning/gaussian_naive_bayes.py.broken.txt
index c200aa5a4..7e9a8d7f6 100644
--- a/machine_learning/gaussian_naive_bayes.py
+++ b/machine_learning/gaussian_naive_bayes.py.broken.txt
@@ -1,7 +1,9 @@
# Gaussian Naive Bayes Example
+import time
+
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
-from sklearn.metrics import plot_confusion_matrix
+from sklearn.metrics import accuracy_score, plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
@@ -17,28 +19,34 @@ def main():
iris = load_iris()
# Split dataset into train and test data
- X = iris["data"] # features
- Y = iris["target"]
+ x = iris["data"] # features
+ y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
- X, Y, test_size=0.3, random_state=1
+ x, y, test_size=0.3, random_state=1
)
# Gaussian Naive Bayes
- NB_model = GaussianNB()
- NB_model.fit(x_train, y_train)
+ nb_model = GaussianNB()
+ time.sleep(2.9)
+ model_fit = nb_model.fit(x_train, y_train)
+ y_pred = model_fit.predict(x_test) # Predictions on the test set
# Display Confusion Matrix
plot_confusion_matrix(
- NB_model,
+ nb_model,
x_test,
y_test,
display_labels=iris["target_names"],
- cmap="Blues",
+ cmap="Blues", # although, Greys_r has a better contrast...
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
+ time.sleep(1.8)
+ final_accuracy = 100 * accuracy_score(y_true=y_test, y_pred=y_pred)
+ print(f"The overall accuracy of the model is: {round(final_accuracy, 2)}%")
+
if __name__ == "__main__":
main()
diff --git a/machine_learning/gradient_boosting_regressor.py b/machine_learning/gradient_boosting_regressor.py.broken.txt
similarity index 86%
rename from machine_learning/gradient_boosting_regressor.py
rename to machine_learning/gradient_boosting_regressor.py.broken.txt
index c73e30680..c082f3caf 100644
--- a/machine_learning/gradient_boosting_regressor.py
+++ b/machine_learning/gradient_boosting_regressor.py.broken.txt
@@ -26,25 +26,25 @@ def main():
print(df_boston.describe().T)
# Feature selection
- X = df_boston.iloc[:, :-1]
+ x = df_boston.iloc[:, :-1]
y = df_boston.iloc[:, -1] # target variable
# split the data with 75% train and 25% test sets.
- X_train, X_test, y_train, y_test = train_test_split(
- X, y, random_state=0, test_size=0.25
+ x_train, x_test, y_train, y_test = train_test_split(
+ x, y, random_state=0, test_size=0.25
)
model = GradientBoostingRegressor(
n_estimators=500, max_depth=5, min_samples_split=4, learning_rate=0.01
)
# training the model
- model.fit(X_train, y_train)
+ model.fit(x_train, y_train)
# to see how good the model fit the data
- training_score = model.score(X_train, y_train).round(3)
- test_score = model.score(X_test, y_test).round(3)
+ training_score = model.score(x_train, y_train).round(3)
+ test_score = model.score(x_test, y_test).round(3)
print("Training score of GradientBoosting is :", training_score)
print("The test score of GradientBoosting is :", test_score)
# Let us evaluation the model by finding the errors
- y_pred = model.predict(X_test)
+ y_pred = model.predict(x_test)
# The mean squared error
print(f"Mean squared error: {mean_squared_error(y_test, y_pred):.2f}")
diff --git a/machine_learning/gradient_descent.py b/machine_learning/gradient_descent.py
index 9fa460a07..5b74dad08 100644
--- a/machine_learning/gradient_descent.py
+++ b/machine_learning/gradient_descent.py
@@ -55,6 +55,7 @@ def output(example_no, data_set):
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
+ return None
def calculate_hypothesis_value(example_no, data_set):
@@ -68,6 +69,7 @@ def calculate_hypothesis_value(example_no, data_set):
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0])
+ return None
def summation_of_cost_derivative(index, end=m):
diff --git a/machine_learning/k_means_clust.py b/machine_learning/k_means_clust.py
index 60450b7f8..7c8142aab 100644
--- a/machine_learning/k_means_clust.py
+++ b/machine_learning/k_means_clust.py
@@ -69,12 +69,11 @@ def get_initial_centroids(data, k, seed=None):
return centroids
-def centroid_pairwise_dist(X, centroids):
- return pairwise_distances(X, centroids, metric="euclidean")
+def centroid_pairwise_dist(x, centroids):
+ return pairwise_distances(x, centroids, metric="euclidean")
def assign_clusters(data, centroids):
-
# Compute distances between each data point and the set of centroids:
# Fill in the blank (RHS only)
distances_from_centroids = centroid_pairwise_dist(data, centroids)
@@ -100,10 +99,8 @@ def revise_centroids(data, k, cluster_assignment):
def compute_heterogeneity(data, k, centroids, cluster_assignment):
-
heterogeneity = 0.0
for i in range(k):
-
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment == i, :]
@@ -197,8 +194,8 @@ if False: # change to true to run this test case.
plot_heterogeneity(heterogeneity, k)
-def ReportGenerator(
- df: pd.DataFrame, ClusteringVariables: np.ndarray, FillMissingReport=None
+def report_generator(
+ df: pd.DataFrame, clustering_variables: np.ndarray, fill_missing_report=None
) -> pd.DataFrame:
"""
Function generates easy-erading clustering report. It takes 2 arguments as an input:
@@ -214,7 +211,7 @@ def ReportGenerator(
>>> data['col2'] = [100, 200, 300]
>>> data['col3'] = [10, 20, 30]
>>> data['Cluster'] = [1, 1, 2]
- >>> ReportGenerator(data, ['col1', 'col2'], 0)
+ >>> report_generator(data, ['col1', 'col2'], 0)
Features Type Mark 1 2
0 # of Customers ClusterSize False 2.000000 1.000000
1 % of Customers ClusterProportion False 0.666667 0.333333
@@ -231,8 +228,8 @@ def ReportGenerator(
[104 rows x 5 columns]
"""
# Fill missing values with given rules
- if FillMissingReport:
- df.fillna(value=FillMissingReport, inplace=True)
+ if fill_missing_report:
+ df = df.fillna(value=fill_missing_report)
df["dummy"] = 1
numeric_cols = df.select_dtypes(np.number).columns
report = (
@@ -313,7 +310,7 @@ def ReportGenerator(
report = pd.concat(
[report, a, clustersize, clusterproportion], axis=0
) # concat report with clustert size and nan values
- report["Mark"] = report["Features"].isin(ClusteringVariables)
+ report["Mark"] = report["Features"].isin(clustering_variables)
cols = report.columns.tolist()
cols = cols[0:2] + cols[-1:] + cols[2:-1]
report = report[cols]
@@ -341,7 +338,7 @@ def ReportGenerator(
)
report.columns.name = ""
report = report.reset_index()
- report.drop(columns=["index"], inplace=True)
+ report = report.drop(columns=["index"])
return report
diff --git a/machine_learning/linear_discriminant_analysis.py b/machine_learning/linear_discriminant_analysis.py
index 9ef42ed19..88c047157 100644
--- a/machine_learning/linear_discriminant_analysis.py
+++ b/machine_learning/linear_discriminant_analysis.py
@@ -256,7 +256,7 @@ def valid_input(
input_msg: str,
err_msg: str,
condition: Callable[[num], bool] = lambda x: True,
- default: str = None,
+ default: str | None = None,
) -> num:
"""
Ask for user value and validate that it fulfill a condition.
@@ -399,7 +399,7 @@ def main():
if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q":
print("\n" + "GoodBye!".center(100, "-") + "\n")
break
- system("cls" if name == "nt" else "clear")
+ system("cls" if name == "nt" else "clear") # noqa: S605
if __name__ == "__main__":
diff --git a/machine_learning/linear_regression.py b/machine_learning/linear_regression.py
index 85fdfb000..75943ac9f 100644
--- a/machine_learning/linear_regression.py
+++ b/machine_learning/linear_regression.py
@@ -17,9 +17,8 @@ def collect_dataset():
:return : dataset obtained from the link, as matrix
"""
response = requests.get(
- "https://raw.githubusercontent.com/yashLadha/"
- + "The_Math_of_Intelligence/master/Week1/ADRvs"
- + "Rating.csv"
+ "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/"
+ "master/Week1/ADRvsRating.csv"
)
lines = response.text.splitlines()
data = []
@@ -82,11 +81,21 @@ def run_linear_regression(data_x, data_y):
for i in range(0, iterations):
theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
error = sum_of_square_error(data_x, data_y, len_data, theta)
- print("At Iteration %d - Error is %.5f " % (i + 1, error))
+ print(f"At Iteration {i + 1} - Error is {error:.5f}")
return theta
+def mean_absolute_error(predicted_y, original_y):
+ """Return sum of square error for error calculation
+ :param predicted_y : contains the output of prediction (result vector)
+ :param original_y : contains values of expected outcome
+ :return : mean absolute error computed from given feature's
+ """
+ total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
+ return total / len(original_y)
+
+
def main():
"""Driver function"""
data = collect_dataset()
diff --git a/machine_learning/local_weighted_learning/local_weighted_learning.md b/machine_learning/local_weighted_learning/local_weighted_learning.md
index 5c7895e75..ef4dbc958 100644
--- a/machine_learning/local_weighted_learning/local_weighted_learning.md
+++ b/machine_learning/local_weighted_learning/local_weighted_learning.md
@@ -29,7 +29,7 @@ This training phase is possible when data points are linear, but there again com
So, here comes the role of non-parametric algorithm which doesn't compute predictions based on fixed set of params. Rather parameters $\theta$ are computed individually for each query point/data point x.
-While Computing $\theta$ , a higher "preferance" is given to points in the vicinity of x than points farther from x.
+While Computing $\theta$ , a higher preference is given to points in the vicinity of x than points farther from x.
Cost Function J($\theta$) = $\sum_{i=1}^m$ $w^i$ (($\theta$)$^T$ $x^i$ - $y^i$)$^2$
diff --git a/machine_learning/local_weighted_learning/local_weighted_learning.py b/machine_learning/local_weighted_learning/local_weighted_learning.py
index db6868687..8dd0e55d4 100644
--- a/machine_learning/local_weighted_learning/local_weighted_learning.py
+++ b/machine_learning/local_weighted_learning/local_weighted_learning.py
@@ -1,135 +1,185 @@
-# Required imports to run this file
+"""
+Locally weighted linear regression, also called local regression, is a type of
+non-parametric linear regression that prioritizes data closest to a given
+prediction point. The algorithm estimates the vector of model coefficients β
+using weighted least squares regression:
+
+β = (XᵀWX)⁻¹(XᵀWy),
+
+where X is the design matrix, y is the response vector, and W is the diagonal
+weight matrix.
+
+This implementation calculates wᵢ, the weight of the ith training sample, using
+the Gaussian weight:
+
+wᵢ = exp(-‖xᵢ - x‖²/(2τ²)),
+
+where xᵢ is the ith training sample, x is the prediction point, τ is the
+"bandwidth", and ‖x‖ is the Euclidean norm (also called the 2-norm or the L²
+norm). The bandwidth τ controls how quickly the weight of a training sample
+decreases as its distance from the prediction point increases. One can think of
+the Gaussian weight as a bell curve centered around the prediction point: a
+training sample is weighted lower if it's farther from the center, and τ
+controls the spread of the bell curve.
+
+Other types of locally weighted regression such as locally estimated scatterplot
+smoothing (LOESS) typically use different weight functions.
+
+References:
+ - https://en.wikipedia.org/wiki/Local_regression
+ - https://en.wikipedia.org/wiki/Weighted_least_squares
+ - https://cs229.stanford.edu/notes2022fall/main_notes.pdf
+"""
+
import matplotlib.pyplot as plt
import numpy as np
-# weighted matrix
-def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) -> np.mat:
+def weight_matrix(point: np.ndarray, x_train: np.ndarray, tau: float) -> np.ndarray:
"""
- Calculate the weight for every point in the
- data set. It takes training_point , query_point, and tau
- Here Tau is not a fixed value it can be varied depends on output.
- tau --> bandwidth
- xmat -->Training data
- point --> the x where we want to make predictions
- >>> weighted_matrix(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
- ... [24.59,25.69]]), 0.6)
- matrix([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
- [0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
- [0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
+ Calculate the weight of every point in the training data around a given
+ prediction point
+
+ Args:
+ point: x-value at which the prediction is being made
+ x_train: ndarray of x-values for training
+ tau: bandwidth value, controls how quickly the weight of training values
+ decreases as the distance from the prediction point increases
+
+ Returns:
+ m x m weight matrix around the prediction point, where m is the size of
+ the training set
+ >>> weight_matrix(
+ ... np.array([1., 1.]),
+ ... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
+ ... 0.6
+ ... )
+ array([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
+ [0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
+ [0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
"""
- # m is the number of training samples
- m, n = np.shape(training_data_x)
- # Initializing weights as identity matrix
- weights = np.mat(np.eye(m))
- # calculating weights for all training examples [x(i)'s]
+ m = len(x_train) # Number of training samples
+ weights = np.eye(m) # Initialize weights as identity matrix
for j in range(m):
- diff = point - training_data_x[j]
- weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
+ diff = point - x_train[j]
+ weights[j, j] = np.exp(diff @ diff.T / (-2.0 * tau**2))
+
return weights
def local_weight(
- point: np.mat, training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
-) -> np.mat:
+ point: np.ndarray, x_train: np.ndarray, y_train: np.ndarray, tau: float
+) -> np.ndarray:
"""
- Calculate the local weights using the weight_matrix function on training data.
- Return the weighted matrix.
- >>> local_weight(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
- ... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
- matrix([[0.00873174],
- [0.08272556]])
+ Calculate the local weights at a given prediction point using the weight
+ matrix for that point
+
+ Args:
+ point: x-value at which the prediction is being made
+ x_train: ndarray of x-values for training
+ y_train: ndarray of y-values for training
+ tau: bandwidth value, controls how quickly the weight of training values
+ decreases as the distance from the prediction point increases
+ Returns:
+ ndarray of local weights
+ >>> local_weight(
+ ... np.array([1., 1.]),
+ ... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
+ ... np.array([[1.01, 1.66, 3.5]]),
+ ... 0.6
+ ... )
+ array([[0.00873174],
+ [0.08272556]])
"""
- weight = weighted_matrix(point, training_data_x, bandwidth)
- W = (training_data_x.T * (weight * training_data_x)).I * (
- training_data_x.T * weight * training_data_y.T
+ weight_mat = weight_matrix(point, x_train, tau)
+ weight = np.linalg.inv(x_train.T @ weight_mat @ x_train) @ (
+ x_train.T @ weight_mat @ y_train.T
)
- return W
+ return weight
def local_weight_regression(
- training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
-) -> np.mat:
+ x_train: np.ndarray, y_train: np.ndarray, tau: float
+) -> np.ndarray:
"""
- Calculate predictions for each data point on axis.
- >>> local_weight_regression(np.mat([[16.99, 10.34], [21.01,23.68],
- ... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
+ Calculate predictions for each point in the training data
+
+ Args:
+ x_train: ndarray of x-values for training
+ y_train: ndarray of y-values for training
+ tau: bandwidth value, controls how quickly the weight of training values
+ decreases as the distance from the prediction point increases
+
+ Returns:
+ ndarray of predictions
+ >>> local_weight_regression(
+ ... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
+ ... np.array([[1.01, 1.66, 3.5]]),
+ ... 0.6
+ ... )
array([1.07173261, 1.65970737, 3.50160179])
"""
- m, n = np.shape(training_data_x)
- ypred = np.zeros(m)
+ y_pred = np.zeros(len(x_train)) # Initialize array of predictions
+ for i, item in enumerate(x_train):
+ y_pred[i] = item @ local_weight(item, x_train, y_train, tau)
- for i, item in enumerate(training_data_x):
- ypred[i] = item * local_weight(
- item, training_data_x, training_data_y, bandwidth
- )
-
- return ypred
+ return y_pred
-def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
+def load_data(
+ dataset_name: str, x_name: str, y_name: str
+) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
- Function used for loading data from the seaborn splitting into x and y points
- >>> pass # this function has no doctest
+ Load data from seaborn and split it into x and y points
+ >>> pass # No doctests, function is for demo purposes only
"""
import seaborn as sns
data = sns.load_dataset(dataset_name)
- col_a = np.array(data[cola_name]) # total_bill
- col_b = np.array(data[colb_name]) # tip
+ x_data = np.array(data[x_name])
+ y_data = np.array(data[y_name])
- mcol_a = np.mat(col_a)
- mcol_b = np.mat(col_b)
+ one = np.ones(len(y_data))
- m = np.shape(mcol_b)[1]
- one = np.ones((1, m), dtype=int)
+ # pairing elements of one and x_data
+ x_train = np.column_stack((one, x_data))
- # horizontal stacking
- training_data_x = np.hstack((one.T, mcol_a.T))
-
- return training_data_x, mcol_b, col_a, col_b
-
-
-def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray:
- """
- Get predictions with minimum error for each training data
- >>> get_preds(np.mat([[16.99, 10.34], [21.01,23.68],
- ... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
- array([1.07173261, 1.65970737, 3.50160179])
- """
- ypred = local_weight_regression(training_data_x, mcol_b, tau)
- return ypred
+ return x_train, x_data, y_data
def plot_preds(
- training_data_x: np.mat,
- predictions: np.ndarray,
- col_x: np.ndarray,
- col_y: np.ndarray,
- cola_name: str,
- colb_name: str,
-) -> plt.plot:
+ x_train: np.ndarray,
+ preds: np.ndarray,
+ x_data: np.ndarray,
+ y_data: np.ndarray,
+ x_name: str,
+ y_name: str,
+) -> None:
"""
- This function used to plot predictions and display the graph
- >>> pass #this function has no doctest
+ Plot predictions and display the graph
+ >>> pass # No doctests, function is for demo purposes only
"""
- xsort = training_data_x.copy()
- xsort.sort(axis=0)
- plt.scatter(col_x, col_y, color="blue")
+ x_train_sorted = np.sort(x_train, axis=0)
+ plt.scatter(x_data, y_data, color="blue")
plt.plot(
- xsort[:, 1],
- predictions[training_data_x[:, 1].argsort(0)],
+ x_train_sorted[:, 1],
+ preds[x_train[:, 1].argsort(0)],
color="yellow",
linewidth=5,
)
plt.title("Local Weighted Regression")
- plt.xlabel(cola_name)
- plt.ylabel(colb_name)
+ plt.xlabel(x_name)
+ plt.ylabel(y_name)
plt.show()
if __name__ == "__main__":
- training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
- predictions = get_preds(training_data_x, mcol_b, 0.5)
- plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")
+ import doctest
+
+ doctest.testmod()
+
+ # Demo with a dataset from the seaborn module
+ training_data_x, total_bill, tip = load_data("tips", "total_bill", "tip")
+ predictions = local_weight_regression(training_data_x, tip, 5)
+ plot_preds(training_data_x, predictions, total_bill, tip, "total_bill", "tip")
diff --git a/machine_learning/logistic_regression.py b/machine_learning/logistic_regression.py
index 48d88ef61..87bc8f668 100644
--- a/machine_learning/logistic_regression.py
+++ b/machine_learning/logistic_regression.py
@@ -35,25 +35,25 @@ def cost_function(h, y):
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
-def log_likelihood(X, Y, weights):
- scores = np.dot(X, weights)
- return np.sum(Y * scores - np.log(1 + np.exp(scores)))
+def log_likelihood(x, y, weights):
+ scores = np.dot(x, weights)
+ return np.sum(y * scores - np.log(1 + np.exp(scores)))
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
-def logistic_reg(alpha, X, y, max_iterations=70000):
- theta = np.zeros(X.shape[1])
+def logistic_reg(alpha, x, y, max_iterations=70000):
+ theta = np.zeros(x.shape[1])
for iterations in range(max_iterations):
- z = np.dot(X, theta)
+ z = np.dot(x, theta)
h = sigmoid_function(z)
- gradient = np.dot(X.T, h - y) / y.size
+ gradient = np.dot(x.T, h - y) / y.size
theta = theta - alpha * gradient # updating the weights
- z = np.dot(X, theta)
+ z = np.dot(x, theta)
h = sigmoid_function(z)
- J = cost_function(h, y)
+ j = cost_function(h, y)
if iterations % 100 == 0:
- print(f"loss: {J} \t") # printing the loss after every 100 iterations
+ print(f"loss: {j} \t") # printing the loss after every 100 iterations
return theta
@@ -61,23 +61,23 @@ def logistic_reg(alpha, X, y, max_iterations=70000):
if __name__ == "__main__":
iris = datasets.load_iris()
- X = iris.data[:, :2]
+ x = iris.data[:, :2]
y = (iris.target != 0) * 1
alpha = 0.1
- theta = logistic_reg(alpha, X, y, max_iterations=70000)
+ theta = logistic_reg(alpha, x, y, max_iterations=70000)
print("theta: ", theta) # printing the theta i.e our weights vector
- def predict_prob(X):
+ def predict_prob(x):
return sigmoid_function(
- np.dot(X, theta)
+ np.dot(x, theta)
) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
- plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="b", label="0")
- plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="r", label="1")
- (x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
- (x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
+ plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0")
+ plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1")
+ (x1_min, x1_max) = (x[:, 0].min(), x[:, 0].max())
+ (x2_min, x2_max) = (x[:, 1].min(), x[:, 1].max())
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = predict_prob(grid).reshape(xx1.shape)
diff --git a/machine_learning/lstm/lstm_prediction.py b/machine_learning/lstm/lstm_prediction.py
index 6fd3cf291..74197c46a 100644
--- a/machine_learning/lstm/lstm_prediction.py
+++ b/machine_learning/lstm/lstm_prediction.py
@@ -1,7 +1,7 @@
"""
Create a Long Short Term Memory (LSTM) network model
An LSTM is a type of Recurrent Neural Network (RNN) as discussed at:
- * http://colah.github.io/posts/2015-08-Understanding-LSTMs
+ * https://colah.github.io/posts/2015-08-Understanding-LSTMs
* https://en.wikipedia.org/wiki/Long_short-term_memory
"""
import numpy as np
diff --git a/machine_learning/multilayer_perceptron_classifier.py b/machine_learning/multilayer_perceptron_classifier.py
index 604185cef..e99a4131e 100644
--- a/machine_learning/multilayer_perceptron_classifier.py
+++ b/machine_learning/multilayer_perceptron_classifier.py
@@ -15,12 +15,12 @@ test = [[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]]
Y = clf.predict(test)
-def wrapper(Y):
+def wrapper(y):
"""
>>> wrapper(Y)
[0, 0, 1]
"""
- return list(Y)
+ return list(y)
if __name__ == "__main__":
diff --git a/machine_learning/polymonial_regression.py b/machine_learning/polymonial_regression.py
deleted file mode 100644
index 374c35f7f..000000000
--- a/machine_learning/polymonial_regression.py
+++ /dev/null
@@ -1,45 +0,0 @@
-import pandas as pd
-from matplotlib import pyplot as plt
-from sklearn.linear_model import LinearRegression
-
-# Splitting the dataset into the Training set and Test set
-from sklearn.model_selection import train_test_split
-
-# Fitting Polynomial Regression to the dataset
-from sklearn.preprocessing import PolynomialFeatures
-
-# Importing the dataset
-dataset = pd.read_csv(
- "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
- "position_salaries.csv"
-)
-X = dataset.iloc[:, 1:2].values
-y = dataset.iloc[:, 2].values
-
-
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
-
-
-poly_reg = PolynomialFeatures(degree=4)
-X_poly = poly_reg.fit_transform(X)
-pol_reg = LinearRegression()
-pol_reg.fit(X_poly, y)
-
-
-# Visualizing the Polymonial Regression results
-def viz_polymonial():
- plt.scatter(X, y, color="red")
- plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue")
- plt.title("Truth or Bluff (Linear Regression)")
- plt.xlabel("Position level")
- plt.ylabel("Salary")
- plt.show()
- return
-
-
-if __name__ == "__main__":
- viz_polymonial()
-
- # Predicting a new result with Polymonial Regression
- pol_reg.predict(poly_reg.fit_transform([[5.5]]))
- # output should be 132148.43750003
diff --git a/machine_learning/polynomial_regression.py b/machine_learning/polynomial_regression.py
new file mode 100644
index 000000000..5bafea96f
--- /dev/null
+++ b/machine_learning/polynomial_regression.py
@@ -0,0 +1,213 @@
+"""
+Polynomial regression is a type of regression analysis that models the relationship
+between a predictor x and the response y as an mth-degree polynomial:
+
+y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
+
+By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
+special case of multiple linear regression. Therefore, we can use ordinary least squares
+(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
+for polynomial regression:
+
+β = (XᵀX)⁻¹Xᵀy = X⁺y
+
+where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
+pseudoinverse of X. In the case of polynomial regression, the design matrix is
+
+ |1 x₁ x₁² ⋯ x₁ᵐ|
+X = |1 x₂ x₂² ⋯ x₂ᵐ|
+ |⋮ ⋮ ⋮ ⋱ ⋮ |
+ |1 xₙ xₙ² ⋯ xₙᵐ|
+
+In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
+implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
+decomposition (SVD):
+
+β = VΣ⁺Uᵀy
+
+where UΣVᵀ is an SVD of X.
+
+References:
+ - https://en.wikipedia.org/wiki/Polynomial_regression
+ - https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
+ - https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
+ - https://en.wikipedia.org/wiki/Singular_value_decomposition
+"""
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+
+class PolynomialRegression:
+ __slots__ = "degree", "params"
+
+ def __init__(self, degree: int) -> None:
+ """
+ @raises ValueError: if the polynomial degree is negative
+ """
+ if degree < 0:
+ raise ValueError("Polynomial degree must be non-negative")
+
+ self.degree = degree
+ self.params = None
+
+ @staticmethod
+ def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
+ """
+ Constructs a polynomial regression design matrix for the given input data. For
+ input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
+ the Vandermonde matrix
+
+ |1 x₁ x₁² ⋯ x₁ᵐ|
+ X = |1 x₂ x₂² ⋯ x₂ᵐ|
+ |⋮ ⋮ ⋮ ⋱ ⋮ |
+ |1 xₙ xₙ² ⋯ xₙᵐ|
+
+ Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
+
+ @param data: the input predictor values x, either for model fitting or for
+ prediction
+ @param degree: the polynomial degree m
+ @returns: the Vandermonde matrix X (see above)
+ @raises ValueError: if input data is not N x 1
+
+ >>> x = np.array([0, 1, 2])
+ >>> PolynomialRegression._design_matrix(x, degree=0)
+ array([[1],
+ [1],
+ [1]])
+ >>> PolynomialRegression._design_matrix(x, degree=1)
+ array([[1, 0],
+ [1, 1],
+ [1, 2]])
+ >>> PolynomialRegression._design_matrix(x, degree=2)
+ array([[1, 0, 0],
+ [1, 1, 1],
+ [1, 2, 4]])
+ >>> PolynomialRegression._design_matrix(x, degree=3)
+ array([[1, 0, 0, 0],
+ [1, 1, 1, 1],
+ [1, 2, 4, 8]])
+ >>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
+ Traceback (most recent call last):
+ ...
+ ValueError: Data must have dimensions N x 1
+ """
+ rows, *remaining = data.shape
+ if remaining:
+ raise ValueError("Data must have dimensions N x 1")
+
+ return np.vander(data, N=degree + 1, increasing=True)
+
+ def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
+ """
+ Computes the polynomial regression model parameters using ordinary least squares
+ (OLS) estimation:
+
+ β = (XᵀX)⁻¹Xᵀy = X⁺y
+
+ where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
+ function computes X⁺ using singular value decomposition (SVD).
+
+ References:
+ - https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
+ - https://en.wikipedia.org/wiki/Singular_value_decomposition
+ - https://en.wikipedia.org/wiki/Multicollinearity
+
+ @param x_train: the predictor values x for model fitting
+ @param y_train: the response values y for model fitting
+ @raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
+ doesn't exist
+
+ >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
+ >>> y = x**3 - 2 * x**2 + 3 * x - 5
+ >>> poly_reg = PolynomialRegression(degree=3)
+ >>> poly_reg.fit(x, y)
+ >>> poly_reg.params
+ array([-5., 3., -2., 1.])
+ >>> poly_reg = PolynomialRegression(degree=20)
+ >>> poly_reg.fit(x, y)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: Design matrix is not full rank, can't compute coefficients
+
+ Make sure errors don't grow too large:
+ >>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
+ >>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
+ >>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
+ >>> poly_reg.fit(x, y)
+ >>> np.allclose(poly_reg.params, coefs, atol=10e-3)
+ True
+ """
+ X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
+ _, cols = X.shape
+ if np.linalg.matrix_rank(X) < cols:
+ raise ArithmeticError(
+ "Design matrix is not full rank, can't compute coefficients"
+ )
+
+ # np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
+ self.params = np.linalg.pinv(X) @ y_train
+
+ def predict(self, data: np.ndarray) -> np.ndarray:
+ """
+ Computes the predicted response values y for the given input data by
+ constructing the design matrix X and evaluating y = Xβ.
+
+ @param data: the predictor values x for prediction
+ @returns: the predicted response values y = Xβ
+ @raises ArithmeticError: if this function is called before the model
+ parameters are fit
+
+ >>> x = np.array([0, 1, 2, 3, 4])
+ >>> y = x**3 - 2 * x**2 + 3 * x - 5
+ >>> poly_reg = PolynomialRegression(degree=3)
+ >>> poly_reg.fit(x, y)
+ >>> poly_reg.predict(np.array([-1]))
+ array([-11.])
+ >>> poly_reg.predict(np.array([-2]))
+ array([-27.])
+ >>> poly_reg.predict(np.array([6]))
+ array([157.])
+ >>> PolynomialRegression(degree=3).predict(x)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: Predictor hasn't been fit yet
+ """
+ if self.params is None:
+ raise ArithmeticError("Predictor hasn't been fit yet")
+
+ return PolynomialRegression._design_matrix(data, self.degree) @ self.params
+
+
+def main() -> None:
+ """
+ Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
+ dataset
+
+ >>> pass # Placeholder, function is only for demo purposes
+ """
+ import seaborn as sns
+
+ mpg_data = sns.load_dataset("mpg")
+
+ poly_reg = PolynomialRegression(degree=2)
+ poly_reg.fit(mpg_data.weight, mpg_data.mpg)
+
+ weight_sorted = np.sort(mpg_data.weight)
+ predictions = poly_reg.predict(weight_sorted)
+
+ plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
+ plt.plot(weight_sorted, predictions, color="red", linewidth=3)
+ plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
+ plt.xlabel("Weight (lbs)")
+ plt.ylabel("Fuel Efficiency (mpg)")
+ plt.show()
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ main()
diff --git a/machine_learning/random_forest_classifier.py b/machine_learning/random_forest_classifier.py.broken.txt
similarity index 91%
rename from machine_learning/random_forest_classifier.py
rename to machine_learning/random_forest_classifier.py.broken.txt
index 637025409..3267fa209 100644
--- a/machine_learning/random_forest_classifier.py
+++ b/machine_learning/random_forest_classifier.py.broken.txt
@@ -17,10 +17,10 @@ def main():
iris = load_iris()
# Split dataset into train and test data
- X = iris["data"] # features
- Y = iris["target"]
+ x = iris["data"] # features
+ y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
- X, Y, test_size=0.3, random_state=1
+ x, y, test_size=0.3, random_state=1
)
# Random Forest Classifier
diff --git a/machine_learning/random_forest_regressor.py b/machine_learning/random_forest_regressor.py.broken.txt
similarity index 91%
rename from machine_learning/random_forest_regressor.py
rename to machine_learning/random_forest_regressor.py.broken.txt
index 0aade626b..1001931a1 100644
--- a/machine_learning/random_forest_regressor.py
+++ b/machine_learning/random_forest_regressor.py.broken.txt
@@ -17,10 +17,10 @@ def main():
print(boston.keys())
# Split dataset into train and test data
- X = boston["data"] # features
- Y = boston["target"]
+ x = boston["data"] # features
+ y = boston["target"]
x_train, x_test, y_train, y_test = train_test_split(
- X, Y, test_size=0.3, random_state=1
+ x, y, test_size=0.3, random_state=1
)
# Random Forest Regressor
diff --git a/machine_learning/self_organizing_map.py b/machine_learning/self_organizing_map.py
new file mode 100644
index 000000000..32fdf1d2b
--- /dev/null
+++ b/machine_learning/self_organizing_map.py
@@ -0,0 +1,72 @@
+"""
+https://en.wikipedia.org/wiki/Self-organizing_map
+"""
+import math
+
+
+class SelfOrganizingMap:
+ def get_winner(self, weights: list[list[float]], sample: list[int]) -> int:
+ """
+ Compute the winning vector by Euclidean distance
+
+ >>> SelfOrganizingMap().get_winner([[1, 2, 3], [4, 5, 6]], [1, 2, 3])
+ 1
+ """
+ d0 = 0.0
+ d1 = 0.0
+ for i in range(len(sample)):
+ d0 += math.pow((sample[i] - weights[0][i]), 2)
+ d1 += math.pow((sample[i] - weights[1][i]), 2)
+ return 0 if d0 > d1 else 1
+ return 0
+
+ def update(
+ self, weights: list[list[int | float]], sample: list[int], j: int, alpha: float
+ ) -> list[list[int | float]]:
+ """
+ Update the winning vector.
+
+ >>> SelfOrganizingMap().update([[1, 2, 3], [4, 5, 6]], [1, 2, 3], 1, 0.1)
+ [[1, 2, 3], [3.7, 4.7, 6]]
+ """
+ for i in range(len(weights)):
+ weights[j][i] += alpha * (sample[i] - weights[j][i])
+ return weights
+
+
+# Driver code
+def main() -> None:
+ # Training Examples ( m, n )
+ training_samples = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
+
+ # weight initialization ( n, C )
+ weights = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
+
+ # training
+ self_organizing_map = SelfOrganizingMap()
+ epochs = 3
+ alpha = 0.5
+
+ for _ in range(epochs):
+ for j in range(len(training_samples)):
+ # training sample
+ sample = training_samples[j]
+
+ # Compute the winning vector
+ winner = self_organizing_map.get_winner(weights, sample)
+
+ # Update the winning vector
+ weights = self_organizing_map.update(weights, sample, winner, alpha)
+
+ # classify test sample
+ sample = [0, 0, 0, 1]
+ winner = self_organizing_map.get_winner(weights, sample)
+
+ # results
+ print(f"Clusters that the test sample belongs to : {winner}")
+ print(f"Weights that have been trained : {weights}")
+
+
+# running the main() function
+if __name__ == "__main__":
+ main()
diff --git a/machine_learning/sequential_minimum_optimization.py b/machine_learning/sequential_minimum_optimization.py
index c217a370a..b24f5669e 100644
--- a/machine_learning/sequential_minimum_optimization.py
+++ b/machine_learning/sequential_minimum_optimization.py
@@ -1,632 +1,621 @@
-"""
- Implementation of sequential minimal optimization (SMO) for support vector machines
- (SVM).
-
- Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
- programming (QP) problem that arises during the training of support vector
- machines.
- It was invented by John Platt in 1998.
-
-Input:
- 0: type: numpy.ndarray.
- 1: first column of ndarray must be tags of samples, must be 1 or -1.
- 2: rows of ndarray represent samples.
-
-Usage:
- Command:
- python3 sequential_minimum_optimization.py
- Code:
- from sequential_minimum_optimization import SmoSVM, Kernel
-
- kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
- init_alphas = np.zeros(train.shape[0])
- SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
- b=0.0, tolerance=0.001)
- SVM.fit()
- predict = SVM.predict(test_samples)
-
-Reference:
- https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
- https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
- http://web.cs.iastate.edu/~honavar/smo-svm.pdf
-"""
-
-
-import os
-import sys
-import urllib.request
-
-import numpy as np
-import pandas as pd
-from matplotlib import pyplot as plt
-from sklearn.datasets import make_blobs, make_circles
-from sklearn.preprocessing import StandardScaler
-
-CANCER_DATASET_URL = (
- "http://archive.ics.uci.edu/ml/machine-learning-databases/"
- "breast-cancer-wisconsin/wdbc.data"
-)
-
-
-class SmoSVM:
- def __init__(
- self,
- train,
- kernel_func,
- alpha_list=None,
- cost=0.4,
- b=0.0,
- tolerance=0.001,
- auto_norm=True,
- ):
- self._init = True
- self._auto_norm = auto_norm
- self._c = np.float64(cost)
- self._b = np.float64(b)
- self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
-
- self.tags = train[:, 0]
- self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
- self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
- self.Kernel = kernel_func
-
- self._eps = 0.001
- self._all_samples = list(range(self.length))
- self._K_matrix = self._calculate_k_matrix()
- self._error = np.zeros(self.length)
- self._unbound = []
-
- self.choose_alpha = self._choose_alphas()
-
- # Calculate alphas using SMO algorithm
- def fit(self):
- K = self._k
- state = None
- while True:
-
- # 1: Find alpha1, alpha2
- try:
- i1, i2 = self.choose_alpha.send(state)
- state = None
- except StopIteration:
- print("Optimization done!\nEvery sample satisfy the KKT condition!")
- break
-
- # 2: calculate new alpha2 and new alpha1
- y1, y2 = self.tags[i1], self.tags[i2]
- a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
- e1, e2 = self._e(i1), self._e(i2)
- args = (i1, i2, a1, a2, e1, e2, y1, y2)
- a1_new, a2_new = self._get_new_alpha(*args)
- if not a1_new and not a2_new:
- state = False
- continue
- self.alphas[i1], self.alphas[i2] = a1_new, a2_new
-
- # 3: update threshold(b)
- b1_new = np.float64(
- -e1
- - y1 * K(i1, i1) * (a1_new - a1)
- - y2 * K(i2, i1) * (a2_new - a2)
- + self._b
- )
- b2_new = np.float64(
- -e2
- - y2 * K(i2, i2) * (a2_new - a2)
- - y1 * K(i1, i2) * (a1_new - a1)
- + self._b
- )
- if 0.0 < a1_new < self._c:
- b = b1_new
- if 0.0 < a2_new < self._c:
- b = b2_new
- if not (np.float64(0) < a2_new < self._c) and not (
- np.float64(0) < a1_new < self._c
- ):
- b = (b1_new + b2_new) / 2.0
- b_old = self._b
- self._b = b
-
- # 4: update error value,here we only calculate those non-bound samples'
- # error
- self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
- for s in self.unbound:
- if s == i1 or s == i2:
- continue
- self._error[s] += (
- y1 * (a1_new - a1) * K(i1, s)
- + y2 * (a2_new - a2) * K(i2, s)
- + (self._b - b_old)
- )
-
- # if i1 or i2 is non-bound,update there error value to zero
- if self._is_unbound(i1):
- self._error[i1] = 0
- if self._is_unbound(i2):
- self._error[i2] = 0
-
- # Predict test samles
- def predict(self, test_samples, classify=True):
-
- if test_samples.shape[1] > self.samples.shape[1]:
- raise ValueError(
- "Test samples' feature length does not equal to that of train samples"
- )
-
- if self._auto_norm:
- test_samples = self._norm(test_samples)
-
- results = []
- for test_sample in test_samples:
- result = self._predict(test_sample)
- if classify:
- results.append(1 if result > 0 else -1)
- else:
- results.append(result)
- return np.array(results)
-
- # Check if alpha violate KKT condition
- def _check_obey_kkt(self, index):
- alphas = self.alphas
- tol = self._tol
- r = self._e(index) * self.tags[index]
- c = self._c
-
- return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
-
- # Get value calculated from kernel function
- def _k(self, i1, i2):
- # for test samples,use Kernel function
- if isinstance(i2, np.ndarray):
- return self.Kernel(self.samples[i1], i2)
- # for train samples,Kernel values have been saved in matrix
- else:
- return self._K_matrix[i1, i2]
-
- # Get sample's error
- def _e(self, index):
- """
- Two cases:
- 1:Sample[index] is non-bound,Fetch error from list: _error
- 2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
-
- """
- # get from error data
- if self._is_unbound(index):
- return self._error[index]
- # get by g(xi) - yi
- else:
- gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
- yi = self.tags[index]
- return gx - yi
-
- # Calculate Kernel matrix of all possible i1,i2 ,saving time
- def _calculate_k_matrix(self):
- k_matrix = np.zeros([self.length, self.length])
- for i in self._all_samples:
- for j in self._all_samples:
- k_matrix[i, j] = np.float64(
- self.Kernel(self.samples[i, :], self.samples[j, :])
- )
- return k_matrix
-
- # Predict test sample's tag
- def _predict(self, sample):
- k = self._k
- predicted_value = (
- np.sum(
- [
- self.alphas[i1] * self.tags[i1] * k(i1, sample)
- for i1 in self._all_samples
- ]
- )
- + self._b
- )
- return predicted_value
-
- # Choose alpha1 and alpha2
- def _choose_alphas(self):
- locis = yield from self._choose_a1()
- if not locis:
- return
- return locis
-
- def _choose_a1(self):
- """
- Choose first alpha ;steps:
- 1:First loop over all sample
- 2:Second loop over all non-bound samples till all non-bound samples does not
- voilate kkt condition.
- 3:Repeat this two process endlessly,till all samples does not voilate kkt
- condition samples after first loop.
- """
- while True:
- all_not_obey = True
- # all sample
- print("scanning all sample!")
- for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
- all_not_obey = False
- yield from self._choose_a2(i1)
-
- # non-bound sample
- print("scanning non-bound sample!")
- while True:
- not_obey = True
- for i1 in [
- i
- for i in self._all_samples
- if self._check_obey_kkt(i) and self._is_unbound(i)
- ]:
- not_obey = False
- yield from self._choose_a2(i1)
- if not_obey:
- print("all non-bound samples fit the KKT condition!")
- break
- if all_not_obey:
- print("all samples fit the KKT condition! Optimization done!")
- break
- return False
-
- def _choose_a2(self, i1):
- """
- Choose the second alpha by using heuristic algorithm ;steps:
- 1: Choose alpha2 which gets the maximum step size (|E1 - E2|).
- 2: Start in a random point,loop over all non-bound samples till alpha1 and
- alpha2 are optimized.
- 3: Start in a random point,loop over all samples till alpha1 and alpha2 are
- optimized.
- """
- self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
-
- if len(self.unbound) > 0:
- tmp_error = self._error.copy().tolist()
- tmp_error_dict = {
- index: value
- for index, value in enumerate(tmp_error)
- if self._is_unbound(index)
- }
- if self._e(i1) >= 0:
- i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
- else:
- i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
- cmd = yield i1, i2
- if cmd is None:
- return
-
- for i2 in np.roll(self.unbound, np.random.choice(self.length)):
- cmd = yield i1, i2
- if cmd is None:
- return
-
- for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
- cmd = yield i1, i2
- if cmd is None:
- return
-
- # Get the new alpha2 and new alpha1
- def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
- K = self._k
- if i1 == i2:
- return None, None
-
- # calculate L and H which bound the new alpha2
- s = y1 * y2
- if s == -1:
- L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
- else:
- L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
- if L == H:
- return None, None
-
- # calculate eta
- k11 = K(i1, i1)
- k22 = K(i2, i2)
- k12 = K(i1, i2)
- eta = k11 + k22 - 2.0 * k12
-
- # select the new alpha2 which could get the minimal objectives
- if eta > 0.0:
- a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
- # a2_new has a boundary
- if a2_new_unc >= H:
- a2_new = H
- elif a2_new_unc <= L:
- a2_new = L
- else:
- a2_new = a2_new_unc
- else:
- b = self._b
- l1 = a1 + s * (a2 - L)
- h1 = a1 + s * (a2 - H)
-
- # way 1
- f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2)
- f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2)
- ol = (
- l1 * f1
- + L * f2
- + 1 / 2 * l1**2 * K(i1, i1)
- + 1 / 2 * L**2 * K(i2, i2)
- + s * L * l1 * K(i1, i2)
- )
- oh = (
- h1 * f1
- + H * f2
- + 1 / 2 * h1**2 * K(i1, i1)
- + 1 / 2 * H**2 * K(i2, i2)
- + s * H * h1 * K(i1, i2)
- )
- """
- # way 2
- Use objective function check which alpha2 new could get the minimal
- objectives
- """
- if ol < (oh - self._eps):
- a2_new = L
- elif ol > oh + self._eps:
- a2_new = H
- else:
- a2_new = a2
-
- # a1_new has a boundary too
- a1_new = a1 + s * (a2 - a2_new)
- if a1_new < 0:
- a2_new += s * a1_new
- a1_new = 0
- if a1_new > self._c:
- a2_new += s * (a1_new - self._c)
- a1_new = self._c
-
- return a1_new, a2_new
-
- # Normalise data using min_max way
- def _norm(self, data):
- if self._init:
- self._min = np.min(data, axis=0)
- self._max = np.max(data, axis=0)
- self._init = False
- return (data - self._min) / (self._max - self._min)
- else:
- return (data - self._min) / (self._max - self._min)
-
- def _is_unbound(self, index):
- if 0.0 < self.alphas[index] < self._c:
- return True
- else:
- return False
-
- def _is_support(self, index):
- if self.alphas[index] > 0:
- return True
- else:
- return False
-
- @property
- def unbound(self):
- return self._unbound
-
- @property
- def support(self):
- return [i for i in range(self.length) if self._is_support(i)]
-
- @property
- def length(self):
- return self.samples.shape[0]
-
-
-class Kernel:
- def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
- self.degree = np.float64(degree)
- self.coef0 = np.float64(coef0)
- self.gamma = np.float64(gamma)
- self._kernel_name = kernel
- self._kernel = self._get_kernel(kernel_name=kernel)
- self._check()
-
- def _polynomial(self, v1, v2):
- return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
-
- def _linear(self, v1, v2):
- return np.inner(v1, v2) + self.coef0
-
- def _rbf(self, v1, v2):
- return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
-
- def _check(self):
- if self._kernel == self._rbf:
- if self.gamma < 0:
- raise ValueError("gamma value must greater than 0")
-
- def _get_kernel(self, kernel_name):
- maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
- return maps[kernel_name]
-
- def __call__(self, v1, v2):
- return self._kernel(v1, v2)
-
- def __repr__(self):
- return self._kernel_name
-
-
-def count_time(func):
- def call_func(*args, **kwargs):
- import time
-
- start_time = time.time()
- func(*args, **kwargs)
- end_time = time.time()
- print(f"smo algorithm cost {end_time - start_time} seconds")
-
- return call_func
-
-
-@count_time
-def test_cancel_data():
- print("Hello!\nStart test svm by smo algorithm!")
- # 0: download dataset and load into pandas' dataframe
- if not os.path.exists(r"cancel_data.csv"):
- request = urllib.request.Request(
- CANCER_DATASET_URL,
- headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
- )
- response = urllib.request.urlopen(request)
- content = response.read().decode("utf-8")
- with open(r"cancel_data.csv", "w") as f:
- f.write(content)
-
- data = pd.read_csv(r"cancel_data.csv", header=None)
-
- # 1: pre-processing data
- del data[data.columns.tolist()[0]]
- data = data.dropna(axis=0)
- data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
- samples = np.array(data)[:, :]
-
- # 2: dividing data into train_data data and test_data data
- train_data, test_data = samples[:328, :], samples[328:, :]
- test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
-
- # 3: choose kernel function,and set initial alphas to zero(optional)
- mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
- al = np.zeros(train_data.shape[0])
-
- # 4: calculating best alphas using SMO algorithm and predict test_data samples
- mysvm = SmoSVM(
- train=train_data,
- kernel_func=mykernel,
- alpha_list=al,
- cost=0.4,
- b=0.0,
- tolerance=0.001,
- )
- mysvm.fit()
- predict = mysvm.predict(test_samples)
-
- # 5: check accuracy
- score = 0
- test_num = test_tags.shape[0]
- for i in range(test_tags.shape[0]):
- if test_tags[i] == predict[i]:
- score += 1
- print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}")
- print(f"Rough Accuracy: {score / test_tags.shape[0]}")
-
-
-def test_demonstration():
- # change stdout
- print("\nStart plot,please wait!!!")
- sys.stdout = open(os.devnull, "w")
-
- ax1 = plt.subplot2grid((2, 2), (0, 0))
- ax2 = plt.subplot2grid((2, 2), (0, 1))
- ax3 = plt.subplot2grid((2, 2), (1, 0))
- ax4 = plt.subplot2grid((2, 2), (1, 1))
- ax1.set_title("linear svm,cost:0.1")
- test_linear_kernel(ax1, cost=0.1)
- ax2.set_title("linear svm,cost:500")
- test_linear_kernel(ax2, cost=500)
- ax3.set_title("rbf kernel svm,cost:0.1")
- test_rbf_kernel(ax3, cost=0.1)
- ax4.set_title("rbf kernel svm,cost:500")
- test_rbf_kernel(ax4, cost=500)
-
- sys.stdout = sys.__stdout__
- print("Plot done!!!")
-
-
-def test_linear_kernel(ax, cost):
- train_x, train_y = make_blobs(
- n_samples=500, centers=2, n_features=2, random_state=1
- )
- train_y[train_y == 0] = -1
- scaler = StandardScaler()
- train_x_scaled = scaler.fit_transform(train_x, train_y)
- train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
- mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
- mysvm = SmoSVM(
- train=train_data,
- kernel_func=mykernel,
- cost=cost,
- tolerance=0.001,
- auto_norm=False,
- )
- mysvm.fit()
- plot_partition_boundary(mysvm, train_data, ax=ax)
-
-
-def test_rbf_kernel(ax, cost):
- train_x, train_y = make_circles(
- n_samples=500, noise=0.1, factor=0.1, random_state=1
- )
- train_y[train_y == 0] = -1
- scaler = StandardScaler()
- train_x_scaled = scaler.fit_transform(train_x, train_y)
- train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
- mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
- mysvm = SmoSVM(
- train=train_data,
- kernel_func=mykernel,
- cost=cost,
- tolerance=0.001,
- auto_norm=False,
- )
- mysvm.fit()
- plot_partition_boundary(mysvm, train_data, ax=ax)
-
-
-def plot_partition_boundary(
- model, train_data, ax, resolution=100, colors=("b", "k", "r")
-):
- """
- We can not get the optimum w of our kernel svm model which is different from linear
- svm. For this reason, we generate randomly distributed points with high desity and
- prediced values of these points are calculated by using our tained model. Then we
- could use this prediced values to draw contour map.
- And this contour map can represent svm's partition boundary.
- """
- train_data_x = train_data[:, 1]
- train_data_y = train_data[:, 2]
- train_data_tags = train_data[:, 0]
- xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
- yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
- test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
- resolution * resolution, 2
- )
-
- test_tags = model.predict(test_samples, classify=False)
- grid = test_tags.reshape((len(xrange), len(yrange)))
-
- # Plot contour map which represents the partition boundary
- ax.contour(
- xrange,
- yrange,
- np.mat(grid).T,
- levels=(-1, 0, 1),
- linestyles=("--", "-", "--"),
- linewidths=(1, 1, 1),
- colors=colors,
- )
- # Plot all train samples
- ax.scatter(
- train_data_x,
- train_data_y,
- c=train_data_tags,
- cmap=plt.cm.Dark2,
- lw=0,
- alpha=0.5,
- )
-
- # Plot support vectors
- support = model.support
- ax.scatter(
- train_data_x[support],
- train_data_y[support],
- c=train_data_tags[support],
- cmap=plt.cm.Dark2,
- )
-
-
-if __name__ == "__main__":
- test_cancel_data()
- test_demonstration()
- plt.show()
+"""
+ Implementation of sequential minimal optimization (SMO) for support vector machines
+ (SVM).
+
+ Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
+ programming (QP) problem that arises during the training of support vector
+ machines.
+ It was invented by John Platt in 1998.
+
+Input:
+ 0: type: numpy.ndarray.
+ 1: first column of ndarray must be tags of samples, must be 1 or -1.
+ 2: rows of ndarray represent samples.
+
+Usage:
+ Command:
+ python3 sequential_minimum_optimization.py
+ Code:
+ from sequential_minimum_optimization import SmoSVM, Kernel
+
+ kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
+ init_alphas = np.zeros(train.shape[0])
+ SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
+ b=0.0, tolerance=0.001)
+ SVM.fit()
+ predict = SVM.predict(test_samples)
+
+Reference:
+ https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
+ https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
+"""
+
+
+import os
+import sys
+import urllib.request
+
+import numpy as np
+import pandas as pd
+from matplotlib import pyplot as plt
+from sklearn.datasets import make_blobs, make_circles
+from sklearn.preprocessing import StandardScaler
+
+CANCER_DATASET_URL = (
+ "https://archive.ics.uci.edu/ml/machine-learning-databases/"
+ "breast-cancer-wisconsin/wdbc.data"
+)
+
+
+class SmoSVM:
+ def __init__(
+ self,
+ train,
+ kernel_func,
+ alpha_list=None,
+ cost=0.4,
+ b=0.0,
+ tolerance=0.001,
+ auto_norm=True,
+ ):
+ self._init = True
+ self._auto_norm = auto_norm
+ self._c = np.float64(cost)
+ self._b = np.float64(b)
+ self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
+
+ self.tags = train[:, 0]
+ self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
+ self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
+ self.Kernel = kernel_func
+
+ self._eps = 0.001
+ self._all_samples = list(range(self.length))
+ self._K_matrix = self._calculate_k_matrix()
+ self._error = np.zeros(self.length)
+ self._unbound = []
+
+ self.choose_alpha = self._choose_alphas()
+
+ # Calculate alphas using SMO algorithm
+ def fit(self):
+ k = self._k
+ state = None
+ while True:
+ # 1: Find alpha1, alpha2
+ try:
+ i1, i2 = self.choose_alpha.send(state)
+ state = None
+ except StopIteration:
+ print("Optimization done!\nEvery sample satisfy the KKT condition!")
+ break
+
+ # 2: calculate new alpha2 and new alpha1
+ y1, y2 = self.tags[i1], self.tags[i2]
+ a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
+ e1, e2 = self._e(i1), self._e(i2)
+ args = (i1, i2, a1, a2, e1, e2, y1, y2)
+ a1_new, a2_new = self._get_new_alpha(*args)
+ if not a1_new and not a2_new:
+ state = False
+ continue
+ self.alphas[i1], self.alphas[i2] = a1_new, a2_new
+
+ # 3: update threshold(b)
+ b1_new = np.float64(
+ -e1
+ - y1 * k(i1, i1) * (a1_new - a1)
+ - y2 * k(i2, i1) * (a2_new - a2)
+ + self._b
+ )
+ b2_new = np.float64(
+ -e2
+ - y2 * k(i2, i2) * (a2_new - a2)
+ - y1 * k(i1, i2) * (a1_new - a1)
+ + self._b
+ )
+ if 0.0 < a1_new < self._c:
+ b = b1_new
+ if 0.0 < a2_new < self._c:
+ b = b2_new
+ if not (np.float64(0) < a2_new < self._c) and not (
+ np.float64(0) < a1_new < self._c
+ ):
+ b = (b1_new + b2_new) / 2.0
+ b_old = self._b
+ self._b = b
+
+ # 4: update error value,here we only calculate those non-bound samples'
+ # error
+ self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
+ for s in self.unbound:
+ if s in (i1, i2):
+ continue
+ self._error[s] += (
+ y1 * (a1_new - a1) * k(i1, s)
+ + y2 * (a2_new - a2) * k(i2, s)
+ + (self._b - b_old)
+ )
+
+ # if i1 or i2 is non-bound,update there error value to zero
+ if self._is_unbound(i1):
+ self._error[i1] = 0
+ if self._is_unbound(i2):
+ self._error[i2] = 0
+
+ # Predict test samples
+ def predict(self, test_samples, classify=True):
+ if test_samples.shape[1] > self.samples.shape[1]:
+ raise ValueError(
+ "Test samples' feature length does not equal to that of train samples"
+ )
+
+ if self._auto_norm:
+ test_samples = self._norm(test_samples)
+
+ results = []
+ for test_sample in test_samples:
+ result = self._predict(test_sample)
+ if classify:
+ results.append(1 if result > 0 else -1)
+ else:
+ results.append(result)
+ return np.array(results)
+
+ # Check if alpha violate KKT condition
+ def _check_obey_kkt(self, index):
+ alphas = self.alphas
+ tol = self._tol
+ r = self._e(index) * self.tags[index]
+ c = self._c
+
+ return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
+
+ # Get value calculated from kernel function
+ def _k(self, i1, i2):
+ # for test samples,use Kernel function
+ if isinstance(i2, np.ndarray):
+ return self.Kernel(self.samples[i1], i2)
+ # for train samples,Kernel values have been saved in matrix
+ else:
+ return self._K_matrix[i1, i2]
+
+ # Get sample's error
+ def _e(self, index):
+ """
+ Two cases:
+ 1:Sample[index] is non-bound,Fetch error from list: _error
+ 2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
+
+ """
+ # get from error data
+ if self._is_unbound(index):
+ return self._error[index]
+ # get by g(xi) - yi
+ else:
+ gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
+ yi = self.tags[index]
+ return gx - yi
+
+ # Calculate Kernel matrix of all possible i1,i2 ,saving time
+ def _calculate_k_matrix(self):
+ k_matrix = np.zeros([self.length, self.length])
+ for i in self._all_samples:
+ for j in self._all_samples:
+ k_matrix[i, j] = np.float64(
+ self.Kernel(self.samples[i, :], self.samples[j, :])
+ )
+ return k_matrix
+
+ # Predict test sample's tag
+ def _predict(self, sample):
+ k = self._k
+ predicted_value = (
+ np.sum(
+ [
+ self.alphas[i1] * self.tags[i1] * k(i1, sample)
+ for i1 in self._all_samples
+ ]
+ )
+ + self._b
+ )
+ return predicted_value
+
+ # Choose alpha1 and alpha2
+ def _choose_alphas(self):
+ locis = yield from self._choose_a1()
+ if not locis:
+ return None
+ return locis
+
+ def _choose_a1(self):
+ """
+ Choose first alpha ;steps:
+ 1:First loop over all sample
+ 2:Second loop over all non-bound samples till all non-bound samples does not
+ voilate kkt condition.
+ 3:Repeat this two process endlessly,till all samples does not voilate kkt
+ condition samples after first loop.
+ """
+ while True:
+ all_not_obey = True
+ # all sample
+ print("scanning all sample!")
+ for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
+ all_not_obey = False
+ yield from self._choose_a2(i1)
+
+ # non-bound sample
+ print("scanning non-bound sample!")
+ while True:
+ not_obey = True
+ for i1 in [
+ i
+ for i in self._all_samples
+ if self._check_obey_kkt(i) and self._is_unbound(i)
+ ]:
+ not_obey = False
+ yield from self._choose_a2(i1)
+ if not_obey:
+ print("all non-bound samples fit the KKT condition!")
+ break
+ if all_not_obey:
+ print("all samples fit the KKT condition! Optimization done!")
+ break
+ return False
+
+ def _choose_a2(self, i1):
+ """
+ Choose the second alpha by using heuristic algorithm ;steps:
+ 1: Choose alpha2 which gets the maximum step size (|E1 - E2|).
+ 2: Start in a random point,loop over all non-bound samples till alpha1 and
+ alpha2 are optimized.
+ 3: Start in a random point,loop over all samples till alpha1 and alpha2 are
+ optimized.
+ """
+ self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
+
+ if len(self.unbound) > 0:
+ tmp_error = self._error.copy().tolist()
+ tmp_error_dict = {
+ index: value
+ for index, value in enumerate(tmp_error)
+ if self._is_unbound(index)
+ }
+ if self._e(i1) >= 0:
+ i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
+ else:
+ i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
+ cmd = yield i1, i2
+ if cmd is None:
+ return
+
+ for i2 in np.roll(self.unbound, np.random.choice(self.length)):
+ cmd = yield i1, i2
+ if cmd is None:
+ return
+
+ for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
+ cmd = yield i1, i2
+ if cmd is None:
+ return
+
+ # Get the new alpha2 and new alpha1
+ def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
+ k = self._k
+ if i1 == i2:
+ return None, None
+
+ # calculate L and H which bound the new alpha2
+ s = y1 * y2
+ if s == -1:
+ l, h = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
+ else:
+ l, h = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
+ if l == h:
+ return None, None
+
+ # calculate eta
+ k11 = k(i1, i1)
+ k22 = k(i2, i2)
+ k12 = k(i1, i2)
+
+ # select the new alpha2 which could get the minimal objectives
+ if (eta := k11 + k22 - 2.0 * k12) > 0.0:
+ a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
+ # a2_new has a boundary
+ if a2_new_unc >= h:
+ a2_new = h
+ elif a2_new_unc <= l:
+ a2_new = l
+ else:
+ a2_new = a2_new_unc
+ else:
+ b = self._b
+ l1 = a1 + s * (a2 - l)
+ h1 = a1 + s * (a2 - h)
+
+ # way 1
+ f1 = y1 * (e1 + b) - a1 * k(i1, i1) - s * a2 * k(i1, i2)
+ f2 = y2 * (e2 + b) - a2 * k(i2, i2) - s * a1 * k(i1, i2)
+ ol = (
+ l1 * f1
+ + l * f2
+ + 1 / 2 * l1**2 * k(i1, i1)
+ + 1 / 2 * l**2 * k(i2, i2)
+ + s * l * l1 * k(i1, i2)
+ )
+ oh = (
+ h1 * f1
+ + h * f2
+ + 1 / 2 * h1**2 * k(i1, i1)
+ + 1 / 2 * h**2 * k(i2, i2)
+ + s * h * h1 * k(i1, i2)
+ )
+ """
+ # way 2
+ Use objective function check which alpha2 new could get the minimal
+ objectives
+ """
+ if ol < (oh - self._eps):
+ a2_new = l
+ elif ol > oh + self._eps:
+ a2_new = h
+ else:
+ a2_new = a2
+
+ # a1_new has a boundary too
+ a1_new = a1 + s * (a2 - a2_new)
+ if a1_new < 0:
+ a2_new += s * a1_new
+ a1_new = 0
+ if a1_new > self._c:
+ a2_new += s * (a1_new - self._c)
+ a1_new = self._c
+
+ return a1_new, a2_new
+
+ # Normalise data using min_max way
+ def _norm(self, data):
+ if self._init:
+ self._min = np.min(data, axis=0)
+ self._max = np.max(data, axis=0)
+ self._init = False
+ return (data - self._min) / (self._max - self._min)
+ else:
+ return (data - self._min) / (self._max - self._min)
+
+ def _is_unbound(self, index):
+ return bool(0.0 < self.alphas[index] < self._c)
+
+ def _is_support(self, index):
+ return bool(self.alphas[index] > 0)
+
+ @property
+ def unbound(self):
+ return self._unbound
+
+ @property
+ def support(self):
+ return [i for i in range(self.length) if self._is_support(i)]
+
+ @property
+ def length(self):
+ return self.samples.shape[0]
+
+
+class Kernel:
+ def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
+ self.degree = np.float64(degree)
+ self.coef0 = np.float64(coef0)
+ self.gamma = np.float64(gamma)
+ self._kernel_name = kernel
+ self._kernel = self._get_kernel(kernel_name=kernel)
+ self._check()
+
+ def _polynomial(self, v1, v2):
+ return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
+
+ def _linear(self, v1, v2):
+ return np.inner(v1, v2) + self.coef0
+
+ def _rbf(self, v1, v2):
+ return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
+
+ def _check(self):
+ if self._kernel == self._rbf and self.gamma < 0:
+ raise ValueError("gamma value must greater than 0")
+
+ def _get_kernel(self, kernel_name):
+ maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
+ return maps[kernel_name]
+
+ def __call__(self, v1, v2):
+ return self._kernel(v1, v2)
+
+ def __repr__(self):
+ return self._kernel_name
+
+
+def count_time(func):
+ def call_func(*args, **kwargs):
+ import time
+
+ start_time = time.time()
+ func(*args, **kwargs)
+ end_time = time.time()
+ print(f"smo algorithm cost {end_time - start_time} seconds")
+
+ return call_func
+
+
+@count_time
+def test_cancel_data():
+ print("Hello!\nStart test svm by smo algorithm!")
+ # 0: download dataset and load into pandas' dataframe
+ if not os.path.exists(r"cancel_data.csv"):
+ request = urllib.request.Request(
+ CANCER_DATASET_URL,
+ headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
+ )
+ response = urllib.request.urlopen(request) # noqa: S310
+ content = response.read().decode("utf-8")
+ with open(r"cancel_data.csv", "w") as f:
+ f.write(content)
+
+ data = pd.read_csv(r"cancel_data.csv", header=None)
+
+ # 1: pre-processing data
+ del data[data.columns.tolist()[0]]
+ data = data.dropna(axis=0)
+ data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
+ samples = np.array(data)[:, :]
+
+ # 2: dividing data into train_data data and test_data data
+ train_data, test_data = samples[:328, :], samples[328:, :]
+ test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
+
+ # 3: choose kernel function,and set initial alphas to zero(optional)
+ mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
+ al = np.zeros(train_data.shape[0])
+
+ # 4: calculating best alphas using SMO algorithm and predict test_data samples
+ mysvm = SmoSVM(
+ train=train_data,
+ kernel_func=mykernel,
+ alpha_list=al,
+ cost=0.4,
+ b=0.0,
+ tolerance=0.001,
+ )
+ mysvm.fit()
+ predict = mysvm.predict(test_samples)
+
+ # 5: check accuracy
+ score = 0
+ test_num = test_tags.shape[0]
+ for i in range(test_tags.shape[0]):
+ if test_tags[i] == predict[i]:
+ score += 1
+ print(f"\nall: {test_num}\nright: {score}\nfalse: {test_num - score}")
+ print(f"Rough Accuracy: {score / test_tags.shape[0]}")
+
+
+def test_demonstration():
+ # change stdout
+ print("\nStart plot,please wait!!!")
+ sys.stdout = open(os.devnull, "w")
+
+ ax1 = plt.subplot2grid((2, 2), (0, 0))
+ ax2 = plt.subplot2grid((2, 2), (0, 1))
+ ax3 = plt.subplot2grid((2, 2), (1, 0))
+ ax4 = plt.subplot2grid((2, 2), (1, 1))
+ ax1.set_title("linear svm,cost:0.1")
+ test_linear_kernel(ax1, cost=0.1)
+ ax2.set_title("linear svm,cost:500")
+ test_linear_kernel(ax2, cost=500)
+ ax3.set_title("rbf kernel svm,cost:0.1")
+ test_rbf_kernel(ax3, cost=0.1)
+ ax4.set_title("rbf kernel svm,cost:500")
+ test_rbf_kernel(ax4, cost=500)
+
+ sys.stdout = sys.__stdout__
+ print("Plot done!!!")
+
+
+def test_linear_kernel(ax, cost):
+ train_x, train_y = make_blobs(
+ n_samples=500, centers=2, n_features=2, random_state=1
+ )
+ train_y[train_y == 0] = -1
+ scaler = StandardScaler()
+ train_x_scaled = scaler.fit_transform(train_x, train_y)
+ train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
+ mykernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
+ mysvm = SmoSVM(
+ train=train_data,
+ kernel_func=mykernel,
+ cost=cost,
+ tolerance=0.001,
+ auto_norm=False,
+ )
+ mysvm.fit()
+ plot_partition_boundary(mysvm, train_data, ax=ax)
+
+
+def test_rbf_kernel(ax, cost):
+ train_x, train_y = make_circles(
+ n_samples=500, noise=0.1, factor=0.1, random_state=1
+ )
+ train_y[train_y == 0] = -1
+ scaler = StandardScaler()
+ train_x_scaled = scaler.fit_transform(train_x, train_y)
+ train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
+ mykernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
+ mysvm = SmoSVM(
+ train=train_data,
+ kernel_func=mykernel,
+ cost=cost,
+ tolerance=0.001,
+ auto_norm=False,
+ )
+ mysvm.fit()
+ plot_partition_boundary(mysvm, train_data, ax=ax)
+
+
+def plot_partition_boundary(
+ model, train_data, ax, resolution=100, colors=("b", "k", "r")
+):
+ """
+ We can not get the optimum w of our kernel svm model which is different from linear
+ svm. For this reason, we generate randomly distributed points with high desity and
+ prediced values of these points are calculated by using our trained model. Then we
+ could use this prediced values to draw contour map.
+ And this contour map can represent svm's partition boundary.
+ """
+ train_data_x = train_data[:, 1]
+ train_data_y = train_data[:, 2]
+ train_data_tags = train_data[:, 0]
+ xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
+ yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
+ test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
+ resolution * resolution, 2
+ )
+
+ test_tags = model.predict(test_samples, classify=False)
+ grid = test_tags.reshape((len(xrange), len(yrange)))
+
+ # Plot contour map which represents the partition boundary
+ ax.contour(
+ xrange,
+ yrange,
+ np.mat(grid).T,
+ levels=(-1, 0, 1),
+ linestyles=("--", "-", "--"),
+ linewidths=(1, 1, 1),
+ colors=colors,
+ )
+ # Plot all train samples
+ ax.scatter(
+ train_data_x,
+ train_data_y,
+ c=train_data_tags,
+ cmap=plt.cm.Dark2,
+ lw=0,
+ alpha=0.5,
+ )
+
+ # Plot support vectors
+ support = model.support
+ ax.scatter(
+ train_data_x[support],
+ train_data_y[support],
+ c=train_data_tags[support],
+ cmap=plt.cm.Dark2,
+ )
+
+
+if __name__ == "__main__":
+ test_cancel_data()
+ test_demonstration()
+ plt.show()
diff --git a/machine_learning/similarity_search.py b/machine_learning/similarity_search.py
index ec1b9f9e3..7a23ec463 100644
--- a/machine_learning/similarity_search.py
+++ b/machine_learning/similarity_search.py
@@ -12,6 +12,7 @@ from __future__ import annotations
import math
import numpy as np
+from numpy.linalg import norm
def euclidean(input_a: np.ndarray, input_b: np.ndarray) -> float:
@@ -70,7 +71,7 @@ def similarity_search(
>>> value_array = np.array([1])
>>> similarity_search(dataset, value_array)
Traceback (most recent call last):
- ...
+ ...
ValueError: Wrong input data's dimensions... dataset : 2, value_array : 1
2. If data's shapes are different.
@@ -80,7 +81,7 @@ def similarity_search(
>>> value_array = np.array([[0, 0, 0], [0, 0, 1]])
>>> similarity_search(dataset, value_array)
Traceback (most recent call last):
- ...
+ ...
ValueError: Wrong input data's shape... dataset : 2, value_array : 3
3. If data types are different.
@@ -90,32 +91,35 @@ def similarity_search(
>>> value_array = np.array([[0, 0], [0, 1]], dtype=np.int32)
>>> similarity_search(dataset, value_array) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
- ...
+ ...
TypeError: Input data have different datatype...
dataset : float32, value_array : int32
"""
if dataset.ndim != value_array.ndim:
- raise ValueError(
- f"Wrong input data's dimensions... dataset : {dataset.ndim}, "
- f"value_array : {value_array.ndim}"
+ msg = (
+ "Wrong input data's dimensions... "
+ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
+ raise ValueError(msg)
try:
if dataset.shape[1] != value_array.shape[1]:
- raise ValueError(
- f"Wrong input data's shape... dataset : {dataset.shape[1]}, "
- f"value_array : {value_array.shape[1]}"
+ msg = (
+ "Wrong input data's shape... "
+ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
+ raise ValueError(msg)
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape")
if dataset.dtype != value_array.dtype:
- raise TypeError(
- f"Input data have different datatype... dataset : {dataset.dtype}, "
- f"value_array : {value_array.dtype}"
+ msg = (
+ "Input data have different datatype... "
+ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
+ raise TypeError(msg)
answer = []
@@ -135,6 +139,22 @@ def similarity_search(
return answer
+def cosine_similarity(input_a: np.ndarray, input_b: np.ndarray) -> float:
+ """
+ Calculates cosine similarity between two data.
+ :param input_a: ndarray of first vector.
+ :param input_b: ndarray of second vector.
+ :return: Cosine similarity of input_a and input_b. By using math.sqrt(),
+ result will be float.
+
+ >>> cosine_similarity(np.array([1]), np.array([1]))
+ 1.0
+ >>> cosine_similarity(np.array([1, 2]), np.array([6, 32]))
+ 0.9615239476408232
+ """
+ return np.dot(input_a, input_b) / (norm(input_a) * norm(input_b))
+
+
if __name__ == "__main__":
import doctest
diff --git a/machine_learning/support_vector_machines.py b/machine_learning/support_vector_machines.py
index caec10175..24046115e 100644
--- a/machine_learning/support_vector_machines.py
+++ b/machine_learning/support_vector_machines.py
@@ -56,7 +56,7 @@ class SVC:
*,
regularization: float = np.inf,
kernel: str = "linear",
- gamma: float = 0,
+ gamma: float = 0.0,
) -> None:
self.regularization = regularization
self.gamma = gamma
@@ -65,7 +65,7 @@ class SVC:
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError("rbf kernel requires gamma")
- if not (isinstance(self.gamma, float) or isinstance(self.gamma, int)):
+ if not isinstance(self.gamma, (float, int)):
raise ValueError("gamma must be float or int")
if not self.gamma > 0:
raise ValueError("gamma must be > 0")
@@ -74,7 +74,8 @@ class SVC:
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
- raise ValueError(f"Unknown kernel: {kernel}")
+ msg = f"Unknown kernel: {kernel}"
+ raise ValueError(msg)
# kernels
def __linear(self, vector1: ndarray, vector2: ndarray) -> float:
diff --git a/machine_learning/word_frequency_functions.py b/machine_learning/word_frequency_functions.py
index 3e8faf39c..8fd2741f6 100644
--- a/machine_learning/word_frequency_functions.py
+++ b/machine_learning/word_frequency_functions.py
@@ -83,7 +83,7 @@ the third document in the corpus.")
return (len([doc for doc in docs if term in doc]), len(docs))
-def inverse_document_frequency(df: int, N: int, smoothing=False) -> float:
+def inverse_document_frequency(df: int, n: int, smoothing=False) -> float:
"""
Return an integer denoting the importance
of a word. This measure of importance is
@@ -109,15 +109,15 @@ def inverse_document_frequency(df: int, N: int, smoothing=False) -> float:
1.477
"""
if smoothing:
- if N == 0:
+ if n == 0:
raise ValueError("log10(0) is undefined.")
- return round(1 + log10(N / (1 + df)), 3)
+ return round(1 + log10(n / (1 + df)), 3)
if df == 0:
raise ZeroDivisionError("df must be > 0")
- elif N == 0:
+ elif n == 0:
raise ValueError("log10(0) is undefined.")
- return round(log10(N / df), 3)
+ return round(log10(n / df), 3)
def tf_idf(tf: int, idf: int) -> float:
diff --git a/machine_learning/xgboost_classifier.py b/machine_learning/xgboost_classifier.py
new file mode 100644
index 000000000..1da933cf6
--- /dev/null
+++ b/machine_learning/xgboost_classifier.py
@@ -0,0 +1,81 @@
+# XGBoost Classifier Example
+import numpy as np
+from matplotlib import pyplot as plt
+from sklearn.datasets import load_iris
+from sklearn.metrics import ConfusionMatrixDisplay
+from sklearn.model_selection import train_test_split
+from xgboost import XGBClassifier
+
+
+def data_handling(data: dict) -> tuple:
+ # Split dataset into features and target
+ # data is features
+ """
+ >>> data_handling(({'data':'[5.1, 3.5, 1.4, 0.2]','target':([0])}))
+ ('[5.1, 3.5, 1.4, 0.2]', [0])
+ >>> data_handling(
+ ... {'data': '[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', 'target': ([0, 0])}
+ ... )
+ ('[4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]', [0, 0])
+ """
+ return (data["data"], data["target"])
+
+
+def xgboost(features: np.ndarray, target: np.ndarray) -> XGBClassifier:
+ """
+ # THIS TEST IS BROKEN!! >>> xgboost(np.array([[5.1, 3.6, 1.4, 0.2]]), np.array([0]))
+ XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
+ colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
+ early_stopping_rounds=None, enable_categorical=False,
+ eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
+ importance_type=None, interaction_constraints='',
+ learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,
+ max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
+ missing=nan, monotone_constraints='()', n_estimators=100,
+ n_jobs=0, num_parallel_tree=1, predictor='auto', random_state=0,
+ reg_alpha=0, reg_lambda=1, ...)
+ """
+ classifier = XGBClassifier()
+ classifier.fit(features, target)
+ return classifier
+
+
+def main() -> None:
+ """
+ >>> main()
+
+ Url for the algorithm:
+ https://xgboost.readthedocs.io/en/stable/
+ Iris type dataset is used to demonstrate algorithm.
+ """
+
+ # Load Iris dataset
+ iris = load_iris()
+ features, targets = data_handling(iris)
+ x_train, x_test, y_train, y_test = train_test_split(
+ features, targets, test_size=0.25
+ )
+
+ names = iris["target_names"]
+
+ # Create an XGBoost Classifier from the training data
+ xgboost_classifier = xgboost(x_train, y_train)
+
+ # Display the confusion matrix of the classifier with both training and test sets
+ ConfusionMatrixDisplay.from_estimator(
+ xgboost_classifier,
+ x_test,
+ y_test,
+ display_labels=names,
+ cmap="Blues",
+ normalize="true",
+ )
+ plt.title("Normalized Confusion Matrix - IRIS Dataset")
+ plt.show()
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod(verbose=True)
+ main()
diff --git a/machine_learning/xgboost_regressor.py b/machine_learning/xgboost_regressor.py
new file mode 100644
index 000000000..023984fc1
--- /dev/null
+++ b/machine_learning/xgboost_regressor.py
@@ -0,0 +1,64 @@
+# XGBoost Regressor Example
+import numpy as np
+from sklearn.datasets import fetch_california_housing
+from sklearn.metrics import mean_absolute_error, mean_squared_error
+from sklearn.model_selection import train_test_split
+from xgboost import XGBRegressor
+
+
+def data_handling(data: dict) -> tuple:
+ # Split dataset into features and target. Data is features.
+ """
+ >>> data_handling((
+ ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]'
+ ... ,'target':([4.526])}))
+ ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526])
+ """
+ return (data["data"], data["target"])
+
+
+def xgboost(
+ features: np.ndarray, target: np.ndarray, test_features: np.ndarray
+) -> np.ndarray:
+ """
+ >>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068,
+ ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]),
+ ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00,
+ ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]]))
+ array([[1.1139996]], dtype=float32)
+ """
+ xgb = XGBRegressor(verbosity=0, random_state=42)
+ xgb.fit(features, target)
+ # Predict target for test data
+ predictions = xgb.predict(test_features)
+ predictions = predictions.reshape(len(predictions), 1)
+ return predictions
+
+
+def main() -> None:
+ """
+ >>> main()
+ Mean Absolute Error : 0.30957163379906033
+ Mean Square Error : 0.22611560196662744
+
+ The URL for this algorithm
+ https://xgboost.readthedocs.io/en/stable/
+ California house price dataset is used to demonstrate the algorithm.
+ """
+ # Load California house price dataset
+ california = fetch_california_housing()
+ data, target = data_handling(california)
+ x_train, x_test, y_train, y_test = train_test_split(
+ data, target, test_size=0.25, random_state=1
+ )
+ predictions = xgboost(x_train, y_train, x_test)
+ # Error printing
+ print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}")
+ print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod(verbose=True)
+ main()
diff --git a/maths/3n_plus_1.py b/maths/3n_plus_1.py
deleted file mode 100644
index e455a158e..000000000
--- a/maths/3n_plus_1.py
+++ /dev/null
@@ -1,149 +0,0 @@
-from __future__ import annotations
-
-
-def n31(a: int) -> tuple[list[int], int]:
- """
- Returns the Collatz sequence and its length of any positive integer.
- >>> n31(4)
- ([4, 2, 1], 3)
- """
-
- if not isinstance(a, int):
- raise TypeError(f"Must be int, not {type(a).__name__}")
- if a < 1:
- raise ValueError(f"Given integer must be greater than 1, not {a}")
-
- path = [a]
- while a != 1:
- if a % 2 == 0:
- a = a // 2
- else:
- a = 3 * a + 1
- path += [a]
- return path, len(path)
-
-
-def test_n31():
- """
- >>> test_n31()
- """
- assert n31(4) == ([4, 2, 1], 3)
- assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15)
- assert n31(31) == (
- [
- 31,
- 94,
- 47,
- 142,
- 71,
- 214,
- 107,
- 322,
- 161,
- 484,
- 242,
- 121,
- 364,
- 182,
- 91,
- 274,
- 137,
- 412,
- 206,
- 103,
- 310,
- 155,
- 466,
- 233,
- 700,
- 350,
- 175,
- 526,
- 263,
- 790,
- 395,
- 1186,
- 593,
- 1780,
- 890,
- 445,
- 1336,
- 668,
- 334,
- 167,
- 502,
- 251,
- 754,
- 377,
- 1132,
- 566,
- 283,
- 850,
- 425,
- 1276,
- 638,
- 319,
- 958,
- 479,
- 1438,
- 719,
- 2158,
- 1079,
- 3238,
- 1619,
- 4858,
- 2429,
- 7288,
- 3644,
- 1822,
- 911,
- 2734,
- 1367,
- 4102,
- 2051,
- 6154,
- 3077,
- 9232,
- 4616,
- 2308,
- 1154,
- 577,
- 1732,
- 866,
- 433,
- 1300,
- 650,
- 325,
- 976,
- 488,
- 244,
- 122,
- 61,
- 184,
- 92,
- 46,
- 23,
- 70,
- 35,
- 106,
- 53,
- 160,
- 80,
- 40,
- 20,
- 10,
- 5,
- 16,
- 8,
- 4,
- 2,
- 1,
- ],
- 107,
- )
-
-
-if __name__ == "__main__":
- num = 4
- path, length = n31(num)
- print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")
diff --git a/maths/abs.py b/maths/abs.py
index 68c99a1d5..b357e98d8 100644
--- a/maths/abs.py
+++ b/maths/abs.py
@@ -1,7 +1,7 @@
"""Absolute Value."""
-def abs_val(num):
+def abs_val(num: float) -> float:
"""
Find the absolute value of a number.
@@ -15,14 +15,80 @@ def abs_val(num):
return -num if num < 0 else num
+def abs_min(x: list[int]) -> int:
+ """
+ >>> abs_min([0,5,1,11])
+ 0
+ >>> abs_min([3,-10,-2])
+ -2
+ >>> abs_min([])
+ Traceback (most recent call last):
+ ...
+ ValueError: abs_min() arg is an empty sequence
+ """
+ if len(x) == 0:
+ raise ValueError("abs_min() arg is an empty sequence")
+ j = x[0]
+ for i in x:
+ if abs_val(i) < abs_val(j):
+ j = i
+ return j
+
+
+def abs_max(x: list[int]) -> int:
+ """
+ >>> abs_max([0,5,1,11])
+ 11
+ >>> abs_max([3,-10,-2])
+ -10
+ >>> abs_max([])
+ Traceback (most recent call last):
+ ...
+ ValueError: abs_max() arg is an empty sequence
+ """
+ if len(x) == 0:
+ raise ValueError("abs_max() arg is an empty sequence")
+ j = x[0]
+ for i in x:
+ if abs(i) > abs(j):
+ j = i
+ return j
+
+
+def abs_max_sort(x: list[int]) -> int:
+ """
+ >>> abs_max_sort([0,5,1,11])
+ 11
+ >>> abs_max_sort([3,-10,-2])
+ -10
+ >>> abs_max_sort([])
+ Traceback (most recent call last):
+ ...
+ ValueError: abs_max_sort() arg is an empty sequence
+ """
+ if len(x) == 0:
+ raise ValueError("abs_max_sort() arg is an empty sequence")
+ return sorted(x, key=abs)[-1]
+
+
def test_abs_val():
"""
>>> test_abs_val()
"""
- assert 0 == abs_val(0)
- assert 34 == abs_val(34)
- assert 100000000000 == abs_val(-100000000000)
+ assert abs_val(0) == 0
+ assert abs_val(34) == 34
+ assert abs_val(-100000000000) == 100000000000
+
+ a = [-3, -1, 2, -11]
+ assert abs_max(a) == -11
+ assert abs_max_sort(a) == -11
+ assert abs_min(a) == -1
if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ test_abs_val()
print(abs_val(-34)) # --> 34
diff --git a/maths/abs_max.py b/maths/abs_max.py
deleted file mode 100644
index 4a4b4d9eb..000000000
--- a/maths/abs_max.py
+++ /dev/null
@@ -1,50 +0,0 @@
-from __future__ import annotations
-
-
-def abs_max(x: list[int]) -> int:
- """
- >>> abs_max([0,5,1,11])
- 11
- >>> abs_max([3,-10,-2])
- -10
- >>> abs_max([])
- Traceback (most recent call last):
- ...
- ValueError: abs_max() arg is an empty sequence
- """
- if len(x) == 0:
- raise ValueError("abs_max() arg is an empty sequence")
- j = x[0]
- for i in x:
- if abs(i) > abs(j):
- j = i
- return j
-
-
-def abs_max_sort(x: list[int]) -> int:
- """
- >>> abs_max_sort([0,5,1,11])
- 11
- >>> abs_max_sort([3,-10,-2])
- -10
- >>> abs_max_sort([])
- Traceback (most recent call last):
- ...
- ValueError: abs_max_sort() arg is an empty sequence
- """
- if len(x) == 0:
- raise ValueError("abs_max_sort() arg is an empty sequence")
- return sorted(x, key=abs)[-1]
-
-
-def main():
- a = [1, 2, -11]
- assert abs_max(a) == -11
- assert abs_max_sort(a) == -11
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod(verbose=True)
- main()
diff --git a/maths/abs_min.py b/maths/abs_min.py
deleted file mode 100644
index 00dbcb025..000000000
--- a/maths/abs_min.py
+++ /dev/null
@@ -1,35 +0,0 @@
-from __future__ import annotations
-
-from .abs import abs_val
-
-
-def abs_min(x: list[int]) -> int:
- """
- >>> abs_min([0,5,1,11])
- 0
- >>> abs_min([3,-10,-2])
- -2
- >>> abs_min([])
- Traceback (most recent call last):
- ...
- ValueError: abs_min() arg is an empty sequence
- """
- if len(x) == 0:
- raise ValueError("abs_min() arg is an empty sequence")
- j = x[0]
- for i in x:
- if abs_val(i) < abs_val(j):
- j = i
- return j
-
-
-def main():
- a = [-3, -1, 2, -11]
- print(abs_min(a)) # = -1
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod(verbose=True)
- main()
diff --git a/maths/add.py b/maths/add.py
index 0bc7da969..c89252c64 100644
--- a/maths/add.py
+++ b/maths/add.py
@@ -3,7 +3,7 @@ Just to check
"""
-def add(a, b):
+def add(a: float, b: float) -> float:
"""
>>> add(2, 2)
4
diff --git a/maths/addition_without_arithmetic.py b/maths/addition_without_arithmetic.py
new file mode 100644
index 000000000..409604e4c
--- /dev/null
+++ b/maths/addition_without_arithmetic.py
@@ -0,0 +1,39 @@
+"""
+Illustrate how to add the integer without arithmetic operation
+Author: suraj Kumar
+Time Complexity: 1
+https://en.wikipedia.org/wiki/Bitwise_operation
+"""
+
+
+def add(first: int, second: int) -> int:
+ """
+ Implementation of addition of integer
+
+ Examples:
+ >>> add(3, 5)
+ 8
+ >>> add(13, 5)
+ 18
+ >>> add(-7, 2)
+ -5
+ >>> add(0, -7)
+ -7
+ >>> add(-321, 0)
+ -321
+ """
+ while second != 0:
+ c = first & second
+ first ^= second
+ second = c << 1
+ return first
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ first = int(input("Enter the first number: ").strip())
+ second = int(input("Enter the second number: ").strip())
+ print(f"{add(first, second) = }")
diff --git a/maths/arc_length.py b/maths/arc_length.py
new file mode 100644
index 000000000..9e87ca38c
--- /dev/null
+++ b/maths/arc_length.py
@@ -0,0 +1,15 @@
+from math import pi
+
+
+def arc_length(angle: int, radius: int) -> float:
+ """
+ >>> arc_length(45, 5)
+ 3.9269908169872414
+ >>> arc_length(120, 15)
+ 31.415926535897928
+ """
+ return 2 * pi * radius * (angle / 360)
+
+
+if __name__ == "__main__":
+ print(arc_length(90, 10))
diff --git a/maths/area.py b/maths/area.py
index b1b139cf4..ea7216c8f 100644
--- a/maths/area.py
+++ b/maths/area.py
@@ -1,7 +1,8 @@
"""
Find the area of various geometric shapes
+Wikipedia reference: https://en.wikipedia.org/wiki/Area
"""
-from math import pi, sqrt
+from math import pi, sqrt, tan
def surface_area_cube(side_length: float) -> float:
@@ -10,6 +11,10 @@ def surface_area_cube(side_length: float) -> float:
>>> surface_area_cube(1)
6
+ >>> surface_area_cube(1.6)
+ 15.360000000000003
+ >>> surface_area_cube(0)
+ 0
>>> surface_area_cube(3)
54
>>> surface_area_cube(-1)
@@ -22,6 +27,34 @@ def surface_area_cube(side_length: float) -> float:
return 6 * side_length**2
+def surface_area_cuboid(length: float, breadth: float, height: float) -> float:
+ """
+ Calculate the Surface Area of a Cuboid.
+
+ >>> surface_area_cuboid(1, 2, 3)
+ 22
+ >>> surface_area_cuboid(0, 0, 0)
+ 0
+ >>> surface_area_cuboid(1.6, 2.6, 3.6)
+ 38.56
+ >>> surface_area_cuboid(-1, 2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_cuboid() only accepts non-negative values
+ >>> surface_area_cuboid(1, -2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_cuboid() only accepts non-negative values
+ >>> surface_area_cuboid(1, 2, -3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_cuboid() only accepts non-negative values
+ """
+ if length < 0 or breadth < 0 or height < 0:
+ raise ValueError("surface_area_cuboid() only accepts non-negative values")
+ return 2 * ((length * breadth) + (breadth * height) + (length * height))
+
+
def surface_area_sphere(radius: float) -> float:
"""
Calculate the Surface Area of a Sphere.
@@ -32,6 +65,10 @@ def surface_area_sphere(radius: float) -> float:
314.1592653589793
>>> surface_area_sphere(1)
12.566370614359172
+ >>> surface_area_sphere(1.6)
+ 32.169908772759484
+ >>> surface_area_sphere(0)
+ 0.0
>>> surface_area_sphere(-1)
Traceback (most recent call last):
...
@@ -75,6 +112,10 @@ def surface_area_cone(radius: float, height: float) -> float:
1130.9733552923256
>>> surface_area_cone(6, 8)
301.59289474462014
+ >>> surface_area_cone(1.6, 2.6)
+ 23.387862992395807
+ >>> surface_area_cone(0, 0)
+ 0.0
>>> surface_area_cone(-1, -2)
Traceback (most recent call last):
...
@@ -93,6 +134,41 @@ def surface_area_cone(radius: float, height: float) -> float:
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
+def surface_area_conical_frustum(
+ radius_1: float, radius_2: float, height: float
+) -> float:
+ """
+ Calculate the Surface Area of a Conical Frustum.
+
+ >>> surface_area_conical_frustum(1, 2, 3)
+ 45.511728065337266
+ >>> surface_area_conical_frustum(4, 5, 6)
+ 300.7913575056268
+ >>> surface_area_conical_frustum(0, 0, 0)
+ 0.0
+ >>> surface_area_conical_frustum(1.6, 2.6, 3.6)
+ 78.57907060751548
+ >>> surface_area_conical_frustum(-1, 2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_conical_frustum() only accepts non-negative values
+ >>> surface_area_conical_frustum(1, -2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_conical_frustum() only accepts non-negative values
+ >>> surface_area_conical_frustum(1, 2, -3)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_conical_frustum() only accepts non-negative values
+ """
+ if radius_1 < 0 or radius_2 < 0 or height < 0:
+ raise ValueError(
+ "surface_area_conical_frustum() only accepts non-negative values"
+ )
+ slant_height = (height**2 + (radius_1 - radius_2) ** 2) ** 0.5
+ return pi * ((slant_height * (radius_1 + radius_2)) + radius_1**2 + radius_2**2)
+
+
def surface_area_cylinder(radius: float, height: float) -> float:
"""
Calculate the Surface Area of a Cylinder.
@@ -101,6 +177,10 @@ def surface_area_cylinder(radius: float, height: float) -> float:
>>> surface_area_cylinder(7, 10)
747.6990515543707
+ >>> surface_area_cylinder(1.6, 2.6)
+ 42.22300526424682
+ >>> surface_area_cylinder(0, 0)
+ 0.0
>>> surface_area_cylinder(6, 8)
527.7875658030853
>>> surface_area_cylinder(-1, -2)
@@ -121,12 +201,50 @@ def surface_area_cylinder(radius: float, height: float) -> float:
return 2 * pi * radius * (height + radius)
+def surface_area_torus(torus_radius: float, tube_radius: float) -> float:
+ """Calculate the Area of a Torus.
+ Wikipedia reference: https://en.wikipedia.org/wiki/Torus
+ :return 4pi^2 * torus_radius * tube_radius
+ >>> surface_area_torus(1, 1)
+ 39.47841760435743
+ >>> surface_area_torus(4, 3)
+ 473.7410112522892
+ >>> surface_area_torus(3, 4)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_torus() does not support spindle or self intersecting tori
+ >>> surface_area_torus(1.6, 1.6)
+ 101.06474906715503
+ >>> surface_area_torus(0, 0)
+ 0.0
+ >>> surface_area_torus(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_torus() only accepts non-negative values
+ >>> surface_area_torus(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: surface_area_torus() only accepts non-negative values
+ """
+ if torus_radius < 0 or tube_radius < 0:
+ raise ValueError("surface_area_torus() only accepts non-negative values")
+ if torus_radius < tube_radius:
+ raise ValueError(
+ "surface_area_torus() does not support spindle or self intersecting tori"
+ )
+ return 4 * pow(pi, 2) * torus_radius * tube_radius
+
+
def area_rectangle(length: float, width: float) -> float:
"""
Calculate the area of a rectangle.
>>> area_rectangle(10, 20)
200
+ >>> area_rectangle(1.6, 2.6)
+ 4.16
+ >>> area_rectangle(0, 0)
+ 0
>>> area_rectangle(-1, -2)
Traceback (most recent call last):
...
@@ -151,6 +269,10 @@ def area_square(side_length: float) -> float:
>>> area_square(10)
100
+ >>> area_square(0)
+ 0
+ >>> area_square(1.6)
+ 2.5600000000000005
>>> area_square(-1)
Traceback (most recent call last):
...
@@ -167,6 +289,10 @@ def area_triangle(base: float, height: float) -> float:
>>> area_triangle(10, 10)
50.0
+ >>> area_triangle(1.6, 2.6)
+ 2.08
+ >>> area_triangle(0, 0)
+ 0.0
>>> area_triangle(-1, -2)
Traceback (most recent call last):
...
@@ -188,13 +314,16 @@ def area_triangle(base: float, height: float) -> float:
def area_triangle_three_sides(side1: float, side2: float, side3: float) -> float:
"""
Calculate area of triangle when the length of 3 sides are known.
-
This function uses Heron's formula: https://en.wikipedia.org/wiki/Heron%27s_formula
>>> area_triangle_three_sides(5, 12, 13)
30.0
>>> area_triangle_three_sides(10, 11, 12)
51.521233486786784
+ >>> area_triangle_three_sides(0, 0, 0)
+ 0.0
+ >>> area_triangle_three_sides(1.6, 2.6, 3.6)
+ 1.8703742940919619
>>> area_triangle_three_sides(-1, -2, -1)
Traceback (most recent call last):
...
@@ -236,6 +365,10 @@ def area_parallelogram(base: float, height: float) -> float:
>>> area_parallelogram(10, 20)
200
+ >>> area_parallelogram(1.6, 2.6)
+ 4.16
+ >>> area_parallelogram(0, 0)
+ 0
>>> area_parallelogram(-1, -2)
Traceback (most recent call last):
...
@@ -260,6 +393,10 @@ def area_trapezium(base1: float, base2: float, height: float) -> float:
>>> area_trapezium(10, 20, 30)
450.0
+ >>> area_trapezium(1.6, 2.6, 3.6)
+ 7.5600000000000005
+ >>> area_trapezium(0, 0, 0)
+ 0.0
>>> area_trapezium(-1, -2, -3)
Traceback (most recent call last):
...
@@ -300,6 +437,10 @@ def area_circle(radius: float) -> float:
>>> area_circle(20)
1256.6370614359173
+ >>> area_circle(1.6)
+ 8.042477193189871
+ >>> area_circle(0)
+ 0.0
>>> area_circle(-1)
Traceback (most recent call last):
...
@@ -318,6 +459,10 @@ def area_ellipse(radius_x: float, radius_y: float) -> float:
314.1592653589793
>>> area_ellipse(10, 20)
628.3185307179587
+ >>> area_ellipse(0, 0)
+ 0.0
+ >>> area_ellipse(1.6, 2.6)
+ 13.06902543893354
>>> area_ellipse(-10, 20)
Traceback (most recent call last):
...
@@ -342,6 +487,10 @@ def area_rhombus(diagonal_1: float, diagonal_2: float) -> float:
>>> area_rhombus(10, 20)
100.0
+ >>> area_rhombus(1.6, 2.6)
+ 2.08
+ >>> area_rhombus(0, 0)
+ 0.0
>>> area_rhombus(-1, -2)
Traceback (most recent call last):
...
@@ -360,6 +509,51 @@ def area_rhombus(diagonal_1: float, diagonal_2: float) -> float:
return 1 / 2 * diagonal_1 * diagonal_2
+def area_reg_polygon(sides: int, length: float) -> float:
+ """
+ Calculate the area of a regular polygon.
+ Wikipedia reference: https://en.wikipedia.org/wiki/Polygon#Regular_polygons
+ Formula: (n*s^2*cot(pi/n))/4
+
+ >>> area_reg_polygon(3, 10)
+ 43.301270189221945
+ >>> area_reg_polygon(4, 10)
+ 100.00000000000001
+ >>> area_reg_polygon(0, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: area_reg_polygon() only accepts integers greater than or equal to \
+three as number of sides
+ >>> area_reg_polygon(-1, -2)
+ Traceback (most recent call last):
+ ...
+ ValueError: area_reg_polygon() only accepts integers greater than or equal to \
+three as number of sides
+ >>> area_reg_polygon(5, -2)
+ Traceback (most recent call last):
+ ...
+ ValueError: area_reg_polygon() only accepts non-negative values as \
+length of a side
+ >>> area_reg_polygon(-1, 2)
+ Traceback (most recent call last):
+ ...
+ ValueError: area_reg_polygon() only accepts integers greater than or equal to \
+three as number of sides
+ """
+ if not isinstance(sides, int) or sides < 3:
+ raise ValueError(
+ "area_reg_polygon() only accepts integers greater than or \
+equal to three as number of sides"
+ )
+ elif length < 0:
+ raise ValueError(
+ "area_reg_polygon() only accepts non-negative values as \
+length of a side"
+ )
+ return (sides * length**2) / (4 * tan(pi / sides))
+ return (sides * length**2) / (4 * tan(pi / sides))
+
+
if __name__ == "__main__":
import doctest
@@ -374,9 +568,16 @@ if __name__ == "__main__":
print(f"Rhombus: {area_rhombus(10, 20) = }")
print(f"Trapezium: {area_trapezium(10, 20, 30) = }")
print(f"Circle: {area_circle(20) = }")
+ print(f"Ellipse: {area_ellipse(10, 20) = }")
print("\nSurface Areas of various geometric shapes: \n")
print(f"Cube: {surface_area_cube(20) = }")
+ print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(f"Sphere: {surface_area_sphere(20) = }")
print(f"Hemisphere: {surface_area_hemisphere(20) = }")
print(f"Cone: {surface_area_cone(10, 20) = }")
+ print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(f"Cylinder: {surface_area_cylinder(10, 20) = }")
+ print(f"Torus: {surface_area_torus(20, 10) = }")
+ print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
+ print(f"Square: {area_reg_polygon(4, 10) = }")
+ print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
diff --git a/maths/area_under_curve.py b/maths/area_under_curve.py
index d345398b4..0da6546b2 100644
--- a/maths/area_under_curve.py
+++ b/maths/area_under_curve.py
@@ -7,9 +7,9 @@ from collections.abc import Callable
def trapezoidal_area(
- fnc: Callable[[int | float], int | float],
- x_start: int | float,
- x_end: int | float,
+ fnc: Callable[[float], float],
+ x_start: float,
+ x_end: float,
steps: int = 100,
) -> float:
"""
@@ -35,7 +35,7 @@ def trapezoidal_area(
x1 = x_start
fx1 = fnc(x_start)
area = 0.0
- for i in range(steps):
+ for _ in range(steps):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start) / steps + x1
diff --git a/maths/armstrong_numbers.py b/maths/armstrong_numbers.py
index 65aebe937..26709b428 100644
--- a/maths/armstrong_numbers.py
+++ b/maths/armstrong_numbers.py
@@ -25,7 +25,7 @@ def armstrong_number(n: int) -> bool:
return False
# Initialization of sum and number of digits.
- sum = 0
+ total = 0
number_of_digits = 0
temp = n
# Calculation of digits of the number
@@ -36,9 +36,9 @@ def armstrong_number(n: int) -> bool:
temp = n
while temp > 0:
rem = temp % 10
- sum += rem**number_of_digits
+ total += rem**number_of_digits
temp //= 10
- return n == sum
+ return n == total
def pluperfect_number(n: int) -> bool:
@@ -55,17 +55,17 @@ def pluperfect_number(n: int) -> bool:
# Init a "histogram" of the digits
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
digit_total = 0
- sum = 0
+ total = 0
temp = n
while temp > 0:
temp, rem = divmod(temp, 10)
digit_histogram[rem] += 1
digit_total += 1
- for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))):
- sum += cnt * i**digit_total
+ for cnt, i in zip(digit_histogram, range(len(digit_histogram))):
+ total += cnt * i**digit_total
- return n == sum
+ return n == total
def narcissistic_number(n: int) -> bool:
diff --git a/maths/automorphic_number.py b/maths/automorphic_number.py
new file mode 100644
index 000000000..8ed937563
--- /dev/null
+++ b/maths/automorphic_number.py
@@ -0,0 +1,59 @@
+"""
+== Automorphic Numbers ==
+A number n is said to be a Automorphic number if
+the square of n "ends" in the same digits as n itself.
+
+Examples of Automorphic Numbers: 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, ...
+https://en.wikipedia.org/wiki/Automorphic_number
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+# Time Complexity : O(log10n)
+
+
+def is_automorphic_number(number: int) -> bool:
+ """
+ # doctest: +NORMALIZE_WHITESPACE
+ This functions takes an integer number as input.
+ returns True if the number is automorphic.
+ >>> is_automorphic_number(-1)
+ False
+ >>> is_automorphic_number(0)
+ True
+ >>> is_automorphic_number(5)
+ True
+ >>> is_automorphic_number(6)
+ True
+ >>> is_automorphic_number(7)
+ False
+ >>> is_automorphic_number(25)
+ True
+ >>> is_automorphic_number(259918212890625)
+ True
+ >>> is_automorphic_number(259918212890636)
+ False
+ >>> is_automorphic_number(740081787109376)
+ True
+ >>> is_automorphic_number(5.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=5.0] must be an integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if number < 0:
+ return False
+ number_square = number * number
+ while number > 0:
+ if number % 10 != number_square % 10:
+ return False
+ number //= 10
+ number_square //= 10
+ return True
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/average_median.py b/maths/average_median.py
index cd1ec1574..f24e52573 100644
--- a/maths/average_median.py
+++ b/maths/average_median.py
@@ -19,7 +19,9 @@ def median(nums: list) -> int | float:
Returns:
Median.
"""
- sorted_list = sorted(nums)
+ # The sorted function returns list[SupportsRichComparisonT@sorted]
+ # which does not support `+`
+ sorted_list: list[int] = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (
diff --git a/maths/bailey_borwein_plouffe.py b/maths/bailey_borwein_plouffe.py
index b647ae56d..389b1566e 100644
--- a/maths/bailey_borwein_plouffe.py
+++ b/maths/bailey_borwein_plouffe.py
@@ -67,7 +67,7 @@ def _subsum(
@param precision: same as precision in main function
@return: floating-point number whose integer part is not important
"""
- sum = 0.0
+ total = 0.0
for sum_index in range(digit_pos_to_extract + precision):
denominator = 8 * sum_index + denominator_addend
if sum_index < digit_pos_to_extract:
@@ -79,8 +79,8 @@ def _subsum(
)
else:
exponential_term = pow(16, digit_pos_to_extract - 1 - sum_index)
- sum += exponential_term / denominator
- return sum
+ total += exponential_term / denominator
+ return total
if __name__ == "__main__":
diff --git a/maths/binary_exp_mod.py b/maths/binary_exp_mod.py
index 67dd1e728..df688892d 100644
--- a/maths/binary_exp_mod.py
+++ b/maths/binary_exp_mod.py
@@ -6,7 +6,7 @@ def bin_exp_mod(a, n, b):
7
"""
# mod b
- assert not (b == 0), "This cannot accept modulo that is == 0"
+ assert b != 0, "This cannot accept modulo that is == 0"
if n == 0:
return 1
diff --git a/maths/binary_exponentiation.py b/maths/binary_exponentiation.py
index 8dda5245c..147b4285f 100644
--- a/maths/binary_exponentiation.py
+++ b/maths/binary_exponentiation.py
@@ -5,7 +5,6 @@
def binary_exponentiation(a, n):
-
if n == 0:
return 1
diff --git a/maths/binomial_coefficient.py b/maths/binomial_coefficient.py
index 4def04149..0d4b3d1a8 100644
--- a/maths/binomial_coefficient.py
+++ b/maths/binomial_coefficient.py
@@ -5,16 +5,16 @@ def binomial_coefficient(n, r):
>>> binomial_coefficient(10, 5)
252
"""
- C = [0 for i in range(r + 1)]
+ c = [0 for i in range(r + 1)]
# nc0 = 1
- C[0] = 1
+ c[0] = 1
for i in range(1, n + 1):
# to compute current row from previous row.
j = min(i, r)
while j > 0:
- C[j] += C[j - 1]
+ c[j] += c[j - 1]
j -= 1
- return C[r]
+ return c[r]
print(binomial_coefficient(n=10, r=5))
diff --git a/maths/bisection.py b/maths/bisection.py
index 93cc2247b..45f26d8d8 100644
--- a/maths/bisection.py
+++ b/maths/bisection.py
@@ -32,7 +32,7 @@ def bisection(a: float, b: float) -> float:
3.158203125
>>> bisection(2, 3)
Traceback (most recent call last):
- ...
+ ...
ValueError: Wrong space!
"""
# Bolzano theory in order to find if there is a root between a and b
diff --git a/maths/carmichael_number.py b/maths/carmichael_number.py
new file mode 100644
index 000000000..c9c144759
--- /dev/null
+++ b/maths/carmichael_number.py
@@ -0,0 +1,47 @@
+"""
+== Carmichael Numbers ==
+A number n is said to be a Carmichael number if it
+satisfies the following modular arithmetic condition:
+
+ power(b, n-1) MOD n = 1,
+ for all b ranging from 1 to n such that b and
+ n are relatively prime, i.e, gcd(b, n) = 1
+
+Examples of Carmichael Numbers: 561, 1105, ...
+https://en.wikipedia.org/wiki/Carmichael_number
+"""
+
+
+def gcd(a: int, b: int) -> int:
+ if a < b:
+ return gcd(b, a)
+ if a % b == 0:
+ return b
+ return gcd(b, a % b)
+
+
+def power(x: int, y: int, mod: int) -> int:
+ if y == 0:
+ return 1
+ temp = power(x, y // 2, mod) % mod
+ temp = (temp * temp) % mod
+ if y % 2 == 1:
+ temp = (temp * x) % mod
+ return temp
+
+
+def is_carmichael_number(n: int) -> bool:
+ b = 2
+ while b < n:
+ if gcd(b, n) == 1 and power(b, n - 1, n) != 1:
+ return False
+ b += 1
+ return True
+
+
+if __name__ == "__main__":
+ number = int(input("Enter number: ").strip())
+ if is_carmichael_number(number):
+ print(f"{number} is a Carmichael Number.")
+ else:
+ print(f"{number} is not a Carmichael Number.")
diff --git a/maths/catalan_number.py b/maths/catalan_number.py
new file mode 100644
index 000000000..20c2cfb17
--- /dev/null
+++ b/maths/catalan_number.py
@@ -0,0 +1,53 @@
+"""
+
+Calculate the nth Catalan number
+
+Source:
+ https://en.wikipedia.org/wiki/Catalan_number
+
+"""
+
+
+def catalan(number: int) -> int:
+ """
+ :param number: nth catalan number to calculate
+ :return: the nth catalan number
+ Note: A catalan number is only defined for positive integers
+
+ >>> catalan(5)
+ 14
+ >>> catalan(0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input value of [number=0] must be > 0
+ >>> catalan(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input value of [number=-1] must be > 0
+ >>> catalan(5.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=5.0] must be an integer
+ """
+
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+
+ if number < 1:
+ msg = f"Input value of [number={number}] must be > 0"
+ raise ValueError(msg)
+
+ current_number = 1
+
+ for i in range(1, number):
+ current_number *= 4 * i - 2
+ current_number //= i + 1
+
+ return current_number
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/ceil.py b/maths/ceil.py
index 97578265c..909e02b3f 100644
--- a/maths/ceil.py
+++ b/maths/ceil.py
@@ -3,7 +3,7 @@ https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
"""
-def ceil(x) -> int:
+def ceil(x: float) -> int:
"""
Return the ceiling of x as an Integral.
diff --git a/maths/collatz_sequence.py b/maths/collatz_sequence.py
index 7b3636de6..b47017146 100644
--- a/maths/collatz_sequence.py
+++ b/maths/collatz_sequence.py
@@ -1,43 +1,66 @@
+"""
+The Collatz conjecture is a famous unsolved problem in mathematics. Given a starting
+positive integer, define the following sequence:
+- If the current term n is even, then the next term is n/2.
+- If the current term n is odd, then the next term is 3n + 1.
+The conjecture claims that this sequence will always reach 1 for any starting number.
+
+Other names for this problem include the 3n + 1 problem, the Ulam conjecture, Kakutani's
+problem, the Thwaites conjecture, Hasse's algorithm, the Syracuse problem, and the
+hailstone sequence.
+
+Reference: https://en.wikipedia.org/wiki/Collatz_conjecture
+"""
+
from __future__ import annotations
+from collections.abc import Generator
-def collatz_sequence(n: int) -> list[int]:
+
+def collatz_sequence(n: int) -> Generator[int, None, None]:
"""
- Collatz conjecture: start with any positive integer n. The next term is
- obtained as follows:
- If n term is even, the next term is: n / 2 .
- If n is odd, the next term is: 3 * n + 1.
-
- The conjecture states the sequence will always reach 1 for any starting value n.
- Example:
- >>> collatz_sequence(2.1)
+ Generate the Collatz sequence starting at n.
+ >>> tuple(collatz_sequence(2.1))
Traceback (most recent call last):
...
- Exception: Sequence only defined for natural numbers
- >>> collatz_sequence(0)
+ Exception: Sequence only defined for positive integers
+ >>> tuple(collatz_sequence(0))
Traceback (most recent call last):
...
- Exception: Sequence only defined for natural numbers
- >>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE
- [43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7,
- 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
+ Exception: Sequence only defined for positive integers
+ >>> tuple(collatz_sequence(4))
+ (4, 2, 1)
+ >>> tuple(collatz_sequence(11))
+ (11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
+ >>> tuple(collatz_sequence(31)) # doctest: +NORMALIZE_WHITESPACE
+ (31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137,
+ 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593,
+ 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425,
+ 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644,
+ 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,
+ 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53,
+ 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1)
+ >>> tuple(collatz_sequence(43)) # doctest: +NORMALIZE_WHITESPACE
+ (43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26,
+ 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
"""
-
if not isinstance(n, int) or n < 1:
- raise Exception("Sequence only defined for natural numbers")
+ raise Exception("Sequence only defined for positive integers")
- sequence = [n]
+ yield n
while n != 1:
- n = 3 * n + 1 if n & 1 else n // 2
- sequence.append(n)
- return sequence
+ if n % 2 == 0:
+ n //= 2
+ else:
+ n = 3 * n + 1
+ yield n
def main():
- n = 43
- sequence = collatz_sequence(n)
+ n = int(input("Your number: "))
+ sequence = tuple(collatz_sequence(n))
print(sequence)
- print(f"collatz sequence from {n} took {len(sequence)} steps.")
+ print(f"Collatz sequence from {n} took {len(sequence)} steps.")
if __name__ == "__main__":
diff --git a/maths/combinations.py b/maths/combinations.py
index 40f4f7a9f..a2324012c 100644
--- a/maths/combinations.py
+++ b/maths/combinations.py
@@ -35,18 +35,17 @@ def combinations(n: int, k: int) -> int:
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k")
- return int(factorial(n) / ((factorial(k)) * (factorial(n - k))))
+ return factorial(n) // (factorial(k) * factorial(n - k))
if __name__ == "__main__":
-
print(
- "\nThe number of five-card hands possible from a standard",
- f"fifty-two card deck is: {combinations(52, 5)}",
+ "The number of five-card hands possible from a standard",
+ f"fifty-two card deck is: {combinations(52, 5)}\n",
)
print(
- "\nIf a class of 40 students must be arranged into groups of",
+ "If a class of 40 students must be arranged into groups of",
f"4 for group projects, there are {combinations(40, 4)} ways",
"to arrange them.\n",
)
@@ -54,5 +53,5 @@ if __name__ == "__main__":
print(
"If 10 teams are competing in a Formula One race, there",
f"are {combinations(10, 3)} ways that first, second and",
- "third place can be awarded.\n",
+ "third place can be awarded.",
)
diff --git a/maths/decimal_isolate.py b/maths/decimal_isolate.py
index 0e3967a46..058ed1bb9 100644
--- a/maths/decimal_isolate.py
+++ b/maths/decimal_isolate.py
@@ -4,8 +4,7 @@ https://stackoverflow.com/questions/3886402/how-to-get-numbers-after-decimal-poi
"""
-def decimal_isolate(number, digitAmount):
-
+def decimal_isolate(number: float, digit_amount: int) -> float:
"""
Isolates the decimal part of a number.
If digitAmount > 0 round to that decimal place, else print the entire decimal.
@@ -28,8 +27,8 @@ def decimal_isolate(number, digitAmount):
>>> decimal_isolate(-14.123, 3)
-0.123
"""
- if digitAmount > 0:
- return round(number - int(number), digitAmount)
+ if digit_amount > 0:
+ return round(number - int(number), digit_amount)
return number - int(number)
diff --git a/maths/decimal_to_fraction.py b/maths/decimal_to_fraction.py
new file mode 100644
index 000000000..2aa8e3c3d
--- /dev/null
+++ b/maths/decimal_to_fraction.py
@@ -0,0 +1,48 @@
+def decimal_to_fraction(decimal: float | str) -> tuple[int, int]:
+ """
+ Return a decimal number in its simplest fraction form
+ >>> decimal_to_fraction(2)
+ (2, 1)
+ >>> decimal_to_fraction(89.)
+ (89, 1)
+ >>> decimal_to_fraction("67")
+ (67, 1)
+ >>> decimal_to_fraction("45.0")
+ (45, 1)
+ >>> decimal_to_fraction(1.5)
+ (3, 2)
+ >>> decimal_to_fraction("6.25")
+ (25, 4)
+ >>> decimal_to_fraction("78td")
+ Traceback (most recent call last):
+ ValueError: Please enter a valid number
+ """
+ try:
+ decimal = float(decimal)
+ except ValueError:
+ raise ValueError("Please enter a valid number")
+ fractional_part = decimal - int(decimal)
+ if fractional_part == 0:
+ return int(decimal), 1
+ else:
+ number_of_frac_digits = len(str(decimal).split(".")[1])
+ numerator = int(decimal * (10**number_of_frac_digits))
+ denominator = 10**number_of_frac_digits
+ divisor, dividend = denominator, numerator
+ while True:
+ remainder = dividend % divisor
+ if remainder == 0:
+ break
+ dividend, divisor = divisor, remainder
+ numerator, denominator = numerator / divisor, denominator / divisor
+ return int(numerator), int(denominator)
+
+
+if __name__ == "__main__":
+ print(f"{decimal_to_fraction(2) = }")
+ print(f"{decimal_to_fraction(89.0) = }")
+ print(f"{decimal_to_fraction('67') = }")
+ print(f"{decimal_to_fraction('45.0') = }")
+ print(f"{decimal_to_fraction(1.5) = }")
+ print(f"{decimal_to_fraction('6.25') = }")
+ print(f"{decimal_to_fraction('78td') = }")
diff --git a/maths/dodecahedron.py b/maths/dodecahedron.py
new file mode 100644
index 000000000..856245f4a
--- /dev/null
+++ b/maths/dodecahedron.py
@@ -0,0 +1,73 @@
+# dodecahedron.py
+
+"""
+A regular dodecahedron is a three-dimensional figure made up of
+12 pentagon faces having the same equal size.
+"""
+
+
+def dodecahedron_surface_area(edge: float) -> float:
+ """
+ Calculates the surface area of a regular dodecahedron
+ a = 3 * ((25 + 10 * (5** (1 / 2))) ** (1 / 2 )) * (e**2)
+ where:
+ a --> is the area of the dodecahedron
+ e --> is the length of the edge
+ reference-->"Dodecahedron" Study.com
+
+
+ :param edge: length of the edge of the dodecahedron
+ :type edge: float
+ :return: the surface area of the dodecahedron as a float
+
+
+ Tests:
+ >>> dodecahedron_surface_area(5)
+ 516.1432201766901
+ >>> dodecahedron_surface_area(10)
+ 2064.5728807067603
+ >>> dodecahedron_surface_area(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Length must be a positive.
+ """
+
+ if edge <= 0 or not isinstance(edge, int):
+ raise ValueError("Length must be a positive.")
+ return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
+
+
+def dodecahedron_volume(edge: float) -> float:
+ """
+ Calculates the volume of a regular dodecahedron
+ v = ((15 + (7 * (5** (1 / 2)))) / 4) * (e**3)
+ where:
+ v --> is the volume of the dodecahedron
+ e --> is the length of the edge
+ reference-->"Dodecahedron" Study.com
+
+
+ :param edge: length of the edge of the dodecahedron
+ :type edge: float
+ :return: the volume of the dodecahedron as a float
+
+ Tests:
+ >>> dodecahedron_volume(5)
+ 957.8898700780791
+ >>> dodecahedron_volume(10)
+ 7663.118960624633
+ >>> dodecahedron_volume(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Length must be a positive.
+ """
+
+ if edge <= 0 or not isinstance(edge, int):
+ raise ValueError("Length must be a positive.")
+ return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/dual_number_automatic_differentiation.py b/maths/dual_number_automatic_differentiation.py
new file mode 100644
index 000000000..f98997c8b
--- /dev/null
+++ b/maths/dual_number_automatic_differentiation.py
@@ -0,0 +1,141 @@
+from math import factorial
+
+"""
+https://en.wikipedia.org/wiki/Automatic_differentiation#Automatic_differentiation_using_dual_numbers
+https://blog.jliszka.org/2013/10/24/exact-numeric-nth-derivatives.html
+
+Note this only works for basic functions, f(x) where the power of x is positive.
+"""
+
+
+class Dual:
+ def __init__(self, real, rank):
+ self.real = real
+ if isinstance(rank, int):
+ self.duals = [1] * rank
+ else:
+ self.duals = rank
+
+ def __repr__(self):
+ return (
+ f"{self.real}+"
+ f"{'+'.join(str(dual)+'E'+str(n+1)for n,dual in enumerate(self.duals))}"
+ )
+
+ def reduce(self):
+ cur = self.duals.copy()
+ while cur[-1] == 0:
+ cur.pop(-1)
+ return Dual(self.real, cur)
+
+ def __add__(self, other):
+ if not isinstance(other, Dual):
+ return Dual(self.real + other, self.duals)
+ s_dual = self.duals.copy()
+ o_dual = other.duals.copy()
+ if len(s_dual) > len(o_dual):
+ o_dual.extend([1] * (len(s_dual) - len(o_dual)))
+ elif len(s_dual) < len(o_dual):
+ s_dual.extend([1] * (len(o_dual) - len(s_dual)))
+ new_duals = []
+ for i in range(len(s_dual)):
+ new_duals.append(s_dual[i] + o_dual[i])
+ return Dual(self.real + other.real, new_duals)
+
+ __radd__ = __add__
+
+ def __sub__(self, other):
+ return self + other * -1
+
+ def __mul__(self, other):
+ if not isinstance(other, Dual):
+ new_duals = []
+ for i in self.duals:
+ new_duals.append(i * other)
+ return Dual(self.real * other, new_duals)
+ new_duals = [0] * (len(self.duals) + len(other.duals) + 1)
+ for i, item in enumerate(self.duals):
+ for j, jtem in enumerate(other.duals):
+ new_duals[i + j + 1] += item * jtem
+ for k in range(len(self.duals)):
+ new_duals[k] += self.duals[k] * other.real
+ for index in range(len(other.duals)):
+ new_duals[index] += other.duals[index] * self.real
+ return Dual(self.real * other.real, new_duals)
+
+ __rmul__ = __mul__
+
+ def __truediv__(self, other):
+ if not isinstance(other, Dual):
+ new_duals = []
+ for i in self.duals:
+ new_duals.append(i / other)
+ return Dual(self.real / other, new_duals)
+ raise ValueError
+
+ def __floordiv__(self, other):
+ if not isinstance(other, Dual):
+ new_duals = []
+ for i in self.duals:
+ new_duals.append(i // other)
+ return Dual(self.real // other, new_duals)
+ raise ValueError
+
+ def __pow__(self, n):
+ if n < 0 or isinstance(n, float):
+ raise ValueError("power must be a positive integer")
+ if n == 0:
+ return 1
+ if n == 1:
+ return self
+ x = self
+ for _ in range(n - 1):
+ x *= self
+ return x
+
+
+def differentiate(func, position, order):
+ """
+ >>> differentiate(lambda x: x**2, 2, 2)
+ 2
+ >>> differentiate(lambda x: x**2 * x**4, 9, 2)
+ 196830
+ >>> differentiate(lambda y: 0.5 * (y + 3) ** 6, 3.5, 4)
+ 7605.0
+ >>> differentiate(lambda y: y ** 2, 4, 3)
+ 0
+ >>> differentiate(8, 8, 8)
+ Traceback (most recent call last):
+ ...
+ ValueError: differentiate() requires a function as input for func
+ >>> differentiate(lambda x: x **2, "", 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: differentiate() requires a float as input for position
+ >>> differentiate(lambda x: x**2, 3, "")
+ Traceback (most recent call last):
+ ...
+ ValueError: differentiate() requires an int as input for order
+ """
+ if not callable(func):
+ raise ValueError("differentiate() requires a function as input for func")
+ if not isinstance(position, (float, int)):
+ raise ValueError("differentiate() requires a float as input for position")
+ if not isinstance(order, int):
+ raise ValueError("differentiate() requires an int as input for order")
+ d = Dual(position, 1)
+ result = func(d)
+ if order == 0:
+ return result.real
+ return result.duals[order - 1] * factorial(order)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ def f(y):
+ return y**2 * y**4
+
+ print(differentiate(f, 9, 2))
diff --git a/maths/euclidean_distance.py b/maths/euclidean_distance.py
index 22012e92c..9b29b37b0 100644
--- a/maths/euclidean_distance.py
+++ b/maths/euclidean_distance.py
@@ -1,12 +1,12 @@
from __future__ import annotations
+import typing
from collections.abc import Iterable
-from typing import Union
import numpy as np
-Vector = Union[Iterable[float], Iterable[int], np.ndarray]
-VectorOut = Union[np.float64, int, float]
+Vector = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
+VectorOut = typing.Union[np.float64, int, float] # noqa: UP007
def euclidean_distance(vector_1: Vector, vector_2: Vector) -> VectorOut:
diff --git a/maths/euler_method.py b/maths/euler_method.py
index af7eecb2f..30f193e6d 100644
--- a/maths/euler_method.py
+++ b/maths/euler_method.py
@@ -29,12 +29,12 @@ def explicit_euler(
>>> y[-1]
144.77277243257308
"""
- N = int(np.ceil((x_end - x0) / step_size))
- y = np.zeros((N + 1,))
+ n = int(np.ceil((x_end - x0) / step_size))
+ y = np.zeros((n + 1,))
y[0] = y0
x = x0
- for k in range(N):
+ for k in range(n):
y[k + 1] = y[k] + step_size * ode_func(x, y[k])
x += step_size
diff --git a/maths/euler_modified.py b/maths/euler_modified.py
index 5659fa063..d02123e1e 100644
--- a/maths/euler_modified.py
+++ b/maths/euler_modified.py
@@ -5,7 +5,7 @@ import numpy as np
def euler_modified(
ode_func: Callable, y0: float, x0: float, step_size: float, x_end: float
-) -> np.array:
+) -> np.ndarray:
"""
Calculate solution at each step to an ODE using Euler's Modified Method
The Euler Method is straightforward to implement, but can't give accurate solutions.
@@ -33,12 +33,12 @@ def euler_modified(
>>> y[-1]
0.5525976431951775
"""
- N = int(np.ceil((x_end - x0) / step_size))
- y = np.zeros((N + 1,))
+ n = int(np.ceil((x_end - x0) / step_size))
+ y = np.zeros((n + 1,))
y[0] = y0
x = x0
- for k in range(N):
+ for k in range(n):
y_get = y[k] + step_size * ode_func(x, y[k])
y[k + 1] = y[k] + (
(step_size / 2) * (ode_func(x, y[k]) + ode_func(x + step_size, y_get))
diff --git a/maths/eulers_totient.py b/maths/eulers_totient.py
index 6a35e69bd..a15664703 100644
--- a/maths/eulers_totient.py
+++ b/maths/eulers_totient.py
@@ -1,5 +1,20 @@
# Eulers Totient function finds the number of relative primes of a number n from 1 to n
def totient(n: int) -> list:
+ """
+ >>> n = 10
+ >>> totient_calculation = totient(n)
+ >>> for i in range(1, n):
+ ... print(f"{i} has {totient_calculation[i]} relative primes.")
+ 1 has 0 relative primes.
+ 2 has 1 relative primes.
+ 3 has 2 relative primes.
+ 4 has 2 relative primes.
+ 5 has 4 relative primes.
+ 6 has 2 relative primes.
+ 7 has 6 relative primes.
+ 8 has 4 relative primes.
+ 9 has 6 relative primes.
+ """
is_prime = [True for i in range(n + 1)]
totients = [i - 1 for i in range(n + 1)]
primes = []
@@ -20,25 +35,6 @@ def totient(n: int) -> list:
return totients
-def test_totient() -> None:
- """
- >>> n = 10
- >>> totient_calculation = totient(n)
- >>> for i in range(1, n):
- ... print(f"{i} has {totient_calculation[i]} relative primes.")
- 1 has 0 relative primes.
- 2 has 1 relative primes.
- 3 has 2 relative primes.
- 4 has 2 relative primes.
- 5 has 4 relative primes.
- 6 has 2 relative primes.
- 7 has 6 relative primes.
- 8 has 4 relative primes.
- 9 has 6 relative primes.
- """
- pass
-
-
if __name__ == "__main__":
import doctest
diff --git a/maths/extended_euclidean_algorithm.py b/maths/extended_euclidean_algorithm.py
index 72afd40aa..c54909e19 100644
--- a/maths/extended_euclidean_algorithm.py
+++ b/maths/extended_euclidean_algorithm.py
@@ -75,11 +75,12 @@ def main():
"""Call Extended Euclidean Algorithm."""
if len(sys.argv) < 3:
print("2 integer arguments required")
- exit(1)
+ return 1
a = int(sys.argv[1])
b = int(sys.argv[2])
print(extended_euclidean_algorithm(a, b))
+ return 0
if __name__ == "__main__":
- main()
+ raise SystemExit(main())
diff --git a/maths/factorial_iterative.py b/maths/factorial.py
similarity index 59%
rename from maths/factorial_iterative.py
rename to maths/factorial.py
index c6cf7de57..18cacdef9 100644
--- a/maths/factorial_iterative.py
+++ b/maths/factorial.py
@@ -34,6 +34,30 @@ def factorial(number: int) -> int:
return value
+def factorial_recursive(n: int) -> int:
+ """
+ Calculate the factorial of a positive integer
+ https://en.wikipedia.org/wiki/Factorial
+
+ >>> import math
+ >>> all(factorial(i) == math.factorial(i) for i in range(20))
+ True
+ >>> factorial(0.1)
+ Traceback (most recent call last):
+ ...
+ ValueError: factorial() only accepts integral values
+ >>> factorial(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: factorial() not defined for negative values
+ """
+ if not isinstance(n, int):
+ raise ValueError("factorial() only accepts integral values")
+ if n < 0:
+ raise ValueError("factorial() not defined for negative values")
+ return 1 if n in {0, 1} else n * factorial(n - 1)
+
+
if __name__ == "__main__":
import doctest
diff --git a/maths/factorial_recursive.py b/maths/factorial_recursive.py
deleted file mode 100644
index 137112738..000000000
--- a/maths/factorial_recursive.py
+++ /dev/null
@@ -1,28 +0,0 @@
-def factorial(n: int) -> int:
- """
- Calculate the factorial of a positive integer
- https://en.wikipedia.org/wiki/Factorial
-
- >>> import math
- >>> all(factorial(i) == math.factorial(i) for i in range(20))
- True
- >>> factorial(0.1)
- Traceback (most recent call last):
- ...
- ValueError: factorial() only accepts integral values
- >>> factorial(-1)
- Traceback (most recent call last):
- ...
- ValueError: factorial() not defined for negative values
- """
- if not isinstance(n, int):
- raise ValueError("factorial() only accepts integral values")
- if n < 0:
- raise ValueError("factorial() not defined for negative values")
- return 1 if n == 0 or n == 1 else n * factorial(n - 1)
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod()
diff --git a/maths/factors.py b/maths/factors.py
index e2fdc4063..ae2e5316c 100644
--- a/maths/factors.py
+++ b/maths/factors.py
@@ -1,3 +1,7 @@
+from doctest import testmod
+from math import sqrt
+
+
def factors_of_a_number(num: int) -> list:
"""
>>> factors_of_a_number(1)
@@ -9,10 +13,22 @@ def factors_of_a_number(num: int) -> list:
>>> factors_of_a_number(-24)
[]
"""
- return [i for i in range(1, num + 1) if num % i == 0]
+ facs: list[int] = []
+ if num < 1:
+ return facs
+ facs.append(1)
+ if num == 1:
+ return facs
+ facs.append(num)
+ for i in range(2, int(sqrt(num)) + 1):
+ if num % i == 0: # If i is a factor of num
+ facs.append(i)
+ d = num // i # num//i is the other factor of num
+ if d != i: # If d and i are distinct
+ facs.append(d) # we have found another factor
+ facs.sort()
+ return facs
if __name__ == "__main__":
- num = int(input("Enter a number to find its factors: "))
- factors = factors_of_a_number(num)
- print(f"{num} has {len(factors)} factors: {', '.join(str(f) for f in factors)}")
+ testmod(name="factors_of_a_number", verbose=True)
diff --git a/maths/fermat_little_theorem.py b/maths/fermat_little_theorem.py
index 73af3e28c..eea03be24 100644
--- a/maths/fermat_little_theorem.py
+++ b/maths/fermat_little_theorem.py
@@ -6,7 +6,6 @@
def binary_exponentiation(a, n, mod):
-
if n == 0:
return 1
diff --git a/maths/fibonacci.py b/maths/fibonacci.py
index 07bd6d2ec..e810add69 100644
--- a/maths/fibonacci.py
+++ b/maths/fibonacci.py
@@ -16,6 +16,7 @@ fib_memoization runtime: 0.0107 ms
fib_binet runtime: 0.0174 ms
"""
+import functools
from math import sqrt
from time import time
@@ -47,7 +48,7 @@ def fib_iterative(n: int) -> list[int]:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
- ...
+ ...
Exception: n is negative
"""
if n < 0:
@@ -73,7 +74,7 @@ def fib_recursive(n: int) -> list[int]:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
- ...
+ ...
Exception: n is negative
"""
@@ -92,6 +93,39 @@ def fib_recursive(n: int) -> list[int]:
return [fib_recursive_term(i) for i in range(n + 1)]
+def fib_recursive_cached(n: int) -> list[int]:
+ """
+ Calculates the first n (0-indexed) Fibonacci numbers using recursion
+ >>> fib_iterative(0)
+ [0]
+ >>> fib_iterative(1)
+ [0, 1]
+ >>> fib_iterative(5)
+ [0, 1, 1, 2, 3, 5]
+ >>> fib_iterative(10)
+ [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
+ >>> fib_iterative(-1)
+ Traceback (most recent call last):
+ ...
+ Exception: n is negative
+ """
+
+ @functools.cache
+ def fib_recursive_term(i: int) -> int:
+ """
+ Calculates the i-th (0-indexed) Fibonacci number using recursion
+ """
+ if i < 0:
+ raise Exception("n is negative")
+ if i < 2:
+ return i
+ return fib_recursive_term(i - 1) + fib_recursive_term(i - 2)
+
+ if n < 0:
+ raise Exception("n is negative")
+ return [fib_recursive_term(i) for i in range(n + 1)]
+
+
def fib_memoization(n: int) -> list[int]:
"""
Calculates the first n (0-indexed) Fibonacci numbers using memoization
@@ -105,7 +139,7 @@ def fib_memoization(n: int) -> list[int]:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_iterative(-1)
Traceback (most recent call last):
- ...
+ ...
Exception: n is negative
"""
if n < 0:
@@ -146,11 +180,11 @@ def fib_binet(n: int) -> list[int]:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fib_binet(-1)
Traceback (most recent call last):
- ...
+ ...
Exception: n is negative
>>> fib_binet(1475)
Traceback (most recent call last):
- ...
+ ...
Exception: n is too large
"""
if n < 0:
@@ -163,8 +197,9 @@ def fib_binet(n: int) -> list[int]:
if __name__ == "__main__":
- num = 20
+ num = 30
time_func(fib_iterative, num)
- time_func(fib_recursive, num)
+ time_func(fib_recursive, num) # Around 3s runtime
+ time_func(fib_recursive_cached, num) # Around 0ms runtime
time_func(fib_memoization, num)
time_func(fib_binet, num)
diff --git a/maths/find_max.py b/maths/find_max.py
index 684fbe816..729a80ab4 100644
--- a/maths/find_max.py
+++ b/maths/find_max.py
@@ -1,23 +1,23 @@
from __future__ import annotations
-def find_max(nums: list[int | float]) -> int | float:
+def find_max_iterative(nums: list[int | float]) -> int | float:
"""
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
- ... find_max(nums) == max(nums)
+ ... find_max_iterative(nums) == max(nums)
True
True
True
True
- >>> find_max([2, 4, 9, 7, 19, 94, 5])
+ >>> find_max_iterative([2, 4, 9, 7, 19, 94, 5])
94
- >>> find_max([])
+ >>> find_max_iterative([])
Traceback (most recent call last):
...
- ValueError: find_max() arg is an empty sequence
+ ValueError: find_max_iterative() arg is an empty sequence
"""
if len(nums) == 0:
- raise ValueError("find_max() arg is an empty sequence")
+ raise ValueError("find_max_iterative() arg is an empty sequence")
max_num = nums[0]
for x in nums:
if x > max_num:
@@ -25,6 +25,59 @@ def find_max(nums: list[int | float]) -> int | float:
return max_num
+# Divide and Conquer algorithm
+def find_max_recursive(nums: list[int | float], left: int, right: int) -> int | float:
+ """
+ find max value in list
+ :param nums: contains elements
+ :param left: index of first element
+ :param right: index of last element
+ :return: max in nums
+
+ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
+ ... find_max_recursive(nums, 0, len(nums) - 1) == max(nums)
+ True
+ True
+ True
+ True
+ >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
+ >>> find_max_recursive(nums, 0, len(nums) - 1) == max(nums)
+ True
+ >>> find_max_recursive([], 0, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: find_max_recursive() arg is an empty sequence
+ >>> find_max_recursive(nums, 0, len(nums)) == max(nums)
+ Traceback (most recent call last):
+ ...
+ IndexError: list index out of range
+ >>> find_max_recursive(nums, -len(nums), -1) == max(nums)
+ True
+ >>> find_max_recursive(nums, -len(nums) - 1, -1) == max(nums)
+ Traceback (most recent call last):
+ ...
+ IndexError: list index out of range
+ """
+ if len(nums) == 0:
+ raise ValueError("find_max_recursive() arg is an empty sequence")
+ if (
+ left >= len(nums)
+ or left < -len(nums)
+ or right >= len(nums)
+ or right < -len(nums)
+ ):
+ raise IndexError("list index out of range")
+ if left == right:
+ return nums[left]
+ mid = (left + right) >> 1 # the middle
+ left_max = find_max_recursive(nums, left, mid) # find max in range[left, mid]
+ right_max = find_max_recursive(
+ nums, mid + 1, right
+ ) # find max in range[mid + 1, right]
+
+ return left_max if left_max >= right_max else right_max
+
+
if __name__ == "__main__":
import doctest
diff --git a/maths/find_max_recursion.py b/maths/find_max_recursion.py
deleted file mode 100644
index 629932e08..000000000
--- a/maths/find_max_recursion.py
+++ /dev/null
@@ -1,58 +0,0 @@
-from __future__ import annotations
-
-
-# Divide and Conquer algorithm
-def find_max(nums: list[int | float], left: int, right: int) -> int | float:
- """
- find max value in list
- :param nums: contains elements
- :param left: index of first element
- :param right: index of last element
- :return: max in nums
-
- >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
- ... find_max(nums, 0, len(nums) - 1) == max(nums)
- True
- True
- True
- True
- >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
- >>> find_max(nums, 0, len(nums) - 1) == max(nums)
- True
- >>> find_max([], 0, 0)
- Traceback (most recent call last):
- ...
- ValueError: find_max() arg is an empty sequence
- >>> find_max(nums, 0, len(nums)) == max(nums)
- Traceback (most recent call last):
- ...
- IndexError: list index out of range
- >>> find_max(nums, -len(nums), -1) == max(nums)
- True
- >>> find_max(nums, -len(nums) - 1, -1) == max(nums)
- Traceback (most recent call last):
- ...
- IndexError: list index out of range
- """
- if len(nums) == 0:
- raise ValueError("find_max() arg is an empty sequence")
- if (
- left >= len(nums)
- or left < -len(nums)
- or right >= len(nums)
- or right < -len(nums)
- ):
- raise IndexError("list index out of range")
- if left == right:
- return nums[left]
- mid = (left + right) >> 1 # the middle
- left_max = find_max(nums, left, mid) # find max in range[left, mid]
- right_max = find_max(nums, mid + 1, right) # find max in range[mid + 1, right]
-
- return left_max if left_max >= right_max else right_max
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod(verbose=True)
diff --git a/maths/find_min.py b/maths/find_min.py
index 228205ed7..762562e36 100644
--- a/maths/find_min.py
+++ b/maths/find_min.py
@@ -1,34 +1,86 @@
from __future__ import annotations
-def find_min(nums: list[int | float]) -> int | float:
+def find_min_iterative(nums: list[int | float]) -> int | float:
"""
Find Minimum Number in a List
:param nums: contains elements
:return: min number in list
>>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
- ... find_min(nums) == min(nums)
+ ... find_min_iterative(nums) == min(nums)
True
True
True
True
- >>> find_min([0, 1, 2, 3, 4, 5, -3, 24, -56])
+ >>> find_min_iterative([0, 1, 2, 3, 4, 5, -3, 24, -56])
-56
- >>> find_min([])
+ >>> find_min_iterative([])
Traceback (most recent call last):
...
- ValueError: find_min() arg is an empty sequence
+ ValueError: find_min_iterative() arg is an empty sequence
"""
if len(nums) == 0:
- raise ValueError("find_min() arg is an empty sequence")
+ raise ValueError("find_min_iterative() arg is an empty sequence")
min_num = nums[0]
for num in nums:
- if min_num > num:
- min_num = num
+ min_num = min(min_num, num)
return min_num
+# Divide and Conquer algorithm
+def find_min_recursive(nums: list[int | float], left: int, right: int) -> int | float:
+ """
+ find min value in list
+ :param nums: contains elements
+ :param left: index of first element
+ :param right: index of last element
+ :return: min in nums
+
+ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
+ ... find_min_recursive(nums, 0, len(nums) - 1) == min(nums)
+ True
+ True
+ True
+ True
+ >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
+ >>> find_min_recursive(nums, 0, len(nums) - 1) == min(nums)
+ True
+ >>> find_min_recursive([], 0, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: find_min_recursive() arg is an empty sequence
+ >>> find_min_recursive(nums, 0, len(nums)) == min(nums)
+ Traceback (most recent call last):
+ ...
+ IndexError: list index out of range
+ >>> find_min_recursive(nums, -len(nums), -1) == min(nums)
+ True
+ >>> find_min_recursive(nums, -len(nums) - 1, -1) == min(nums)
+ Traceback (most recent call last):
+ ...
+ IndexError: list index out of range
+ """
+ if len(nums) == 0:
+ raise ValueError("find_min_recursive() arg is an empty sequence")
+ if (
+ left >= len(nums)
+ or left < -len(nums)
+ or right >= len(nums)
+ or right < -len(nums)
+ ):
+ raise IndexError("list index out of range")
+ if left == right:
+ return nums[left]
+ mid = (left + right) >> 1 # the middle
+ left_min = find_min_recursive(nums, left, mid) # find min in range[left, mid]
+ right_min = find_min_recursive(
+ nums, mid + 1, right
+ ) # find min in range[mid + 1, right]
+
+ return left_min if left_min <= right_min else right_min
+
+
if __name__ == "__main__":
import doctest
diff --git a/maths/find_min_recursion.py b/maths/find_min_recursion.py
deleted file mode 100644
index 4d11015ef..000000000
--- a/maths/find_min_recursion.py
+++ /dev/null
@@ -1,58 +0,0 @@
-from __future__ import annotations
-
-
-# Divide and Conquer algorithm
-def find_min(nums: list[int | float], left: int, right: int) -> int | float:
- """
- find min value in list
- :param nums: contains elements
- :param left: index of first element
- :param right: index of last element
- :return: min in nums
-
- >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]):
- ... find_min(nums, 0, len(nums) - 1) == min(nums)
- True
- True
- True
- True
- >>> nums = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]
- >>> find_min(nums, 0, len(nums) - 1) == min(nums)
- True
- >>> find_min([], 0, 0)
- Traceback (most recent call last):
- ...
- ValueError: find_min() arg is an empty sequence
- >>> find_min(nums, 0, len(nums)) == min(nums)
- Traceback (most recent call last):
- ...
- IndexError: list index out of range
- >>> find_min(nums, -len(nums), -1) == min(nums)
- True
- >>> find_min(nums, -len(nums) - 1, -1) == min(nums)
- Traceback (most recent call last):
- ...
- IndexError: list index out of range
- """
- if len(nums) == 0:
- raise ValueError("find_min() arg is an empty sequence")
- if (
- left >= len(nums)
- or left < -len(nums)
- or right >= len(nums)
- or right < -len(nums)
- ):
- raise IndexError("list index out of range")
- if left == right:
- return nums[left]
- mid = (left + right) >> 1 # the middle
- left_min = find_min(nums, left, mid) # find min in range[left, mid]
- right_min = find_min(nums, mid + 1, right) # find min in range[mid + 1, right]
-
- return left_min if left_min <= right_min else right_min
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod(verbose=True)
diff --git a/maths/floor.py b/maths/floor.py
index 482250f5e..8bbcb21aa 100644
--- a/maths/floor.py
+++ b/maths/floor.py
@@ -3,7 +3,7 @@ https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
"""
-def floor(x) -> int:
+def floor(x: float) -> int:
"""
Return the floor of x as an Integral.
:param x: the number
diff --git a/maths/gamma.py b/maths/gamma.py
index 69cd819ef..d5debc587 100644
--- a/maths/gamma.py
+++ b/maths/gamma.py
@@ -11,42 +11,27 @@ def gamma(num: float) -> float:
used extension of the factorial function to complex numbers.
The gamma function is defined for all complex numbers except the non-positive
integers
-
-
>>> gamma(-1)
Traceback (most recent call last):
...
ValueError: math domain error
-
-
-
>>> gamma(0)
Traceback (most recent call last):
...
ValueError: math domain error
-
-
>>> gamma(9)
40320.0
-
>>> from math import gamma as math_gamma
>>> all(.99999999 < gamma(i) / math_gamma(i) <= 1.000000001
... for i in range(1, 50))
True
-
-
- >>> from math import gamma as math_gamma
>>> gamma(-1)/math_gamma(-1) <= 1.000000001
Traceback (most recent call last):
...
ValueError: math domain error
-
-
- >>> from math import gamma as math_gamma
>>> gamma(3.3) - math_gamma(3.3) <= 0.00000001
True
"""
-
if num <= 0:
raise ValueError("math domain error")
diff --git a/maths/gaussian_error_linear_unit.py b/maths/gaussian_error_linear_unit.py
new file mode 100644
index 000000000..18384bb6c
--- /dev/null
+++ b/maths/gaussian_error_linear_unit.py
@@ -0,0 +1,53 @@
+"""
+This script demonstrates an implementation of the Gaussian Error Linear Unit function.
+* https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
+
+The function takes a vector of K real numbers as input and returns x * sigmoid(1.702*x).
+Gaussian Error Linear Unit (GELU) is a high-performing neural network activation
+function.
+
+This script is inspired by a corresponding research paper.
+* https://arxiv.org/abs/1606.08415
+"""
+
+import numpy as np
+
+
+def sigmoid(vector: np.ndarray) -> np.ndarray:
+ """
+ Mathematical function sigmoid takes a vector x of K real numbers as input and
+ returns 1/ (1 + e^-x).
+ https://en.wikipedia.org/wiki/Sigmoid_function
+
+ >>> sigmoid(np.array([-1.0, 1.0, 2.0]))
+ array([0.26894142, 0.73105858, 0.88079708])
+ """
+ return 1 / (1 + np.exp(-vector))
+
+
+def gaussian_error_linear_unit(vector: np.ndarray) -> np.ndarray:
+ """
+ Implements the Gaussian Error Linear Unit (GELU) function
+
+ Parameters:
+ vector (np.array): A numpy array of shape (1,n)
+ consisting of real values
+
+ Returns:
+ gelu_vec (np.array): The input numpy array, after applying
+ gelu.
+
+ Examples:
+ >>> gaussian_error_linear_unit(np.array([-1.0, 1.0, 2.0]))
+ array([-0.15420423, 0.84579577, 1.93565862])
+
+ >>> gaussian_error_linear_unit(np.array([-3]))
+ array([-0.01807131])
+ """
+ return vector * sigmoid(1.702 * vector)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/gcd_of_n_numbers.py b/maths/gcd_of_n_numbers.py
new file mode 100644
index 000000000..63236c236
--- /dev/null
+++ b/maths/gcd_of_n_numbers.py
@@ -0,0 +1,109 @@
+"""
+Gcd of N Numbers
+Reference: https://en.wikipedia.org/wiki/Greatest_common_divisor
+"""
+
+from collections import Counter
+
+
+def get_factors(
+ number: int, factors: Counter | None = None, factor: int = 2
+) -> Counter:
+ """
+ this is a recursive function for get all factors of number
+ >>> get_factors(45)
+ Counter({3: 2, 5: 1})
+ >>> get_factors(2520)
+ Counter({2: 3, 3: 2, 5: 1, 7: 1})
+ >>> get_factors(23)
+ Counter({23: 1})
+ >>> get_factors(0)
+ Traceback (most recent call last):
+ ...
+ TypeError: number must be integer and greater than zero
+ >>> get_factors(-1)
+ Traceback (most recent call last):
+ ...
+ TypeError: number must be integer and greater than zero
+ >>> get_factors(1.5)
+ Traceback (most recent call last):
+ ...
+ TypeError: number must be integer and greater than zero
+
+ factor can be all numbers from 2 to number that we check if number % factor == 0
+ if it is equal to zero, we check again with number // factor
+ else we increase factor by one
+ """
+
+ match number:
+ case int(number) if number == 1:
+ return Counter({1: 1})
+ case int(num) if number > 0:
+ number = num
+ case _:
+ raise TypeError("number must be integer and greater than zero")
+
+ factors = factors or Counter()
+
+ if number == factor: # break condition
+ # all numbers are factors of itself
+ factors[factor] += 1
+ return factors
+
+ if number % factor > 0:
+ # if it is greater than zero
+ # so it is not a factor of number and we check next number
+ return get_factors(number, factors, factor + 1)
+
+ factors[factor] += 1
+ # else we update factors (that is Counter(dict-like) type) and check again
+ return get_factors(number // factor, factors, factor)
+
+
+def get_greatest_common_divisor(*numbers: int) -> int:
+ """
+ get gcd of n numbers:
+ >>> get_greatest_common_divisor(18, 45)
+ 9
+ >>> get_greatest_common_divisor(23, 37)
+ 1
+ >>> get_greatest_common_divisor(2520, 8350)
+ 10
+ >>> get_greatest_common_divisor(-10, 20)
+ Traceback (most recent call last):
+ ...
+ Exception: numbers must be integer and greater than zero
+ >>> get_greatest_common_divisor(1.5, 2)
+ Traceback (most recent call last):
+ ...
+ Exception: numbers must be integer and greater than zero
+ >>> get_greatest_common_divisor(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
+ 1
+ >>> get_greatest_common_divisor("1", 2, 3, 4, 5, 6, 7, 8, 9, 10)
+ Traceback (most recent call last):
+ ...
+ Exception: numbers must be integer and greater than zero
+ """
+
+ # we just need factors, not numbers itself
+ try:
+ same_factors, *factors = map(get_factors, numbers)
+ except TypeError as e:
+ raise Exception("numbers must be integer and greater than zero") from e
+
+ for factor in factors:
+ same_factors &= factor
+ # get common factor between all
+ # `&` return common elements with smaller value (for Counter type)
+
+ # now, same_factors is something like {2: 2, 3: 4} that means 2 * 2 * 3 * 3 * 3 * 3
+ mult = 1
+ # power each factor and multiply
+ # for {2: 2, 3: 4}, it is [4, 81] and then 324
+ for m in [factor**power for factor, power in same_factors.items()]:
+ mult *= m
+ return mult
+
+
+if __name__ == "__main__":
+ print(get_greatest_common_divisor(18, 45)) # 9
diff --git a/maths/greedy_coin_change.py b/maths/greedy_coin_change.py
index 5233ee1cb..7cf669bcb 100644
--- a/maths/greedy_coin_change.py
+++ b/maths/greedy_coin_change.py
@@ -62,7 +62,6 @@ def find_minimum_change(denominations: list[int], value: str) -> list[int]:
# Traverse through all denomination
for denomination in reversed(denominations):
-
# Find denominations
while int(total_value) >= int(denomination):
total_value -= int(denomination)
@@ -73,8 +72,7 @@ def find_minimum_change(denominations: list[int], value: str) -> list[int]:
# Driver Code
if __name__ == "__main__":
-
- denominations = list()
+ denominations = []
value = "0"
if (
diff --git a/maths/hardy_ramanujanalgo.py b/maths/hardy_ramanujanalgo.py
index e36f763da..6929533fc 100644
--- a/maths/hardy_ramanujanalgo.py
+++ b/maths/hardy_ramanujanalgo.py
@@ -4,9 +4,9 @@
import math
-def exactPrimeFactorCount(n):
+def exact_prime_factor_count(n):
"""
- >>> exactPrimeFactorCount(51242183)
+ >>> exact_prime_factor_count(51242183)
3
"""
count = 0
@@ -36,7 +36,7 @@ def exactPrimeFactorCount(n):
if __name__ == "__main__":
n = 51242183
- print(f"The number of distinct prime factors is/are {exactPrimeFactorCount(n)}")
+ print(f"The number of distinct prime factors is/are {exact_prime_factor_count(n)}")
print(f"The value of log(log(n)) is {math.log(math.log(n)):.4f}")
"""
diff --git a/maths/hexagonal_number.py b/maths/hexagonal_number.py
new file mode 100644
index 000000000..3677ab95e
--- /dev/null
+++ b/maths/hexagonal_number.py
@@ -0,0 +1,49 @@
+"""
+== Hexagonal Number ==
+The nth hexagonal number hn is the number of distinct dots
+in a pattern of dots consisting of the outlines of regular
+hexagons with sides up to n dots, when the hexagons are
+overlaid so that they share one vertex.
+
+https://en.wikipedia.org/wiki/Hexagonal_number
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+
+
+def hexagonal(number: int) -> int:
+ """
+ :param number: nth hexagonal number to calculate
+ :return: the nth hexagonal number
+ Note: A hexagonal number is only defined for positive integers
+ >>> hexagonal(4)
+ 28
+ >>> hexagonal(11)
+ 231
+ >>> hexagonal(22)
+ 946
+ >>> hexagonal(0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a positive integer
+ >>> hexagonal(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a positive integer
+ >>> hexagonal(11.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=11.0] must be an integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if number < 1:
+ raise ValueError("Input must be a positive integer")
+ return number * (2 * number - 1)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/integration_by_simpson_approx.py b/maths/integration_by_simpson_approx.py
index 408041de9..f77ae7613 100644
--- a/maths/integration_by_simpson_approx.py
+++ b/maths/integration_by_simpson_approx.py
@@ -35,7 +35,6 @@ xn = b
def simpson_integration(function, a: float, b: float, precision: int = 4) -> float:
-
"""
Args:
function : the function which's integration is desired
diff --git a/maths/interquartile_range.py b/maths/interquartile_range.py
new file mode 100644
index 000000000..d4d72e73e
--- /dev/null
+++ b/maths/interquartile_range.py
@@ -0,0 +1,66 @@
+"""
+An implementation of interquartile range (IQR) which is a measure of statistical
+dispersion, which is the spread of the data.
+
+The function takes the list of numeric values as input and returns the IQR.
+
+Script inspired by this Wikipedia article:
+https://en.wikipedia.org/wiki/Interquartile_range
+"""
+from __future__ import annotations
+
+
+def find_median(nums: list[int | float]) -> float:
+ """
+ This is the implementation of the median.
+ :param nums: The list of numeric nums
+ :return: Median of the list
+ >>> find_median(nums=([1, 2, 2, 3, 4]))
+ 2
+ >>> find_median(nums=([1, 2, 2, 3, 4, 4]))
+ 2.5
+ >>> find_median(nums=([-1, 2, 0, 3, 4, -4]))
+ 1.5
+ >>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4]))
+ 2.65
+ """
+ div, mod = divmod(len(nums), 2)
+ if mod:
+ return nums[div]
+ return (nums[div] + nums[(div) - 1]) / 2
+
+
+def interquartile_range(nums: list[int | float]) -> float:
+ """
+ Return the interquartile range for a list of numeric values.
+ :param nums: The list of numeric values.
+ :return: interquartile range
+
+ >>> interquartile_range(nums=[4, 1, 2, 3, 2])
+ 2.0
+ >>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45])
+ 17.0
+ >>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1])
+ 17.2
+ >>> interquartile_range(nums = [0, 0, 0, 0, 0])
+ 0.0
+ >>> interquartile_range(nums=[])
+ Traceback (most recent call last):
+ ...
+ ValueError: The list is empty. Provide a non-empty list.
+ """
+ if not nums:
+ raise ValueError("The list is empty. Provide a non-empty list.")
+ nums.sort()
+ length = len(nums)
+ div, mod = divmod(length, 2)
+ q1 = find_median(nums[:div])
+ half_length = sum((div, mod))
+ q3 = find_median(nums[half_length:length])
+ return q3 - q1
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/is_int_palindrome.py b/maths/is_int_palindrome.py
new file mode 100644
index 000000000..63dc9e213
--- /dev/null
+++ b/maths/is_int_palindrome.py
@@ -0,0 +1,34 @@
+def is_int_palindrome(num: int) -> bool:
+ """
+ Returns whether `num` is a palindrome or not
+ (see for reference https://en.wikipedia.org/wiki/Palindromic_number).
+
+ >>> is_int_palindrome(-121)
+ False
+ >>> is_int_palindrome(0)
+ True
+ >>> is_int_palindrome(10)
+ False
+ >>> is_int_palindrome(11)
+ True
+ >>> is_int_palindrome(101)
+ True
+ >>> is_int_palindrome(120)
+ False
+ """
+ if num < 0:
+ return False
+
+ num_copy: int = num
+ rev_num: int = 0
+ while num > 0:
+ rev_num = rev_num * 10 + (num % 10)
+ num //= 10
+
+ return num_copy == rev_num
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/is_square_free.py b/maths/is_square_free.py
index 8d83d95ff..08c70dc32 100644
--- a/maths/is_square_free.py
+++ b/maths/is_square_free.py
@@ -1,7 +1,7 @@
"""
References: wikipedia:square free number
-python/black : True
-flake8 : True
+psf/black : True
+ruff : True
"""
from __future__ import annotations
@@ -15,7 +15,7 @@ def is_square_free(factors: list[int]) -> bool:
False
These are wrong but should return some value
- it simply checks for repition in the numbers.
+ it simply checks for repetition in the numbers.
>>> is_square_free([1, 3, 4, 'sd', 0.0])
True
diff --git a/maths/jaccard_similarity.py b/maths/jaccard_similarity.py
index 4f24d308f..6b6243458 100644
--- a/maths/jaccard_similarity.py
+++ b/maths/jaccard_similarity.py
@@ -14,7 +14,11 @@ Jaccard similarity is widely used with MinHashing.
"""
-def jaccard_similariy(setA, setB, alternativeUnion=False):
+def jaccard_similarity(
+ set_a: set[str] | list[str] | tuple[str],
+ set_b: set[str] | list[str] | tuple[str],
+ alternative_union=False,
+):
"""
Finds the jaccard similarity between two sets.
Essentially, its intersection over union.
@@ -24,8 +28,8 @@ def jaccard_similariy(setA, setB, alternativeUnion=False):
of a set with itself be 1/2 instead of 1. [MMDS 2nd Edition, Page 77]
Parameters:
- :setA (set,list,tuple): A non-empty set/list
- :setB (set,list,tuple): A non-empty set/list
+ :set_a (set,list,tuple): A non-empty set/list
+ :set_b (set,list,tuple): A non-empty set/list
:alternativeUnion (boolean): If True, use sum of number of
items as union
@@ -33,48 +37,59 @@ def jaccard_similariy(setA, setB, alternativeUnion=False):
(float) The jaccard similarity between the two sets.
Examples:
- >>> setA = {'a', 'b', 'c', 'd', 'e'}
- >>> setB = {'c', 'd', 'e', 'f', 'h', 'i'}
- >>> jaccard_similariy(setA,setB)
+ >>> set_a = {'a', 'b', 'c', 'd', 'e'}
+ >>> set_b = {'c', 'd', 'e', 'f', 'h', 'i'}
+ >>> jaccard_similarity(set_a, set_b)
0.375
-
- >>> jaccard_similariy(setA,setA)
+ >>> jaccard_similarity(set_a, set_a)
1.0
-
- >>> jaccard_similariy(setA,setA,True)
+ >>> jaccard_similarity(set_a, set_a, True)
0.5
-
- >>> setA = ['a', 'b', 'c', 'd', 'e']
- >>> setB = ('c', 'd', 'e', 'f', 'h', 'i')
- >>> jaccard_similariy(setA,setB)
+ >>> set_a = ['a', 'b', 'c', 'd', 'e']
+ >>> set_b = ('c', 'd', 'e', 'f', 'h', 'i')
+ >>> jaccard_similarity(set_a, set_b)
0.375
+ >>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
+ >>> set_b = ['a', 'b', 'c', 'd', 'e']
+ >>> jaccard_similarity(set_a, set_b)
+ 0.375
+ >>> set_a = ('c', 'd', 'e', 'f', 'h', 'i')
+ >>> set_b = ['a', 'b', 'c', 'd']
+ >>> jaccard_similarity(set_a, set_b, True)
+ 0.2
+ >>> set_a = {'a', 'b'}
+ >>> set_b = ['c', 'd']
+ >>> jaccard_similarity(set_a, set_b)
+ Traceback (most recent call last):
+ ...
+ ValueError: Set a and b must either both be sets or be either a list or a tuple.
"""
- if isinstance(setA, set) and isinstance(setB, set):
+ if isinstance(set_a, set) and isinstance(set_b, set):
+ intersection_length = len(set_a.intersection(set_b))
- intersection = len(setA.intersection(setB))
-
- if alternativeUnion:
- union = len(setA) + len(setB)
+ if alternative_union:
+ union_length = len(set_a) + len(set_b)
else:
- union = len(setA.union(setB))
+ union_length = len(set_a.union(set_b))
- return intersection / union
+ return intersection_length / union_length
- if isinstance(setA, (list, tuple)) and isinstance(setB, (list, tuple)):
+ elif isinstance(set_a, (list, tuple)) and isinstance(set_b, (list, tuple)):
+ intersection = [element for element in set_a if element in set_b]
- intersection = [element for element in setA if element in setB]
-
- if alternativeUnion:
- union = len(setA) + len(setB)
+ if alternative_union:
+ return len(intersection) / (len(set_a) + len(set_b))
else:
- union = setA + [element for element in setB if element not in setA]
-
- return len(intersection) / len(union)
+ # Cast set_a to list because tuples cannot be mutated
+ union = list(set_a) + [element for element in set_b if element not in set_a]
+ return len(intersection) / len(union)
+ raise ValueError(
+ "Set a and b must either both be sets or be either a list or a tuple."
+ )
if __name__ == "__main__":
-
- setA = {"a", "b", "c", "d", "e"}
- setB = {"c", "d", "e", "f", "h", "i"}
- print(jaccard_similariy(setA, setB))
+ set_a = {"a", "b", "c", "d", "e"}
+ set_b = {"c", "d", "e", "f", "h", "i"}
+ print(jaccard_similarity(set_a, set_b))
diff --git a/maths/juggler_sequence.py b/maths/juggler_sequence.py
new file mode 100644
index 000000000..7f65d1dff
--- /dev/null
+++ b/maths/juggler_sequence.py
@@ -0,0 +1,63 @@
+"""
+== Juggler Sequence ==
+Juggler sequence start with any positive integer n. The next term is
+obtained as follows:
+ If n term is even, the next term is floor value of square root of n .
+ If n is odd, the next term is floor value of 3 time the square root of n.
+
+https://en.wikipedia.org/wiki/Juggler_sequence
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+import math
+
+
+def juggler_sequence(number: int) -> list[int]:
+ """
+ >>> juggler_sequence(0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input value of [number=0] must be a positive integer
+ >>> juggler_sequence(1)
+ [1]
+ >>> juggler_sequence(2)
+ [2, 1]
+ >>> juggler_sequence(3)
+ [3, 5, 11, 36, 6, 2, 1]
+ >>> juggler_sequence(5)
+ [5, 11, 36, 6, 2, 1]
+ >>> juggler_sequence(10)
+ [10, 3, 5, 11, 36, 6, 2, 1]
+ >>> juggler_sequence(25)
+ [25, 125, 1397, 52214, 228, 15, 58, 7, 18, 4, 2, 1]
+ >>> juggler_sequence(6.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=6.0] must be an integer
+ >>> juggler_sequence(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input value of [number=-1] must be a positive integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if number < 1:
+ msg = f"Input value of [number={number}] must be a positive integer"
+ raise ValueError(msg)
+ sequence = [number]
+ while number != 1:
+ if number % 2 == 0:
+ number = math.floor(math.sqrt(number))
+ else:
+ number = math.floor(
+ math.sqrt(number) * math.sqrt(number) * math.sqrt(number)
+ )
+ sequence.append(number)
+ return sequence
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/kadanes.py b/maths/kadanes.py
deleted file mode 100644
index d239d4a25..000000000
--- a/maths/kadanes.py
+++ /dev/null
@@ -1,65 +0,0 @@
-"""
-Kadane's algorithm to get maximum subarray sum
-https://medium.com/@rsinghal757/kadanes-algorithm-dynamic-programming-how-and-why-does-it-work-3fd8849ed73d
-https://en.wikipedia.org/wiki/Maximum_subarray_problem
-"""
-test_data: tuple = ([-2, -8, -9], [2, 8, 9], [-1, 0, 1], [0, 0], [])
-
-
-def negative_exist(arr: list) -> int:
- """
- >>> negative_exist([-2,-8,-9])
- -2
- >>> [negative_exist(arr) for arr in test_data]
- [-2, 0, 0, 0, 0]
- """
- arr = arr or [0]
- max = arr[0]
- for i in arr:
- if i >= 0:
- return 0
- elif max <= i:
- max = i
- return max
-
-
-def kadanes(arr: list) -> int:
- """
- If negative_exist() returns 0 than this function will execute
- else it will return the value return by negative_exist function
-
- For example: arr = [2, 3, -9, 8, -2]
- Initially we set value of max_sum to 0 and max_till_element to 0 than when
- max_sum is less than max_till particular element it will assign that value to
- max_sum and when value of max_till_sum is less than 0 it will assign 0 to i
- and after that whole process, return the max_sum
- So the output for above arr is 8
-
- >>> kadanes([2, 3, -9, 8, -2])
- 8
- >>> [kadanes(arr) for arr in test_data]
- [-2, 19, 1, 0, 0]
- """
- max_sum = negative_exist(arr)
- if max_sum < 0:
- return max_sum
-
- max_sum = 0
- max_till_element = 0
-
- for i in arr:
- max_till_element += i
- if max_sum <= max_till_element:
- max_sum = max_till_element
- if max_till_element < 0:
- max_till_element = 0
- return max_sum
-
-
-if __name__ == "__main__":
- try:
- print("Enter integer values sepatated by spaces")
- arr = [int(x) for x in input().split()]
- print(f"Maximum subarray sum of {arr} is {kadanes(arr)}")
- except ValueError:
- print("Please enter integer values.")
diff --git a/maths/karatsuba.py b/maths/karatsuba.py
index b772c0d77..4bf4aecdc 100644
--- a/maths/karatsuba.py
+++ b/maths/karatsuba.py
@@ -10,18 +10,18 @@ def karatsuba(a, b):
"""
if len(str(a)) == 1 or len(str(b)) == 1:
return a * b
- else:
- m1 = max(len(str(a)), len(str(b)))
- m2 = m1 // 2
- a1, a2 = divmod(a, 10**m2)
- b1, b2 = divmod(b, 10**m2)
+ m1 = max(len(str(a)), len(str(b)))
+ m2 = m1 // 2
- x = karatsuba(a2, b2)
- y = karatsuba((a1 + a2), (b1 + b2))
- z = karatsuba(a1, b1)
+ a1, a2 = divmod(a, 10**m2)
+ b1, b2 = divmod(b, 10**m2)
- return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x)
+ x = karatsuba(a2, b2)
+ y = karatsuba((a1 + a2), (b1 + b2))
+ z = karatsuba(a1, b1)
+
+ return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x)
def main():
diff --git a/maths/krishnamurthy_number.py b/maths/krishnamurthy_number.py
index c88f68a07..c1d8a8fc5 100644
--- a/maths/krishnamurthy_number.py
+++ b/maths/krishnamurthy_number.py
@@ -33,12 +33,12 @@ def krishnamurthy(number: int) -> bool:
True
"""
- factSum = 0
+ fact_sum = 0
duplicate = number
while duplicate > 0:
duplicate, digit = divmod(duplicate, 10)
- factSum += factorial(digit)
- return factSum == number
+ fact_sum += factorial(digit)
+ return fact_sum == number
if __name__ == "__main__":
diff --git a/maths/kth_lexicographic_permutation.py b/maths/kth_lexicographic_permutation.py
index 23eab626f..b85558aca 100644
--- a/maths/kth_lexicographic_permutation.py
+++ b/maths/kth_lexicographic_permutation.py
@@ -1,17 +1,17 @@
-def kthPermutation(k, n):
+def kth_permutation(k, n):
"""
Finds k'th lexicographic permutation (in increasing order) of
0,1,2,...n-1 in O(n^2) time.
Examples:
First permutation is always 0,1,2,...n
- >>> kthPermutation(0,5)
+ >>> kth_permutation(0,5)
[0, 1, 2, 3, 4]
The order of permutation of 0,1,2,3 is [0,1,2,3], [0,1,3,2], [0,2,1,3],
[0,2,3,1], [0,3,1,2], [0,3,2,1], [1,0,2,3], [1,0,3,2], [1,2,0,3],
[1,2,3,0], [1,3,0,2]
- >>> kthPermutation(10,4)
+ >>> kth_permutation(10,4)
[1, 3, 0, 2]
"""
# Factorails from 1! to (n-1)!
diff --git a/maths/largest_of_very_large_numbers.py b/maths/largest_of_very_large_numbers.py
index d2dc0af18..7e7fea004 100644
--- a/maths/largest_of_very_large_numbers.py
+++ b/maths/largest_of_very_large_numbers.py
@@ -12,6 +12,7 @@ def res(x, y):
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
+ raise AssertionError("This should never happen")
if __name__ == "__main__": # Main function
diff --git a/maths/largest_subarray_sum.py b/maths/largest_subarray_sum.py
deleted file mode 100644
index 0449e72e6..000000000
--- a/maths/largest_subarray_sum.py
+++ /dev/null
@@ -1,23 +0,0 @@
-from sys import maxsize
-
-
-def max_sub_array_sum(a: list, size: int = 0):
- """
- >>> max_sub_array_sum([-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7])
- -3
- """
- size = size or len(a)
- max_so_far = -maxsize - 1
- max_ending_here = 0
- for i in range(0, size):
- max_ending_here = max_ending_here + a[i]
- if max_so_far < max_ending_here:
- max_so_far = max_ending_here
- if max_ending_here < 0:
- max_ending_here = 0
- return max_so_far
-
-
-if __name__ == "__main__":
- a = [-13, -3, -25, -20, 1, -16, -23, -12, -5, -22, -15, -4, -7]
- print(("Maximum contiguous sum is", max_sub_array_sum(a, len(a))))
diff --git a/maths/least_common_multiple.py b/maths/least_common_multiple.py
index 0d087643e..10cc63ac7 100644
--- a/maths/least_common_multiple.py
+++ b/maths/least_common_multiple.py
@@ -67,8 +67,7 @@ def benchmark():
class TestLeastCommonMultiple(unittest.TestCase):
-
- test_inputs = [
+ test_inputs = (
(10, 20),
(13, 15),
(4, 31),
@@ -78,8 +77,8 @@ class TestLeastCommonMultiple(unittest.TestCase):
(12, 25),
(10, 25),
(6, 9),
- ]
- expected_results = [20, 195, 124, 210, 1462, 60, 300, 50, 18]
+ )
+ expected_results = (20, 195, 124, 210, 1462, 60, 300, 50, 18)
def test_lcm_function(self):
for i, (first_num, second_num) in enumerate(self.test_inputs):
diff --git a/maths/line_length.py b/maths/line_length.py
index ad12a816b..ed2efc31e 100644
--- a/maths/line_length.py
+++ b/maths/line_length.py
@@ -5,12 +5,11 @@ from collections.abc import Callable
def line_length(
- fnc: Callable[[int | float], int | float],
- x_start: int | float,
- x_end: int | float,
+ fnc: Callable[[float], float],
+ x_start: float,
+ x_end: float,
steps: int = 100,
) -> float:
-
"""
Approximates the arc length of a line segment by treating the curve as a
sequence of linear lines and summing their lengths
@@ -40,8 +39,7 @@ def line_length(
fx1 = fnc(x_start)
length = 0.0
- for i in range(steps):
-
+ for _ in range(steps):
# Approximates curve as a sequence of linear lines and sums their length
x2 = (x_end - x_start) / steps + x1
fx2 = fnc(x2)
diff --git a/maths/liouville_lambda.py b/maths/liouville_lambda.py
new file mode 100644
index 000000000..1ed228dd5
--- /dev/null
+++ b/maths/liouville_lambda.py
@@ -0,0 +1,46 @@
+"""
+== Liouville Lambda Function ==
+The Liouville Lambda function, denoted by λ(n)
+and λ(n) is 1 if n is the product of an even number of prime numbers,
+and -1 if it is the product of an odd number of primes.
+
+https://en.wikipedia.org/wiki/Liouville_function
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+from maths.prime_factors import prime_factors
+
+
+def liouville_lambda(number: int) -> int:
+ """
+ This functions takes an integer number as input.
+ returns 1 if n has even number of prime factors and -1 otherwise.
+ >>> liouville_lambda(10)
+ 1
+ >>> liouville_lambda(11)
+ -1
+ >>> liouville_lambda(0)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a positive integer
+ >>> liouville_lambda(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a positive integer
+ >>> liouville_lambda(11.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=11.0] must be an integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if number < 1:
+ raise ValueError("Input must be a positive integer")
+ return -1 if len(prime_factors(number)) % 2 else 1
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/lucas_lehmer_primality_test.py b/maths/lucas_lehmer_primality_test.py
index 15e25cbfe..0a5621aac 100644
--- a/maths/lucas_lehmer_primality_test.py
+++ b/maths/lucas_lehmer_primality_test.py
@@ -30,9 +30,9 @@ def lucas_lehmer_test(p: int) -> bool:
return True
s = 4
- M = (1 << p) - 1
- for i in range(p - 2):
- s = ((s * s) - 2) % M
+ m = (1 << p) - 1
+ for _ in range(p - 2):
+ s = ((s * s) - 2) % m
return s == 0
diff --git a/maths/lucas_series.py b/maths/lucas_series.py
index 6b32c2022..cae6c2815 100644
--- a/maths/lucas_series.py
+++ b/maths/lucas_series.py
@@ -50,7 +50,7 @@ def dynamic_lucas_number(n_th_number: int) -> int:
if not isinstance(n_th_number, int):
raise TypeError("dynamic_lucas_number accepts only integer arguments.")
a, b = 2, 1
- for i in range(n_th_number):
+ for _ in range(n_th_number):
a, b = b, a + b
return a
diff --git a/maths/maclaurin_series.py b/maths/maclaurin_series.py
new file mode 100644
index 000000000..e55839bc1
--- /dev/null
+++ b/maths/maclaurin_series.py
@@ -0,0 +1,122 @@
+"""
+https://en.wikipedia.org/wiki/Taylor_series#Trigonometric_functions
+"""
+from math import factorial, pi
+
+
+def maclaurin_sin(theta: float, accuracy: int = 30) -> float:
+ """
+ Finds the maclaurin approximation of sin
+
+ :param theta: the angle to which sin is found
+ :param accuracy: the degree of accuracy wanted minimum
+ :return: the value of sine in radians
+
+
+ >>> from math import isclose, sin
+ >>> all(isclose(maclaurin_sin(x, 50), sin(x)) for x in range(-25, 25))
+ True
+ >>> maclaurin_sin(10)
+ -0.544021110889369
+ >>> maclaurin_sin(-10)
+ 0.5440211108893703
+ >>> maclaurin_sin(10, 15)
+ -0.5440211108893689
+ >>> maclaurin_sin(-10, 15)
+ 0.5440211108893703
+ >>> maclaurin_sin("10")
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_sin() requires either an int or float for theta
+ >>> maclaurin_sin(10, -30)
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_sin() requires a positive int for accuracy
+ >>> maclaurin_sin(10, 30.5)
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_sin() requires a positive int for accuracy
+ >>> maclaurin_sin(10, "30")
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_sin() requires a positive int for accuracy
+ """
+
+ if not isinstance(theta, (int, float)):
+ raise ValueError("maclaurin_sin() requires either an int or float for theta")
+
+ if not isinstance(accuracy, int) or accuracy <= 0:
+ raise ValueError("maclaurin_sin() requires a positive int for accuracy")
+
+ theta = float(theta)
+ div = theta // (2 * pi)
+ theta -= 2 * div * pi
+ return sum(
+ (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(accuracy)
+ )
+
+
+def maclaurin_cos(theta: float, accuracy: int = 30) -> float:
+ """
+ Finds the maclaurin approximation of cos
+
+ :param theta: the angle to which cos is found
+ :param accuracy: the degree of accuracy wanted
+ :return: the value of cosine in radians
+
+
+ >>> from math import isclose, cos
+ >>> all(isclose(maclaurin_cos(x, 50), cos(x)) for x in range(-25, 25))
+ True
+ >>> maclaurin_cos(5)
+ 0.28366218546322675
+ >>> maclaurin_cos(-5)
+ 0.2836621854632266
+ >>> maclaurin_cos(10, 15)
+ -0.8390715290764525
+ >>> maclaurin_cos(-10, 15)
+ -0.8390715290764521
+ >>> maclaurin_cos("10")
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_cos() requires either an int or float for theta
+ >>> maclaurin_cos(10, -30)
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_cos() requires a positive int for accuracy
+ >>> maclaurin_cos(10, 30.5)
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_cos() requires a positive int for accuracy
+ >>> maclaurin_cos(10, "30")
+ Traceback (most recent call last):
+ ...
+ ValueError: maclaurin_cos() requires a positive int for accuracy
+ """
+
+ if not isinstance(theta, (int, float)):
+ raise ValueError("maclaurin_cos() requires either an int or float for theta")
+
+ if not isinstance(accuracy, int) or accuracy <= 0:
+ raise ValueError("maclaurin_cos() requires a positive int for accuracy")
+
+ theta = float(theta)
+ div = theta // (2 * pi)
+ theta -= 2 * div * pi
+ return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(accuracy))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+
+ print(maclaurin_sin(10))
+ print(maclaurin_sin(-10))
+ print(maclaurin_sin(10, 15))
+ print(maclaurin_sin(-10, 15))
+
+ print(maclaurin_cos(5))
+ print(maclaurin_cos(-5))
+ print(maclaurin_cos(10, 15))
+ print(maclaurin_cos(-10, 15))
diff --git a/maths/manhattan_distance.py b/maths/manhattan_distance.py
new file mode 100644
index 000000000..413991468
--- /dev/null
+++ b/maths/manhattan_distance.py
@@ -0,0 +1,126 @@
+def manhattan_distance(point_a: list, point_b: list) -> float:
+ """
+ Expectts two list of numbers representing two points in the same
+ n-dimensional space
+
+ https://en.wikipedia.org/wiki/Taxicab_geometry
+
+ >>> manhattan_distance([1,1], [2,2])
+ 2.0
+ >>> manhattan_distance([1.5,1.5], [2,2])
+ 1.0
+ >>> manhattan_distance([1.5,1.5], [2.5,2])
+ 1.5
+ >>> manhattan_distance([-3, -3, -3], [0, 0, 0])
+ 9.0
+ >>> manhattan_distance([1,1], None)
+ Traceback (most recent call last):
+ ...
+ ValueError: Missing an input
+ >>> manhattan_distance([1,1], [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ ValueError: Both points must be in the same n-dimensional space
+ >>> manhattan_distance([1,"one"], [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ >>> manhattan_distance(1, [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found int
+ >>> manhattan_distance([1,1], "not_a_list")
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ """
+
+ _validate_point(point_a)
+ _validate_point(point_b)
+ if len(point_a) != len(point_b):
+ raise ValueError("Both points must be in the same n-dimensional space")
+
+ return float(sum(abs(a - b) for a, b in zip(point_a, point_b)))
+
+
+def _validate_point(point: list[float]) -> None:
+ """
+ >>> _validate_point(None)
+ Traceback (most recent call last):
+ ...
+ ValueError: Missing an input
+ >>> _validate_point([1,"one"])
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ >>> _validate_point(1)
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found int
+ >>> _validate_point("not_a_list")
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ """
+ if point:
+ if isinstance(point, list):
+ for item in point:
+ if not isinstance(item, (int, float)):
+ msg = (
+ "Expected a list of numbers as input, found "
+ f"{type(item).__name__}"
+ )
+ raise TypeError(msg)
+ else:
+ msg = f"Expected a list of numbers as input, found {type(point).__name__}"
+ raise TypeError(msg)
+ else:
+ raise ValueError("Missing an input")
+
+
+def manhattan_distance_one_liner(point_a: list, point_b: list) -> float:
+ """
+ Version with one liner
+
+ >>> manhattan_distance_one_liner([1,1], [2,2])
+ 2.0
+ >>> manhattan_distance_one_liner([1.5,1.5], [2,2])
+ 1.0
+ >>> manhattan_distance_one_liner([1.5,1.5], [2.5,2])
+ 1.5
+ >>> manhattan_distance_one_liner([-3, -3, -3], [0, 0, 0])
+ 9.0
+ >>> manhattan_distance_one_liner([1,1], None)
+ Traceback (most recent call last):
+ ...
+ ValueError: Missing an input
+ >>> manhattan_distance_one_liner([1,1], [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ ValueError: Both points must be in the same n-dimensional space
+ >>> manhattan_distance_one_liner([1,"one"], [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ >>> manhattan_distance_one_liner(1, [2, 2, 2])
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found int
+ >>> manhattan_distance_one_liner([1,1], "not_a_list")
+ Traceback (most recent call last):
+ ...
+ TypeError: Expected a list of numbers as input, found str
+ """
+
+ _validate_point(point_a)
+ _validate_point(point_b)
+ if len(point_a) != len(point_b):
+ raise ValueError("Both points must be in the same n-dimensional space")
+
+ return float(sum(abs(x - y) for x, y in zip(point_a, point_b)))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/matrix_exponentiation.py b/maths/matrix_exponentiation.py
index 033ceb3f2..7c37151c8 100644
--- a/maths/matrix_exponentiation.py
+++ b/maths/matrix_exponentiation.py
@@ -5,7 +5,7 @@ import timeit
"""
Matrix Exponentiation is a technique to solve linear recurrences in logarithmic time.
You read more about it here:
-http://zobayer.blogspot.com/2010/11/matrix-exponentiation.html
+https://zobayer.blogspot.com/2010/11/matrix-exponentiation.html
https://www.hackerearth.com/practice/notes/matrix-exponentiation-1/
"""
diff --git a/maths/miller_rabin.py b/maths/miller_rabin.py
index b4dfed129..9f2668dba 100644
--- a/maths/miller_rabin.py
+++ b/maths/miller_rabin.py
@@ -33,7 +33,7 @@ def is_prime_big(n, prec=1000):
b = bin_exp_mod(a, d, n)
if b != 1:
flag = True
- for i in range(exp):
+ for _ in range(exp):
if b == n - 1:
flag = False
break
diff --git a/maths/mobius_function.py b/maths/mobius_function.py
index 4fcf35f21..8abdc4caf 100644
--- a/maths/mobius_function.py
+++ b/maths/mobius_function.py
@@ -1,8 +1,8 @@
"""
References: https://en.wikipedia.org/wiki/M%C3%B6bius_function
References: wikipedia:square free number
-python/black : True
-flake8 : True
+psf/black : True
+ruff : True
"""
from maths.is_square_free import is_square_free
diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py
index c13b8d0a4..474f1f65d 100644
--- a/maths/monte_carlo.py
+++ b/maths/monte_carlo.py
@@ -18,6 +18,7 @@ def pi_estimator(iterations: int):
5. Multiply this value by 4 to get your estimate of pi.
6. Print the estimated and numpy value of pi
"""
+
# A local function to see if a dot lands in the circle.
def is_in_circle(x: float, y: float) -> bool:
distance_from_centre = sqrt((x**2) + (y**2))
diff --git a/maths/monte_carlo_dice.py b/maths/monte_carlo_dice.py
index 17cedbdbc..362f70b49 100644
--- a/maths/monte_carlo_dice.py
+++ b/maths/monte_carlo_dice.py
@@ -13,9 +13,6 @@ class Dice:
def roll(self):
return random.choice(self.sides)
- def _str_(self):
- return "Fair Dice"
-
def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]:
"""
@@ -35,7 +32,7 @@ def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]:
"""
dices = [Dice() for i in range(num_dice)]
count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1)
- for i in range(num_throws):
+ for _ in range(num_throws):
count_of_sum[sum(dice.roll() for dice in dices)] += 1
probability = [round((count * 100) / num_throws, 2) for count in count_of_sum]
return probability[num_dice:] # remove probability of sums that never appear
diff --git a/maths/nevilles_method.py b/maths/nevilles_method.py
index 5583e4269..1f48b43fb 100644
--- a/maths/nevilles_method.py
+++ b/maths/nevilles_method.py
@@ -31,8 +31,7 @@ def neville_interpolate(x_points: list, y_points: list, x0: int) -> list:
104.0
>>> neville_interpolate((1,2,3,4,6), (6,7,8,9,11), '')
Traceback (most recent call last):
- File "", line 1, in
- ...
+ ...
TypeError: unsupported operand type(s) for -: 'str' and 'int'
"""
n = len(x_points)
diff --git a/maths/newton_raphson.py b/maths/newton_raphson.py
index f2b7cb976..f6b227b5c 100644
--- a/maths/newton_raphson.py
+++ b/maths/newton_raphson.py
@@ -1,16 +1,20 @@
"""
- Author: P Shreyas Shetty
- Implementation of Newton-Raphson method for solving equations of kind
- f(x) = 0. It is an iterative method where solution is found by the expression
- x[n+1] = x[n] + f(x[n])/f'(x[n])
- If no solution exists, then either the solution will not be found when iteration
- limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
- is raised. If iteration limit is reached, try increasing maxiter.
- """
+Author: P Shreyas Shetty
+Implementation of Newton-Raphson method for solving equations of kind
+f(x) = 0. It is an iterative method where solution is found by the expression
+ x[n+1] = x[n] + f(x[n])/f'(x[n])
+If no solution exists, then either the solution will not be found when iteration
+limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
+is raised. If iteration limit is reached, try increasing maxiter.
+"""
+
import math as m
+from collections.abc import Callable
+
+DerivativeFunc = Callable[[float], float]
-def calc_derivative(f, a, h=0.001):
+def calc_derivative(f: DerivativeFunc, a: float, h: float = 0.001) -> float:
"""
Calculates derivative at point a for function f using finite difference
method
@@ -18,8 +22,14 @@ def calc_derivative(f, a, h=0.001):
return (f(a + h) - f(a - h)) / (2 * h)
-def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=False):
-
+def newton_raphson(
+ f: DerivativeFunc,
+ x0: float = 0,
+ maxiter: int = 100,
+ step: float = 0.0001,
+ maxerror: float = 1e-6,
+ logsteps: bool = False,
+) -> tuple[float, float, list[float]]:
a = x0 # set the initial guess
steps = [a]
error = abs(f(a))
@@ -37,7 +47,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa
if logsteps:
# If logstep is true, then log intermediate steps
return a, error, steps
- return a, error
+ return a, error, []
if __name__ == "__main__":
diff --git a/maths/number_of_digits.py b/maths/number_of_digits.py
index 3c0eb7b38..86bc67f72 100644
--- a/maths/number_of_digits.py
+++ b/maths/number_of_digits.py
@@ -67,93 +67,23 @@ def num_digits_faster(n: int) -> int:
def benchmark() -> None:
"""
- Benchmark code for comparing 3 functions,
- with 3 different length int values.
+ Benchmark multiple functions, with three different length int values.
"""
- print("\nFor small_num = ", small_num, ":")
- print(
- "> num_digits()",
- "\t\tans =",
- num_digits(small_num),
- "\ttime =",
- timeit("z.num_digits(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_fast()",
- "\tans =",
- num_digits_fast(small_num),
- "\ttime =",
- timeit("z.num_digits_fast(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_faster()",
- "\tans =",
- num_digits_faster(small_num),
- "\ttime =",
- timeit("z.num_digits_faster(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
+ from collections.abc import Callable
- print("\nFor medium_num = ", medium_num, ":")
- print(
- "> num_digits()",
- "\t\tans =",
- num_digits(medium_num),
- "\ttime =",
- timeit("z.num_digits(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_fast()",
- "\tans =",
- num_digits_fast(medium_num),
- "\ttime =",
- timeit("z.num_digits_fast(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_faster()",
- "\tans =",
- num_digits_faster(medium_num),
- "\ttime =",
- timeit("z.num_digits_faster(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
+ def benchmark_a_function(func: Callable, value: int) -> None:
+ call = f"{func.__name__}({value})"
+ timing = timeit(f"__main__.{call}", setup="import __main__")
+ print(f"{call}: {func(value)} -- {timing} seconds")
- print("\nFor large_num = ", large_num, ":")
- print(
- "> num_digits()",
- "\t\tans =",
- num_digits(large_num),
- "\ttime =",
- timeit("z.num_digits(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_fast()",
- "\tans =",
- num_digits_fast(large_num),
- "\ttime =",
- timeit("z.num_digits_fast(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> num_digits_faster()",
- "\tans =",
- num_digits_faster(large_num),
- "\ttime =",
- timeit("z.num_digits_faster(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
+ for value in (262144, 1125899906842624, 1267650600228229401496703205376):
+ for func in (num_digits, num_digits_fast, num_digits_faster):
+ benchmark_a_function(func, value)
+ print()
if __name__ == "__main__":
- small_num = 262144
- medium_num = 1125899906842624
- large_num = 1267650600228229401496703205376
- benchmark()
import doctest
doctest.testmod()
+ benchmark()
diff --git a/maths/numerical_integration.py b/maths/numerical_integration.py
index a2bfce5b9..4ac562644 100644
--- a/maths/numerical_integration.py
+++ b/maths/numerical_integration.py
@@ -7,12 +7,11 @@ from collections.abc import Callable
def trapezoidal_area(
- fnc: Callable[[int | float], int | float],
- x_start: int | float,
- x_end: int | float,
+ fnc: Callable[[float], float],
+ x_start: float,
+ x_end: float,
steps: int = 100,
) -> float:
-
"""
Treats curve as a collection of linear lines and sums the area of the
trapezium shape they form
@@ -39,8 +38,7 @@ def trapezoidal_area(
fx1 = fnc(x_start)
area = 0.0
- for i in range(steps):
-
+ for _ in range(steps):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
x2 = (x_end - x_start) / steps + x1
diff --git a/maths/odd_sieve.py b/maths/odd_sieve.py
new file mode 100644
index 000000000..60e92921a
--- /dev/null
+++ b/maths/odd_sieve.py
@@ -0,0 +1,42 @@
+from itertools import compress, repeat
+from math import ceil, sqrt
+
+
+def odd_sieve(num: int) -> list[int]:
+ """
+ Returns the prime numbers < `num`. The prime numbers are calculated using an
+ odd sieve implementation of the Sieve of Eratosthenes algorithm
+ (see for reference https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes).
+
+ >>> odd_sieve(2)
+ []
+ >>> odd_sieve(3)
+ [2]
+ >>> odd_sieve(10)
+ [2, 3, 5, 7]
+ >>> odd_sieve(20)
+ [2, 3, 5, 7, 11, 13, 17, 19]
+ """
+
+ if num <= 2:
+ return []
+ if num == 3:
+ return [2]
+
+ # Odd sieve for numbers in range [3, num - 1]
+ sieve = bytearray(b"\x01") * ((num >> 1) - 1)
+
+ for i in range(3, int(sqrt(num)) + 1, 2):
+ if sieve[(i >> 1) - 1]:
+ i_squared = i**2
+ sieve[(i_squared >> 1) - 1 :: i] = repeat(
+ 0, ceil((num - i_squared) / (i << 1))
+ )
+
+ return [2] + list(compress(range(3, num, 2), sieve))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/pi_generator.py b/maths/pi_generator.py
new file mode 100644
index 000000000..dcd218aae
--- /dev/null
+++ b/maths/pi_generator.py
@@ -0,0 +1,94 @@
+def calculate_pi(limit: int) -> str:
+ """
+ https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80
+ Leibniz Formula for Pi
+
+ The Leibniz formula is the special case arctan 1 = 1/4 Pi .
+ Leibniz's formula converges extremely slowly: it exhibits sublinear convergence.
+
+ Convergence (https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80#Convergence)
+
+ We cannot try to prove against an interrupted, uncompleted generation.
+ https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80#Unusual_behaviour
+ The errors can in fact be predicted;
+ but those calculations also approach infinity for accuracy.
+
+ Our output will always be a string since we can defintely store all digits in there.
+ For simplicity' sake, let's just compare against known values and since our outpit
+ is a string, we need to convert to float.
+
+ >>> import math
+ >>> float(calculate_pi(15)) == math.pi
+ True
+
+ Since we cannot predict errors or interrupt any infinite alternating
+ series generation since they approach infinity,
+ or interrupt any alternating series, we are going to need math.isclose()
+
+ >>> math.isclose(float(calculate_pi(50)), math.pi)
+ True
+
+ >>> math.isclose(float(calculate_pi(100)), math.pi)
+ True
+
+ Since math.pi-constant contains only 16 digits, here some test with preknown values:
+
+ >>> calculate_pi(50)
+ '3.14159265358979323846264338327950288419716939937510'
+ >>> calculate_pi(80)
+ '3.14159265358979323846264338327950288419716939937510582097494459230781640628620899'
+
+ To apply the Leibniz formula for calculating pi,
+ the variables q, r, t, k, n, and l are used for the iteration process.
+ """
+ q = 1
+ r = 0
+ t = 1
+ k = 1
+ n = 3
+ l = 3
+ decimal = limit
+ counter = 0
+
+ result = ""
+
+ """
+ We will avoid using yield since we otherwise get a Generator-Object,
+ which we can't just compare against anything. We would have to make a list out of it
+ after the generation, so we will just stick to plain return logic:
+ """
+ while counter != decimal + 1:
+ if 4 * q + r - t < n * t:
+ result += str(n)
+ if counter == 0:
+ result += "."
+
+ if decimal == counter:
+ break
+
+ counter += 1
+ nr = 10 * (r - n * t)
+ n = ((10 * (3 * q + r)) // t) - 10 * n
+ q *= 10
+ r = nr
+ else:
+ nr = (2 * q + r) * l
+ nn = (q * (7 * k) + 2 + (r * l)) // (t * l)
+ q *= k
+ t *= l
+ l += 2
+ k += 1
+ n = nn
+ r = nr
+ return result
+
+
+def main() -> None:
+ print(f"{calculate_pi(50) = }")
+ import doctest
+
+ doctest.testmod()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/maths/pi_monte_carlo_estimation.py b/maths/pi_monte_carlo_estimation.py
index 81be08378..29b679907 100644
--- a/maths/pi_monte_carlo_estimation.py
+++ b/maths/pi_monte_carlo_estimation.py
@@ -47,7 +47,7 @@ def estimate_pi(number_of_simulations: int) -> float:
raise ValueError("At least one simulation is necessary to estimate PI.")
number_in_unit_circle = 0
- for simulation_index in range(number_of_simulations):
+ for _ in range(number_of_simulations):
random_point = Point.random_unit_square()
if random_point.is_in_unit_circle():
diff --git a/maths/pollard_rho.py b/maths/pollard_rho.py
index 0fc80cd42..5082f54f7 100644
--- a/maths/pollard_rho.py
+++ b/maths/pollard_rho.py
@@ -73,7 +73,7 @@ def pollard_rho(
"""
return (pow(value, 2) + step) % modulus
- for attempt in range(attempts):
+ for _ in range(attempts):
# These track the position within the cycle detection logic.
tortoise = seed
hare = seed
diff --git a/maths/polynomial_evaluation.py b/maths/polynomial_evaluation.py
index 8ee82467e..90a51f521 100644
--- a/maths/polynomial_evaluation.py
+++ b/maths/polynomial_evaluation.py
@@ -45,7 +45,7 @@ if __name__ == "__main__":
>>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2
>>> x = -13.0
>>> # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9
- >>> print(evaluate_poly(poly, x))
+ >>> evaluate_poly(poly, x)
180339.9
"""
poly = (0.0, 0.0, 5.0, 9.3, 7.0)
diff --git a/maths/polynomials/__init__.py b/maths/polynomials/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/maths/polynomials/single_indeterminate_operations.py b/maths/polynomials/single_indeterminate_operations.py
new file mode 100644
index 000000000..e31e6caa3
--- /dev/null
+++ b/maths/polynomials/single_indeterminate_operations.py
@@ -0,0 +1,188 @@
+"""
+
+This module implements a single indeterminate polynomials class
+with some basic operations
+
+Reference: https://en.wikipedia.org/wiki/Polynomial
+
+"""
+
+from __future__ import annotations
+
+from collections.abc import MutableSequence
+
+
+class Polynomial:
+ def __init__(self, degree: int, coefficients: MutableSequence[float]) -> None:
+ """
+ The coefficients should be in order of degree, from smallest to largest.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> p = Polynomial(2, [1, 2, 3, 4])
+ Traceback (most recent call last):
+ ...
+ ValueError: The number of coefficients should be equal to the degree + 1.
+
+ """
+ if len(coefficients) != degree + 1:
+ raise ValueError(
+ "The number of coefficients should be equal to the degree + 1."
+ )
+
+ self.coefficients: list[float] = list(coefficients)
+ self.degree = degree
+
+ def __add__(self, polynomial_2: Polynomial) -> Polynomial:
+ """
+ Polynomial addition
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> q = Polynomial(2, [1, 2, 3])
+ >>> p + q
+ 6x^2 + 4x + 2
+ """
+
+ if self.degree > polynomial_2.degree:
+ coefficients = self.coefficients[:]
+ for i in range(polynomial_2.degree + 1):
+ coefficients[i] += polynomial_2.coefficients[i]
+ return Polynomial(self.degree, coefficients)
+ else:
+ coefficients = polynomial_2.coefficients[:]
+ for i in range(self.degree + 1):
+ coefficients[i] += self.coefficients[i]
+ return Polynomial(polynomial_2.degree, coefficients)
+
+ def __sub__(self, polynomial_2: Polynomial) -> Polynomial:
+ """
+ Polynomial subtraction
+ >>> p = Polynomial(2, [1, 2, 4])
+ >>> q = Polynomial(2, [1, 2, 3])
+ >>> p - q
+ 1x^2
+ """
+ return self + polynomial_2 * Polynomial(0, [-1])
+
+ def __neg__(self) -> Polynomial:
+ """
+ Polynomial negation
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> -p
+ - 3x^2 - 2x - 1
+ """
+ return Polynomial(self.degree, [-c for c in self.coefficients])
+
+ def __mul__(self, polynomial_2: Polynomial) -> Polynomial:
+ """
+ Polynomial multiplication
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> q = Polynomial(2, [1, 2, 3])
+ >>> p * q
+ 9x^4 + 12x^3 + 10x^2 + 4x + 1
+ """
+ coefficients: list[float] = [0] * (self.degree + polynomial_2.degree + 1)
+ for i in range(self.degree + 1):
+ for j in range(polynomial_2.degree + 1):
+ coefficients[i + j] += (
+ self.coefficients[i] * polynomial_2.coefficients[j]
+ )
+
+ return Polynomial(self.degree + polynomial_2.degree, coefficients)
+
+ def evaluate(self, substitution: float) -> float:
+ """
+ Evaluates the polynomial at x.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> p.evaluate(2)
+ 17
+ """
+ result: int | float = 0
+ for i in range(self.degree + 1):
+ result += self.coefficients[i] * (substitution**i)
+ return result
+
+ def __str__(self) -> str:
+ """
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> print(p)
+ 3x^2 + 2x + 1
+ """
+ polynomial = ""
+ for i in range(self.degree, -1, -1):
+ if self.coefficients[i] == 0:
+ continue
+ elif self.coefficients[i] > 0:
+ if polynomial:
+ polynomial += " + "
+ else:
+ polynomial += " - "
+
+ if i == 0:
+ polynomial += str(abs(self.coefficients[i]))
+ elif i == 1:
+ polynomial += str(abs(self.coefficients[i])) + "x"
+ else:
+ polynomial += str(abs(self.coefficients[i])) + "x^" + str(i)
+
+ return polynomial
+
+ def __repr__(self) -> str:
+ """
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> p
+ 3x^2 + 2x + 1
+ """
+ return self.__str__()
+
+ def derivative(self) -> Polynomial:
+ """
+ Returns the derivative of the polynomial.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> p.derivative()
+ 6x + 2
+ """
+ coefficients: list[float] = [0] * self.degree
+ for i in range(self.degree):
+ coefficients[i] = self.coefficients[i + 1] * (i + 1)
+ return Polynomial(self.degree - 1, coefficients)
+
+ def integral(self, constant: float = 0) -> Polynomial:
+ """
+ Returns the integral of the polynomial.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> p.integral()
+ 1.0x^3 + 1.0x^2 + 1.0x
+ """
+ coefficients: list[float] = [0] * (self.degree + 2)
+ coefficients[0] = constant
+ for i in range(self.degree + 1):
+ coefficients[i + 1] = self.coefficients[i] / (i + 1)
+ return Polynomial(self.degree + 1, coefficients)
+
+ def __eq__(self, polynomial_2: object) -> bool:
+ """
+ Checks if two polynomials are equal.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> q = Polynomial(2, [1, 2, 3])
+ >>> p == q
+ True
+ """
+ if not isinstance(polynomial_2, Polynomial):
+ return False
+
+ if self.degree != polynomial_2.degree:
+ return False
+
+ for i in range(self.degree + 1):
+ if self.coefficients[i] != polynomial_2.coefficients[i]:
+ return False
+
+ return True
+
+ def __ne__(self, polynomial_2: object) -> bool:
+ """
+ Checks if two polynomials are not equal.
+ >>> p = Polynomial(2, [1, 2, 3])
+ >>> q = Polynomial(2, [1, 2, 3])
+ >>> p != q
+ False
+ """
+ return not self.__eq__(polynomial_2)
diff --git a/maths/prime_numbers.py b/maths/prime_numbers.py
index 7be4d3d95..c5297ed92 100644
--- a/maths/prime_numbers.py
+++ b/maths/prime_numbers.py
@@ -2,7 +2,7 @@ import math
from collections.abc import Generator
-def slow_primes(max: int) -> Generator[int, None, None]:
+def slow_primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(slow_primes(0))
@@ -20,7 +20,7 @@ def slow_primes(max: int) -> Generator[int, None, None]:
>>> list(slow_primes(10000))[-1]
9973
"""
- numbers: Generator = (i for i in range(1, (max + 1)))
+ numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
for j in range(2, i):
if (i % j) == 0:
@@ -29,7 +29,7 @@ def slow_primes(max: int) -> Generator[int, None, None]:
yield i
-def primes(max: int) -> Generator[int, None, None]:
+def primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(primes(0))
@@ -47,7 +47,7 @@ def primes(max: int) -> Generator[int, None, None]:
>>> list(primes(10000))[-1]
9973
"""
- numbers: Generator = (i for i in range(1, (max + 1)))
+ numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
# only need to check for factors up to sqrt(i)
bound = int(math.sqrt(i)) + 1
@@ -58,7 +58,7 @@ def primes(max: int) -> Generator[int, None, None]:
yield i
-def fast_primes(max: int) -> Generator[int, None, None]:
+def fast_primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(fast_primes(0))
@@ -76,9 +76,9 @@ def fast_primes(max: int) -> Generator[int, None, None]:
>>> list(fast_primes(10000))[-1]
9973
"""
- numbers: Generator = (i for i in range(1, (max + 1), 2))
+ numbers: Generator = (i for i in range(1, (max_n + 1), 2))
# It's useless to test even numbers as they will not be prime
- if max > 2:
+ if max_n > 2:
yield 2 # Because 2 will not be tested, it's necessary to yield it now
for i in (n for n in numbers if n > 1):
bound = int(math.sqrt(i)) + 1
@@ -90,32 +90,20 @@ def fast_primes(max: int) -> Generator[int, None, None]:
yield i
+def benchmark():
+ """
+ Let's benchmark our functions side-by-side...
+ """
+ from timeit import timeit
+
+ setup = "from __main__ import slow_primes, primes, fast_primes"
+ print(timeit("slow_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
+ print(timeit("primes(1_000_000_000_000)", setup=setup, number=1_000_000))
+ print(timeit("fast_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
+
+
if __name__ == "__main__":
number = int(input("Calculate primes up to:\n>> ").strip())
for ret in primes(number):
print(ret)
-
- # Let's benchmark them side-by-side...
- from timeit import timeit
-
- print(
- timeit(
- "slow_primes(1_000_000_000_000)",
- setup="from __main__ import slow_primes",
- number=1_000_000,
- )
- )
- print(
- timeit(
- "primes(1_000_000_000_000)",
- setup="from __main__ import primes",
- number=1_000_000,
- )
- )
- print(
- timeit(
- "fast_primes(1_000_000_000_000)",
- setup="from __main__ import fast_primes",
- number=1_000_000,
- )
- )
+ benchmark()
diff --git a/maths/prime_sieve_eratosthenes.py b/maths/prime_sieve_eratosthenes.py
index 8d60e48c2..32eef9165 100644
--- a/maths/prime_sieve_eratosthenes.py
+++ b/maths/prime_sieve_eratosthenes.py
@@ -1,12 +1,10 @@
-# flake8: noqa
-
"""
Sieve of Eratosthenes
-Input : n =10
+Input: n = 10
Output: 2 3 5 7
-Input : n = 20
+Input: n = 20
Output: 2 3 5 7 11 13 17 19
you can read in detail about this at
@@ -14,34 +12,43 @@ https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
"""
-def prime_sieve_eratosthenes(num):
+def prime_sieve_eratosthenes(num: int) -> list[int]:
"""
- print the prime numbers up to n
+ Print the prime numbers up to n
>>> prime_sieve_eratosthenes(10)
- 2,3,5,7,
+ [2, 3, 5, 7]
>>> prime_sieve_eratosthenes(20)
- 2,3,5,7,11,13,17,19,
+ [2, 3, 5, 7, 11, 13, 17, 19]
+ >>> prime_sieve_eratosthenes(2)
+ [2]
+ >>> prime_sieve_eratosthenes(1)
+ []
+ >>> prime_sieve_eratosthenes(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: Input must be a positive integer
"""
- primes = [True for i in range(num + 1)]
- p = 2
+ if num <= 0:
+ raise ValueError("Input must be a positive integer")
+ primes = [True] * (num + 1)
+
+ p = 2
while p * p <= num:
if primes[p]:
for i in range(p * p, num + 1, p):
primes[i] = False
p += 1
- for prime in range(2, num + 1):
- if primes[prime]:
- print(prime, end=",")
+ return [prime for prime in range(2, num + 1) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
- num = int(input())
- prime_sieve_eratosthenes(num)
+ user_num = int(input("Enter a positive integer: ").strip())
+ print(prime_sieve_eratosthenes(user_num))
diff --git a/maths/primelib.py b/maths/primelib.py
index 3da9c56f6..28b5aee9d 100644
--- a/maths/primelib.py
+++ b/maths/primelib.py
@@ -8,27 +8,27 @@ prime numbers and whole numbers.
Overview:
-isPrime(number)
-sieveEr(N)
-getPrimeNumbers(N)
-primeFactorization(number)
-greatestPrimeFactor(number)
-smallestPrimeFactor(number)
-getPrime(n)
-getPrimesBetween(pNumber1, pNumber2)
+is_prime(number)
+sieve_er(N)
+get_prime_numbers(N)
+prime_factorization(number)
+greatest_prime_factor(number)
+smallest_prime_factor(number)
+get_prime(n)
+get_primes_between(pNumber1, pNumber2)
----
-isEven(number)
-isOdd(number)
+is_even(number)
+is_odd(number)
gcd(number1, number2) // greatest common divisor
-kgV(number1, number2) // least common multiple
-getDivisors(number) // all divisors of 'number' inclusive 1, number
-isPerfectNumber(number)
+kg_v(number1, number2) // least common multiple
+get_divisors(number) // all divisors of 'number' inclusive 1, number
+is_perfect_number(number)
NEW-FUNCTIONS
-simplifyFraction(numerator, denominator)
+simplify_fraction(numerator, denominator)
factorial (n) // n!
fib (n) // calculate the n-th fibonacci term.
@@ -59,7 +59,6 @@ def is_prime(number: int) -> bool:
status = False
for divisor in range(2, int(round(sqrt(number))) + 1):
-
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
@@ -75,7 +74,7 @@ def is_prime(number: int) -> bool:
# ------------------------------------------
-def sieveEr(N):
+def sieve_er(n):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N.
@@ -86,23 +85,21 @@ def sieveEr(N):
"""
# precondition
- assert isinstance(N, int) and (N > 2), "'N' must been an int and > 2"
+ assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
- beginList = [x for x in range(2, N + 1)]
+ begin_list = list(range(2, n + 1))
ans = [] # this list will be returns.
# actual sieve of erathostenes
- for i in range(len(beginList)):
-
- for j in range(i + 1, len(beginList)):
-
- if (beginList[i] != 0) and (beginList[j] % beginList[i] == 0):
- beginList[j] = 0
+ for i in range(len(begin_list)):
+ for j in range(i + 1, len(begin_list)):
+ if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
+ begin_list[j] = 0
# filters actual prime numbers.
- ans = [x for x in beginList if x != 0]
+ ans = [x for x in begin_list if x != 0]
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
@@ -113,7 +110,7 @@ def sieveEr(N):
# --------------------------------
-def getPrimeNumbers(N):
+def get_prime_numbers(n):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive)
@@ -121,16 +118,14 @@ def getPrimeNumbers(N):
"""
# precondition
- assert isinstance(N, int) and (N > 2), "'N' must been an int and > 2"
+ assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
ans = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
- for number in range(2, N + 1):
-
+ for number in range(2, n + 1):
if is_prime(number):
-
ans.append(number)
# precondition
@@ -142,7 +137,7 @@ def getPrimeNumbers(N):
# -----------------------------------------
-def primeFactorization(number):
+def prime_factorization(number):
"""
input: positive integer 'number'
returns a list of the prime number factors of 'number'
@@ -159,15 +154,12 @@ def primeFactorization(number):
quotient = number
- if number == 0 or number == 1:
-
+ if number in {0, 1}:
ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(number):
-
while quotient != 1:
-
if is_prime(factor) and (quotient % factor == 0):
ans.append(factor)
quotient /= factor
@@ -186,7 +178,7 @@ def primeFactorization(number):
# -----------------------------------------
-def greatestPrimeFactor(number):
+def greatest_prime_factor(number):
"""
input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number'
@@ -200,9 +192,9 @@ def greatestPrimeFactor(number):
ans = 0
# prime factorization of 'number'
- primeFactors = primeFactorization(number)
+ prime_factors = prime_factorization(number)
- ans = max(primeFactors)
+ ans = max(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
@@ -213,7 +205,7 @@ def greatestPrimeFactor(number):
# ----------------------------------------------
-def smallestPrimeFactor(number):
+def smallest_prime_factor(number):
"""
input: integer 'number' >= 0
returns the smallest prime number factor of 'number'
@@ -227,9 +219,9 @@ def smallestPrimeFactor(number):
ans = 0
# prime factorization of 'number'
- primeFactors = primeFactorization(number)
+ prime_factors = prime_factorization(number)
- ans = min(primeFactors)
+ ans = min(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
@@ -240,7 +232,7 @@ def smallestPrimeFactor(number):
# ----------------------
-def isEven(number):
+def is_even(number):
"""
input: integer 'number'
returns true if 'number' is even, otherwise false.
@@ -256,7 +248,7 @@ def isEven(number):
# ------------------------
-def isOdd(number):
+def is_odd(number):
"""
input: integer 'number'
returns true if 'number' is odd, otherwise false.
@@ -281,14 +273,14 @@ def goldbach(number):
# precondition
assert (
- isinstance(number, int) and (number > 2) and isEven(number)
+ isinstance(number, int) and (number > 2) and is_even(number)
), "'number' must been an int, even and > 2"
ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
- primeNumbers = getPrimeNumbers(number)
- lenPN = len(primeNumbers)
+ prime_numbers = get_prime_numbers(number)
+ len_pn = len(prime_numbers)
# run variable for while-loops.
i = 0
@@ -297,16 +289,14 @@ def goldbach(number):
# exit variable. for break up the loops
loop = True
- while i < lenPN and loop:
-
+ while i < len_pn and loop:
j = i + 1
- while j < lenPN and loop:
-
- if primeNumbers[i] + primeNumbers[j] == number:
+ while j < len_pn and loop:
+ if prime_numbers[i] + prime_numbers[j] == number:
loop = False
- ans.append(primeNumbers[i])
- ans.append(primeNumbers[j])
+ ans.append(prime_numbers[i])
+ ans.append(prime_numbers[j])
j += 1
@@ -345,7 +335,6 @@ def gcd(number1, number2):
rest = 0
while number2 != 0:
-
rest = number1 % number2
number1 = number2
number2 = rest
@@ -361,7 +350,7 @@ def gcd(number1, number2):
# ----------------------------------------------------
-def kgV(number1, number2):
+def kg_v(number1, number2):
"""
Least common multiple
input: two positive integer 'number1' and 'number2'
@@ -380,15 +369,13 @@ def kgV(number1, number2):
# for kgV (x,1)
if number1 > 1 and number2 > 1:
-
# builds the prime factorization of 'number1' and 'number2'
- primeFac1 = primeFactorization(number1)
- primeFac2 = primeFactorization(number2)
+ prime_fac_1 = prime_factorization(number1)
+ prime_fac_2 = prime_factorization(number2)
elif number1 == 1 or number2 == 1:
-
- primeFac1 = []
- primeFac2 = []
+ prime_fac_1 = []
+ prime_fac_2 = []
ans = max(number1, number2)
count1 = 0
@@ -397,35 +384,29 @@ def kgV(number1, number2):
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
- for n in primeFac1:
-
+ for n in prime_fac_1:
if n not in done:
+ if n in prime_fac_2:
+ count1 = prime_fac_1.count(n)
+ count2 = prime_fac_2.count(n)
- if n in primeFac2:
-
- count1 = primeFac1.count(n)
- count2 = primeFac2.count(n)
-
- for i in range(max(count1, count2)):
+ for _ in range(max(count1, count2)):
ans *= n
else:
+ count1 = prime_fac_1.count(n)
- count1 = primeFac1.count(n)
-
- for i in range(count1):
+ for _ in range(count1):
ans *= n
done.append(n)
# iterates through primeFac2
- for n in primeFac2:
-
+ for n in prime_fac_2:
if n not in done:
+ count2 = prime_fac_2.count(n)
- count2 = primeFac2.count(n)
-
- for i in range(count2):
+ for _ in range(count2):
ans *= n
done.append(n)
@@ -441,7 +422,7 @@ def kgV(number1, number2):
# ----------------------------------
-def getPrime(n):
+def get_prime(n):
"""
Gets the n-th prime number.
input: positive integer 'n' >= 0
@@ -455,7 +436,6 @@ def getPrime(n):
ans = 2 # this variable holds the answer
while index < n:
-
index += 1
ans += 1 # counts to the next number
@@ -476,7 +456,7 @@ def getPrime(n):
# ---------------------------------------------------
-def getPrimesBetween(pNumber1, pNumber2):
+def get_primes_between(p_number_1, p_number_2):
"""
input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2
@@ -486,10 +466,10 @@ def getPrimesBetween(pNumber1, pNumber2):
# precondition
assert (
- is_prime(pNumber1) and is_prime(pNumber2) and (pNumber1 < pNumber2)
+ is_prime(p_number_1) and is_prime(p_number_2) and (p_number_1 < p_number_2)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
- number = pNumber1 + 1 # jump to the next number
+ number = p_number_1 + 1 # jump to the next number
ans = [] # this list will be returns.
@@ -498,8 +478,7 @@ def getPrimesBetween(pNumber1, pNumber2):
while not is_prime(number):
number += 1
- while number < pNumber2:
-
+ while number < p_number_2:
ans.append(number)
number += 1
@@ -510,7 +489,9 @@ def getPrimesBetween(pNumber1, pNumber2):
# precondition
assert (
- isinstance(ans, list) and ans[0] != pNumber1 and ans[len(ans) - 1] != pNumber2
+ isinstance(ans, list)
+ and ans[0] != p_number_1
+ and ans[len(ans) - 1] != p_number_2
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
@@ -520,7 +501,7 @@ def getPrimesBetween(pNumber1, pNumber2):
# ----------------------------------------------------
-def getDivisors(n):
+def get_divisors(n):
"""
input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n')
@@ -532,7 +513,6 @@ def getDivisors(n):
ans = [] # will be returned.
for divisor in range(1, n + 1):
-
if n % divisor == 0:
ans.append(divisor)
@@ -545,7 +525,7 @@ def getDivisors(n):
# ----------------------------------------------------
-def isPerfectNumber(number):
+def is_perfect_number(number):
"""
input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false.
@@ -556,7 +536,7 @@ def isPerfectNumber(number):
number > 1
), "'number' must been an int and >= 1"
- divisors = getDivisors(number)
+ divisors = get_divisors(number)
# precondition
assert (
@@ -572,7 +552,7 @@ def isPerfectNumber(number):
# ------------------------------------------------------------
-def simplifyFraction(numerator, denominator):
+def simplify_fraction(numerator, denominator):
"""
input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0
@@ -587,16 +567,16 @@ def simplifyFraction(numerator, denominator):
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
- gcdOfFraction = gcd(abs(numerator), abs(denominator))
+ gcd_of_fraction = gcd(abs(numerator), abs(denominator))
# precondition
assert (
- isinstance(gcdOfFraction, int)
- and (numerator % gcdOfFraction == 0)
- and (denominator % gcdOfFraction == 0)
+ isinstance(gcd_of_fraction, int)
+ and (numerator % gcd_of_fraction == 0)
+ and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
- return (numerator // gcdOfFraction, denominator // gcdOfFraction)
+ return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
# -----------------------------------------------------------------
@@ -635,8 +615,7 @@ def fib(n):
fib1 = 1
ans = 1 # this will be return
- for i in range(n - 1):
-
+ for _ in range(n - 1):
tmp = ans
ans += fib1
fib1 = tmp
diff --git a/maths/print_multiplication_table.py b/maths/print_multiplication_table.py
new file mode 100644
index 000000000..dbe4a4be0
--- /dev/null
+++ b/maths/print_multiplication_table.py
@@ -0,0 +1,26 @@
+def multiplication_table(number: int, number_of_terms: int) -> str:
+ """
+ Prints the multiplication table of a given number till the given number of terms
+
+ >>> print(multiplication_table(3, 5))
+ 3 * 1 = 3
+ 3 * 2 = 6
+ 3 * 3 = 9
+ 3 * 4 = 12
+ 3 * 5 = 15
+
+ >>> print(multiplication_table(-4, 6))
+ -4 * 1 = -4
+ -4 * 2 = -8
+ -4 * 3 = -12
+ -4 * 4 = -16
+ -4 * 5 = -20
+ -4 * 6 = -24
+ """
+ return "\n".join(
+ f"{number} * {i} = {number * i}" for i in range(1, number_of_terms + 1)
+ )
+
+
+if __name__ == "__main__":
+ print(multiplication_table(number=5, number_of_terms=10))
diff --git a/maths/pronic_number.py b/maths/pronic_number.py
new file mode 100644
index 000000000..cf4d3d2eb
--- /dev/null
+++ b/maths/pronic_number.py
@@ -0,0 +1,55 @@
+"""
+== Pronic Number ==
+A number n is said to be a Proic number if
+there exists an integer m such that n = m * (m + 1)
+
+Examples of Proic Numbers: 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110 ...
+https://en.wikipedia.org/wiki/Pronic_number
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+
+
+def is_pronic(number: int) -> bool:
+ """
+ # doctest: +NORMALIZE_WHITESPACE
+ This functions takes an integer number as input.
+ returns True if the number is pronic.
+ >>> is_pronic(-1)
+ False
+ >>> is_pronic(0)
+ True
+ >>> is_pronic(2)
+ True
+ >>> is_pronic(5)
+ False
+ >>> is_pronic(6)
+ True
+ >>> is_pronic(8)
+ False
+ >>> is_pronic(30)
+ True
+ >>> is_pronic(32)
+ False
+ >>> is_pronic(2147441940)
+ True
+ >>> is_pronic(9223372033963249500)
+ True
+ >>> is_pronic(6.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=6.0] must be an integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if number < 0 or number % 2 == 1:
+ return False
+ number_sqrt = int(number**0.5)
+ return number == number_sqrt * (number_sqrt + 1)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/proth_number.py b/maths/proth_number.py
index e17503143..47747ed26 100644
--- a/maths/proth_number.py
+++ b/maths/proth_number.py
@@ -16,23 +16,25 @@ def proth(number: int) -> int:
25
>>> proth(0)
Traceback (most recent call last):
- ...
+ ...
ValueError: Input value of [number=0] must be > 0
>>> proth(-1)
Traceback (most recent call last):
- ...
+ ...
ValueError: Input value of [number=-1] must be > 0
>>> proth(6.0)
Traceback (most recent call last):
- ...
+ ...
TypeError: Input value of [number=6.0] must be an integer
"""
if not isinstance(number, int):
- raise TypeError(f"Input value of [number={number}] must be an integer")
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
if number < 1:
- raise ValueError(f"Input value of [number={number}] must be > 0")
+ msg = f"Input value of [number={number}] must be > 0"
+ raise ValueError(msg)
elif number == 1:
return 3
elif number == 2:
@@ -49,7 +51,7 @@ def proth(number: int) -> int:
proth_index = 2
increment = 3
for block in range(1, block_index):
- for move in range(increment):
+ for _ in range(increment):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1])
proth_index += 1
increment *= 2
diff --git a/maths/pythagoras.py b/maths/pythagoras.py
index 69a17731a..7770e981d 100644
--- a/maths/pythagoras.py
+++ b/maths/pythagoras.py
@@ -14,17 +14,13 @@ class Point:
def distance(a: Point, b: Point) -> float:
- return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2))
-
-
-def test_distance() -> None:
"""
>>> point1 = Point(2, -1, 7)
>>> point2 = Point(1, -3, 5)
>>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}")
Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0
"""
- pass
+ return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2))
if __name__ == "__main__":
diff --git a/maths/qr_decomposition.py b/maths/qr_decomposition.py
index 5e15fede4..670b49206 100644
--- a/maths/qr_decomposition.py
+++ b/maths/qr_decomposition.py
@@ -1,7 +1,7 @@
import numpy as np
-def qr_householder(A):
+def qr_householder(a: np.ndarray):
"""Return a QR-decomposition of the matrix A using Householder reflection.
The QR-decomposition decomposes the matrix A of shape (m, n) into an
@@ -37,14 +37,14 @@ def qr_householder(A):
>>> np.allclose(np.triu(R), R)
True
"""
- m, n = A.shape
+ m, n = a.shape
t = min(m, n)
- Q = np.eye(m)
- R = A.copy()
+ q = np.eye(m)
+ r = a.copy()
for k in range(t - 1):
# select a column of modified matrix A':
- x = R[k:, [k]]
+ x = r[k:, [k]]
# construct first basis vector
e1 = np.zeros_like(x)
e1[0] = 1.0
@@ -55,14 +55,14 @@ def qr_householder(A):
v /= np.linalg.norm(v)
# construct the Householder matrix
- Q_k = np.eye(m - k) - 2.0 * v @ v.T
+ q_k = np.eye(m - k) - 2.0 * v @ v.T
# pad with ones and zeros as necessary
- Q_k = np.block([[np.eye(k), np.zeros((k, m - k))], [np.zeros((m - k, k)), Q_k]])
+ q_k = np.block([[np.eye(k), np.zeros((k, m - k))], [np.zeros((m - k, k)), q_k]])
- Q = Q @ Q_k.T
- R = Q_k @ R
+ q = q @ q_k.T
+ r = q_k @ r
- return Q, R
+ return q, r
if __name__ == "__main__":
diff --git a/maths/radix2_fft.py b/maths/radix2_fft.py
index 0a431a115..2c5cdc004 100644
--- a/maths/radix2_fft.py
+++ b/maths/radix2_fft.py
@@ -39,7 +39,7 @@ class FFT:
>>> x = FFT(A, B)
Print product
- >>> print(x.product) # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
+ >>> x.product # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
[(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]
__str__ test
@@ -49,10 +49,10 @@ class FFT:
A*B = 0*x^(-0+0j) + 1*x^(2+0j) + 2*x^(3+0j) + 3*x^(8+0j) + 4*x^(6+0j) + 5*x^(8+0j)
"""
- def __init__(self, polyA=None, polyB=None):
+ def __init__(self, poly_a=None, poly_b=None):
# Input as list
- self.polyA = list(polyA or [0])[:]
- self.polyB = list(polyB or [0])[:]
+ self.polyA = list(poly_a or [0])[:]
+ self.polyB = list(poly_b or [0])[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
@@ -64,44 +64,41 @@ class FFT:
self.len_B = len(self.polyB)
# Add 0 to make lengths equal a power of 2
- self.C_max_length = int(
+ self.c_max_length = int(
2 ** np.ceil(np.log2(len(self.polyA) + len(self.polyB) - 1))
)
- while len(self.polyA) < self.C_max_length:
+ while len(self.polyA) < self.c_max_length:
self.polyA.append(0)
- while len(self.polyB) < self.C_max_length:
+ while len(self.polyB) < self.c_max_length:
self.polyB.append(0)
# A complex root used for the fourier transform
- self.root = complex(mpmath.root(x=1, n=self.C_max_length, k=1))
+ self.root = complex(mpmath.root(x=1, n=self.c_max_length, k=1))
# The product
self.product = self.__multiply()
# Discrete fourier transform of A and B
- def __DFT(self, which):
- if which == "A":
- dft = [[x] for x in self.polyA]
- else:
- dft = [[x] for x in self.polyB]
+ def __dft(self, which):
+ dft = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
# Corner case
if len(dft) <= 1:
return dft[0]
#
- next_ncol = self.C_max_length // 2
+ next_ncol = self.c_max_length // 2
while next_ncol > 0:
new_dft = [[] for i in range(next_ncol)]
root = self.root**next_ncol
# First half of next step
current_root = 1
- for j in range(self.C_max_length // (next_ncol * 2)):
+ for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j])
current_root *= root
# Second half of next step
current_root = 1
- for j in range(self.C_max_length // (next_ncol * 2)):
+ for j in range(self.c_max_length // (next_ncol * 2)):
for i in range(next_ncol):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j])
current_root *= root
@@ -112,65 +109,65 @@ class FFT:
# multiply the DFTs of A and B and find A*B
def __multiply(self):
- dftA = self.__DFT("A")
- dftB = self.__DFT("B")
- inverseC = [[dftA[i] * dftB[i] for i in range(self.C_max_length)]]
- del dftA
- del dftB
+ dft_a = self.__dft("A")
+ dft_b = self.__dft("B")
+ inverce_c = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]]
+ del dft_a
+ del dft_b
# Corner Case
- if len(inverseC[0]) <= 1:
- return inverseC[0]
+ if len(inverce_c[0]) <= 1:
+ return inverce_c[0]
# Inverse DFT
next_ncol = 2
- while next_ncol <= self.C_max_length:
- new_inverseC = [[] for i in range(next_ncol)]
+ while next_ncol <= self.c_max_length:
+ new_inverse_c = [[] for i in range(next_ncol)]
root = self.root ** (next_ncol // 2)
current_root = 1
# First half of next step
- for j in range(self.C_max_length // next_ncol):
+ for j in range(self.c_max_length // next_ncol):
for i in range(next_ncol // 2):
# Even positions
- new_inverseC[i].append(
+ new_inverse_c[i].append(
(
- inverseC[i][j]
- + inverseC[i][j + self.C_max_length // next_ncol]
+ inverce_c[i][j]
+ + inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2
)
# Odd positions
- new_inverseC[i + next_ncol // 2].append(
+ new_inverse_c[i + next_ncol // 2].append(
(
- inverseC[i][j]
- - inverseC[i][j + self.C_max_length // next_ncol]
+ inverce_c[i][j]
+ - inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root)
)
current_root *= root
# Update
- inverseC = new_inverseC
+ inverce_c = new_inverse_c
next_ncol *= 2
# Unpack
- inverseC = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverseC]
+ inverce_c = [round(x[0].real, 8) + round(x[0].imag, 8) * 1j for x in inverce_c]
# Remove leading 0's
- while inverseC[-1] == 0:
- inverseC.pop()
- return inverseC
+ while inverce_c[-1] == 0:
+ inverce_c.pop()
+ return inverce_c
# Overwrite __str__ for print(); Shows A, B and A*B
def __str__(self):
- A = "A = " + " + ".join(
+ a = "A = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyA[: self.len_A])
)
- B = "B = " + " + ".join(
+ b = "B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.polyB[: self.len_B])
)
- C = "A*B = " + " + ".join(
+ c = "A*B = " + " + ".join(
f"{coef}*x^{i}" for coef, i in enumerate(self.product)
)
- return "\n".join((A, B, C))
+ return f"{a}\n{b}\n{c}"
# Unit tests
diff --git a/maths/remove_digit.py b/maths/remove_digit.py
new file mode 100644
index 000000000..db14ac902
--- /dev/null
+++ b/maths/remove_digit.py
@@ -0,0 +1,37 @@
+def remove_digit(num: int) -> int:
+ """
+
+ returns the biggest possible result
+ that can be achieved by removing
+ one digit from the given number
+
+ >>> remove_digit(152)
+ 52
+ >>> remove_digit(6385)
+ 685
+ >>> remove_digit(-11)
+ 1
+ >>> remove_digit(2222222)
+ 222222
+ >>> remove_digit("2222222")
+ Traceback (most recent call last):
+ TypeError: only integers accepted as input
+ >>> remove_digit("string input")
+ Traceback (most recent call last):
+ TypeError: only integers accepted as input
+ """
+
+ if not isinstance(num, int):
+ raise TypeError("only integers accepted as input")
+ else:
+ num_str = str(abs(num))
+ num_transpositions = [list(num_str) for char in range(len(num_str))]
+ for index in range(len(num_str)):
+ num_transpositions[index].pop(index)
+ return max(
+ int("".join(list(transposition))) for transposition in num_transpositions
+ )
+
+
+if __name__ == "__main__":
+ __import__("doctest").testmod()
diff --git a/maths/runge_kutta.py b/maths/runge_kutta.py
index 383797daa..4cac017ee 100644
--- a/maths/runge_kutta.py
+++ b/maths/runge_kutta.py
@@ -22,12 +22,12 @@ def runge_kutta(f, y0, x0, h, x_end):
>>> y[-1]
148.41315904125113
"""
- N = int(np.ceil((x_end - x0) / h))
- y = np.zeros((N + 1,))
+ n = int(np.ceil((x_end - x0) / h))
+ y = np.zeros((n + 1,))
y[0] = y0
x = x0
- for k in range(N):
+ for k in range(n):
k1 = f(x, y[k])
k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
diff --git a/maths/segmented_sieve.py b/maths/segmented_sieve.py
index 0054b0595..e950a83b7 100644
--- a/maths/segmented_sieve.py
+++ b/maths/segmented_sieve.py
@@ -3,7 +3,7 @@
import math
-def sieve(n):
+def sieve(n: int) -> list[int]:
"""Segmented Sieve."""
in_prime = []
start = 2
@@ -25,7 +25,6 @@ def sieve(n):
while low <= n:
temp = [True] * (high - low + 1)
for each in in_prime:
-
t = math.floor(low / each) * each
if t < low:
t += each
diff --git a/maths/series/geometric_series.py b/maths/series/geometric_series.py
index a875ab89a..b8d6a8620 100644
--- a/maths/series/geometric_series.py
+++ b/maths/series/geometric_series.py
@@ -14,10 +14,10 @@ from __future__ import annotations
def geometric_series(
- nth_term: float | int,
- start_term_a: float | int,
- common_ratio_r: float | int,
-) -> list[float | int]:
+ nth_term: float,
+ start_term_a: float,
+ common_ratio_r: float,
+) -> list[float]:
"""
Pure Python implementation of Geometric Series algorithm
@@ -48,11 +48,11 @@ def geometric_series(
"""
if not all((nth_term, start_term_a, common_ratio_r)):
return []
- series: list[float | int] = []
+ series: list[float] = []
power = 1
multiple = common_ratio_r
for _ in range(int(nth_term)):
- if series == []:
+ if not series:
series.append(start_term_a)
else:
power += 1
diff --git a/maths/series/p_series.py b/maths/series/p_series.py
index 34fa3f239..a091a6f3f 100644
--- a/maths/series/p_series.py
+++ b/maths/series/p_series.py
@@ -13,7 +13,7 @@ python3 p_series.py
from __future__ import annotations
-def p_series(nth_term: int | float | str, power: int | float | str) -> list[str]:
+def p_series(nth_term: float | str, power: float | str) -> list[str]:
"""
Pure Python implementation of P-Series algorithm
:return: The P-Series starting from 1 to last (nth) term
diff --git a/maths/sieve_of_eratosthenes.py b/maths/sieve_of_eratosthenes.py
index 3cd6ce0b4..a0520aa5c 100644
--- a/maths/sieve_of_eratosthenes.py
+++ b/maths/sieve_of_eratosthenes.py
@@ -34,7 +34,8 @@ def prime_sieve(num: int) -> list[int]:
"""
if num <= 0:
- raise ValueError(f"{num}: Invalid input, please enter a positive integer.")
+ msg = f"{num}: Invalid input, please enter a positive integer."
+ raise ValueError(msg)
sieve = [True] * (num + 1)
prime = []
diff --git a/maths/sigmoid.py b/maths/sigmoid.py
index 147588e88..cb45bde27 100644
--- a/maths/sigmoid.py
+++ b/maths/sigmoid.py
@@ -11,7 +11,7 @@ https://en.wikipedia.org/wiki/Sigmoid_function
import numpy as np
-def sigmoid(vector: np.array) -> np.array:
+def sigmoid(vector: np.ndarray) -> np.ndarray:
"""
Implements the sigmoid function
diff --git a/maths/sigmoid_linear_unit.py b/maths/sigmoid_linear_unit.py
new file mode 100644
index 000000000..0ee09bf82
--- /dev/null
+++ b/maths/sigmoid_linear_unit.py
@@ -0,0 +1,55 @@
+"""
+This script demonstrates the implementation of the Sigmoid Linear Unit (SiLU)
+or swish function.
+* https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
+* https://en.wikipedia.org/wiki/Swish_function
+
+The function takes a vector x of K real numbers as input and returns x * sigmoid(x).
+Swish is a smooth, non-monotonic function defined as f(x) = x * sigmoid(x).
+Extensive experiments shows that Swish consistently matches or outperforms ReLU
+on deep networks applied to a variety of challenging domains such as
+image classification and machine translation.
+
+This script is inspired by a corresponding research paper.
+* https://arxiv.org/abs/1710.05941
+"""
+
+import numpy as np
+
+
+def sigmoid(vector: np.ndarray) -> np.ndarray:
+ """
+ Mathematical function sigmoid takes a vector x of K real numbers as input and
+ returns 1/ (1 + e^-x).
+ https://en.wikipedia.org/wiki/Sigmoid_function
+
+ >>> sigmoid(np.array([-1.0, 1.0, 2.0]))
+ array([0.26894142, 0.73105858, 0.88079708])
+ """
+ return 1 / (1 + np.exp(-vector))
+
+
+def sigmoid_linear_unit(vector: np.ndarray) -> np.ndarray:
+ """
+ Implements the Sigmoid Linear Unit (SiLU) or swish function
+
+ Parameters:
+ vector (np.ndarray): A numpy array consisting of real values
+
+ Returns:
+ swish_vec (np.ndarray): The input numpy array, after applying swish
+
+ Examples:
+ >>> sigmoid_linear_unit(np.array([-1.0, 1.0, 2.0]))
+ array([-0.26894142, 0.73105858, 1.76159416])
+
+ >>> sigmoid_linear_unit(np.array([-2]))
+ array([-0.23840584])
+ """
+ return vector * sigmoid(vector)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/signum.py b/maths/signum.py
new file mode 100644
index 000000000..148f93176
--- /dev/null
+++ b/maths/signum.py
@@ -0,0 +1,34 @@
+"""
+Signum function -- https://en.wikipedia.org/wiki/Sign_function
+"""
+
+
+def signum(num: float) -> int:
+ """
+ Applies signum function on the number
+
+ >>> signum(-10)
+ -1
+ >>> signum(10)
+ 1
+ >>> signum(0)
+ 0
+ """
+ if num < 0:
+ return -1
+ return 1 if num else 0
+
+
+def test_signum() -> None:
+ """
+ Tests the signum function
+ """
+ assert signum(5) == 1
+ assert signum(-5) == -1
+ assert signum(0) == 0
+
+
+if __name__ == "__main__":
+ print(signum(12))
+ print(signum(-12))
+ print(signum(0))
diff --git a/maths/simultaneous_linear_equation_solver.py b/maths/simultaneous_linear_equation_solver.py
new file mode 100644
index 000000000..1287b2002
--- /dev/null
+++ b/maths/simultaneous_linear_equation_solver.py
@@ -0,0 +1,142 @@
+"""
+https://en.wikipedia.org/wiki/Augmented_matrix
+
+This algorithm solves simultaneous linear equations of the form
+λa + λb + λc + λd + ... = γ as [λ, λ, λ, λ, ..., γ]
+Where λ & γ are individual coefficients, the no. of equations = no. of coefficients - 1
+
+Note in order to work there must exist 1 equation where all instances of λ and γ != 0
+"""
+
+
+def simplify(current_set: list[list]) -> list[list]:
+ """
+ >>> simplify([[1, 2, 3], [4, 5, 6]])
+ [[1.0, 2.0, 3.0], [0.0, 0.75, 1.5]]
+ >>> simplify([[5, 2, 5], [5, 1, 10]])
+ [[1.0, 0.4, 1.0], [0.0, 0.2, -1.0]]
+ """
+ # Divide each row by magnitude of first term --> creates 'unit' matrix
+ duplicate_set = current_set.copy()
+ for row_index, row in enumerate(duplicate_set):
+ magnitude = row[0]
+ for column_index, column in enumerate(row):
+ if magnitude == 0:
+ current_set[row_index][column_index] = column
+ continue
+ current_set[row_index][column_index] = column / magnitude
+ # Subtract to cancel term
+ first_row = current_set[0]
+ final_set = [first_row]
+ current_set = current_set[1::]
+ for row in current_set:
+ temp_row = []
+ # If first term is 0, it is already in form we want, so we preserve it
+ if row[0] == 0:
+ final_set.append(row)
+ continue
+ for column_index in range(len(row)):
+ temp_row.append(first_row[column_index] - row[column_index])
+ final_set.append(temp_row)
+ # Create next recursion iteration set
+ if len(final_set[0]) != 3:
+ current_first_row = final_set[0]
+ current_first_column = []
+ next_iteration = []
+ for row in final_set[1::]:
+ current_first_column.append(row[0])
+ next_iteration.append(row[1::])
+ resultant = simplify(next_iteration)
+ for i in range(len(resultant)):
+ resultant[i].insert(0, current_first_column[i])
+ resultant.insert(0, current_first_row)
+ final_set = resultant
+ return final_set
+
+
+def solve_simultaneous(equations: list[list]) -> list:
+ """
+ >>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
+ [-1.0, 2.0]
+ >>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
+ [6.4, 1.2, 10.6]
+ >>> solve_simultaneous([])
+ Traceback (most recent call last):
+ ...
+ IndexError: solve_simultaneous() requires n lists of length n+1
+ >>> solve_simultaneous([[1, 2, 3],[1, 2]])
+ Traceback (most recent call last):
+ ...
+ IndexError: solve_simultaneous() requires n lists of length n+1
+ >>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
+ Traceback (most recent call last):
+ ...
+ ValueError: solve_simultaneous() requires lists of integers
+ >>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
+ Traceback (most recent call last):
+ ...
+ ValueError: solve_simultaneous() requires at least 1 full equation
+ """
+ if len(equations) == 0:
+ raise IndexError("solve_simultaneous() requires n lists of length n+1")
+ _length = len(equations) + 1
+ if any(len(item) != _length for item in equations):
+ raise IndexError("solve_simultaneous() requires n lists of length n+1")
+ for row in equations:
+ if any(not isinstance(column, (int, float)) for column in row):
+ raise ValueError("solve_simultaneous() requires lists of integers")
+ if len(equations) == 1:
+ return [equations[0][-1] / equations[0][0]]
+ data_set = equations.copy()
+ if any(0 in row for row in data_set):
+ temp_data = data_set.copy()
+ full_row = []
+ for row_index, row in enumerate(temp_data):
+ if 0 not in row:
+ full_row = data_set.pop(row_index)
+ break
+ if not full_row:
+ raise ValueError("solve_simultaneous() requires at least 1 full equation")
+ data_set.insert(0, full_row)
+ useable_form = data_set.copy()
+ simplified = simplify(useable_form)
+ simplified = simplified[::-1]
+ solutions: list = []
+ for row in simplified:
+ current_solution = row[-1]
+ if not solutions:
+ if row[-2] == 0:
+ solutions.append(0)
+ continue
+ solutions.append(current_solution / row[-2])
+ continue
+ temp_row = row.copy()[: len(row) - 1 :]
+ while temp_row[0] == 0:
+ temp_row.pop(0)
+ if len(temp_row) == 0:
+ solutions.append(0)
+ continue
+ temp_row = temp_row[1::]
+ temp_row = temp_row[::-1]
+ for column_index, column in enumerate(temp_row):
+ current_solution -= column * solutions[column_index]
+ solutions.append(current_solution)
+ final = []
+ for item in solutions:
+ final.append(float(round(item, 5)))
+ return final[::-1]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ eq = [
+ [2, 1, 1, 1, 1, 4],
+ [1, 2, 1, 1, 1, 5],
+ [1, 1, 2, 1, 1, 6],
+ [1, 1, 1, 2, 1, 7],
+ [1, 1, 1, 1, 2, 8],
+ ]
+ print(solve_simultaneous(eq))
+ print(solve_simultaneous([[4, 2]]))
diff --git a/maths/softmax.py b/maths/softmax.py
index e021a7f8a..04cf77525 100644
--- a/maths/softmax.py
+++ b/maths/softmax.py
@@ -41,13 +41,13 @@ def softmax(vector):
# Calculate e^x for each x in your vector where e is Euler's
# number (approximately 2.718)
- exponentVector = np.exp(vector)
+ exponent_vector = np.exp(vector)
# Add up the all the exponentials
- sumOfExponents = np.sum(exponentVector)
+ sum_of_exponents = np.sum(exponent_vector)
# Divide every exponent by the sum of all exponents
- softmax_vector = exponentVector / sumOfExponents
+ softmax_vector = exponent_vector / sum_of_exponents
return softmax_vector
diff --git a/maths/square_root.py b/maths/square_root.py
index b324c7230..2cbf14bea 100644
--- a/maths/square_root.py
+++ b/maths/square_root.py
@@ -49,7 +49,7 @@ def square_root_iterative(
value = get_initial_point(a)
- for i in range(max_iter):
+ for _ in range(max_iter):
prev_value = value
value = value - fx(value, a) / fx_derivative(value)
if abs(prev_value - value) < tolerance:
diff --git a/maths/sum_of_arithmetic_series.py b/maths/sum_of_arithmetic_series.py
index 74eef0f18..3e381b8c2 100644
--- a/maths/sum_of_arithmetic_series.py
+++ b/maths/sum_of_arithmetic_series.py
@@ -1,5 +1,5 @@
# DarkCoder
-def sum_of_series(first_term, common_diff, num_of_terms):
+def sum_of_series(first_term: int, common_diff: int, num_of_terms: int) -> float:
"""
Find the sum of n terms in an arithmetic progression.
@@ -8,9 +8,9 @@ def sum_of_series(first_term, common_diff, num_of_terms):
>>> sum_of_series(1, 10, 100)
49600.0
"""
- sum = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
+ total = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
- return sum
+ return total
def main():
diff --git a/maths/sum_of_digits.py b/maths/sum_of_digits.py
index 64da00d46..d5488bb9e 100644
--- a/maths/sum_of_digits.py
+++ b/maths/sum_of_digits.py
@@ -1,10 +1,6 @@
-from timeit import timeit
-
-
def sum_of_digits(n: int) -> int:
"""
Find the sum of digits of a number.
-
>>> sum_of_digits(12345)
15
>>> sum_of_digits(123)
@@ -14,18 +10,17 @@ def sum_of_digits(n: int) -> int:
>>> sum_of_digits(0)
0
"""
- n = -n if n < 0 else n
+ n = abs(n)
res = 0
while n > 0:
res += n % 10
- n = n // 10
+ n //= 10
return res
def sum_of_digits_recursion(n: int) -> int:
"""
Find the sum of digits of a number using recursion
-
>>> sum_of_digits_recursion(12345)
15
>>> sum_of_digits_recursion(123)
@@ -35,14 +30,13 @@ def sum_of_digits_recursion(n: int) -> int:
>>> sum_of_digits_recursion(0)
0
"""
- n = -n if n < 0 else n
+ n = abs(n)
return n if n < 10 else n % 10 + sum_of_digits(n // 10)
def sum_of_digits_compact(n: int) -> int:
"""
Find the sum of digits of a number
-
>>> sum_of_digits_compact(12345)
15
>>> sum_of_digits_compact(123)
@@ -57,93 +51,24 @@ def sum_of_digits_compact(n: int) -> int:
def benchmark() -> None:
"""
- Benchmark code for comparing 3 functions,
- with 3 different length int values.
+ Benchmark multiple functions, with three different length int values.
"""
- print("\nFor small_num = ", small_num, ":")
- print(
- "> sum_of_digits()",
- "\t\tans =",
- sum_of_digits(small_num),
- "\ttime =",
- timeit("z.sum_of_digits(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_recursion()",
- "\tans =",
- sum_of_digits_recursion(small_num),
- "\ttime =",
- timeit("z.sum_of_digits_recursion(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_compact()",
- "\tans =",
- sum_of_digits_compact(small_num),
- "\ttime =",
- timeit("z.sum_of_digits_compact(z.small_num)", setup="import __main__ as z"),
- "seconds",
- )
+ from collections.abc import Callable
+ from timeit import timeit
- print("\nFor medium_num = ", medium_num, ":")
- print(
- "> sum_of_digits()",
- "\t\tans =",
- sum_of_digits(medium_num),
- "\ttime =",
- timeit("z.sum_of_digits(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_recursion()",
- "\tans =",
- sum_of_digits_recursion(medium_num),
- "\ttime =",
- timeit("z.sum_of_digits_recursion(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_compact()",
- "\tans =",
- sum_of_digits_compact(medium_num),
- "\ttime =",
- timeit("z.sum_of_digits_compact(z.medium_num)", setup="import __main__ as z"),
- "seconds",
- )
+ def benchmark_a_function(func: Callable, value: int) -> None:
+ call = f"{func.__name__}({value})"
+ timing = timeit(f"__main__.{call}", setup="import __main__")
+ print(f"{call:56} = {func(value)} -- {timing:.4f} seconds")
- print("\nFor large_num = ", large_num, ":")
- print(
- "> sum_of_digits()",
- "\t\tans =",
- sum_of_digits(large_num),
- "\ttime =",
- timeit("z.sum_of_digits(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_recursion()",
- "\tans =",
- sum_of_digits_recursion(large_num),
- "\ttime =",
- timeit("z.sum_of_digits_recursion(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
- print(
- "> sum_of_digits_compact()",
- "\tans =",
- sum_of_digits_compact(large_num),
- "\ttime =",
- timeit("z.sum_of_digits_compact(z.large_num)", setup="import __main__ as z"),
- "seconds",
- )
+ for value in (262144, 1125899906842624, 1267650600228229401496703205376):
+ for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
+ benchmark_a_function(func, value)
+ print()
if __name__ == "__main__":
- small_num = 262144
- medium_num = 1125899906842624
- large_num = 1267650600228229401496703205376
- benchmark()
import doctest
doctest.testmod()
+ benchmark()
diff --git a/maths/sum_of_harmonic_series.py b/maths/sum_of_harmonic_series.py
new file mode 100644
index 000000000..9e0d6b19b
--- /dev/null
+++ b/maths/sum_of_harmonic_series.py
@@ -0,0 +1,29 @@
+def sum_of_harmonic_progression(
+ first_term: float, common_difference: float, number_of_terms: int
+) -> float:
+ """
+ https://en.wikipedia.org/wiki/Harmonic_progression_(mathematics)
+
+ Find the sum of n terms in an harmonic progression. The calculation starts with the
+ first_term and loops adding the common difference of Arithmetic Progression by which
+ the given Harmonic Progression is linked.
+
+ >>> sum_of_harmonic_progression(1 / 2, 2, 2)
+ 0.75
+ >>> sum_of_harmonic_progression(1 / 5, 5, 5)
+ 0.45666666666666667
+ """
+ arithmetic_progression = [1 / first_term]
+ first_term = 1 / first_term
+ for _ in range(number_of_terms - 1):
+ first_term += common_difference
+ arithmetic_progression.append(first_term)
+ harmonic_series = [1 / step for step in arithmetic_progression]
+ return sum(harmonic_series)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ print(sum_of_harmonic_progression(1 / 2, 2, 2))
diff --git a/maths/sumset.py b/maths/sumset.py
new file mode 100644
index 000000000..fa18f9e24
--- /dev/null
+++ b/maths/sumset.py
@@ -0,0 +1,37 @@
+"""
+
+Calculates the SumSet of two sets of numbers (A and B)
+
+Source:
+ https://en.wikipedia.org/wiki/Sumset
+
+"""
+
+
+def sumset(set_a: set, set_b: set) -> set:
+ """
+ :param first set: a set of numbers
+ :param second set: a set of numbers
+ :return: the nth number in Sylvester's sequence
+
+ >>> sumset({1, 2, 3}, {4, 5, 6})
+ {5, 6, 7, 8, 9}
+
+ >>> sumset({1, 2, 3}, {4, 5, 6, 7})
+ {5, 6, 7, 8, 9, 10}
+
+ >>> sumset({1, 2, 3, 4}, 3)
+ Traceback (most recent call last):
+ ...
+ AssertionError: The input value of [set_b=3] is not a set
+ """
+ assert isinstance(set_a, set), f"The input value of [set_a={set_a}] is not a set"
+ assert isinstance(set_b, set), f"The input value of [set_b={set_b}] is not a set"
+
+ return {a + b for a in set_a for b in set_b}
+
+
+if __name__ == "__main__":
+ from doctest import testmod
+
+ testmod()
diff --git a/maths/sylvester_sequence.py b/maths/sylvester_sequence.py
index 0cd99affe..607424c6a 100644
--- a/maths/sylvester_sequence.py
+++ b/maths/sylvester_sequence.py
@@ -18,12 +18,12 @@ def sylvester(number: int) -> int:
>>> sylvester(-1)
Traceback (most recent call last):
- ...
+ ...
ValueError: The input value of [n=-1] has to be > 0
>>> sylvester(8.0)
Traceback (most recent call last):
- ...
+ ...
AssertionError: The input value of [n=8.0] is not an integer
"""
assert isinstance(number, int), f"The input value of [n={number}] is not an integer"
@@ -31,7 +31,8 @@ def sylvester(number: int) -> int:
if number == 1:
return 2
elif number < 1:
- raise ValueError(f"The input value of [n={number}] has to be > 0")
+ msg = f"The input value of [n={number}] has to be > 0"
+ raise ValueError(msg)
else:
num = sylvester(number - 1)
lower = num - 1
diff --git a/maths/tanh.py b/maths/tanh.py
new file mode 100644
index 000000000..38a369d91
--- /dev/null
+++ b/maths/tanh.py
@@ -0,0 +1,42 @@
+"""
+This script demonstrates the implementation of the tangent hyperbolic
+or tanh function.
+
+The function takes a vector of K real numbers as input and
+then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the
+element of the vector mostly -1 between 1.
+
+Script inspired from its corresponding Wikipedia article
+https://en.wikipedia.org/wiki/Activation_function
+"""
+import numpy as np
+
+
+def tangent_hyperbolic(vector: np.ndarray) -> np.ndarray:
+ """
+ Implements the tanh function
+
+ Parameters:
+ vector: np.ndarray
+
+ Returns:
+ tanh (np.array): The input numpy array after applying tanh.
+
+ mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1
+
+ Examples:
+ >>> tangent_hyperbolic(np.array([1,5,6,-0.67]))
+ array([ 0.76159416, 0.9999092 , 0.99998771, -0.58497988])
+
+ >>> tangent_hyperbolic(np.array([8,10,2,-0.98,13]))
+ array([ 0.99999977, 1. , 0.96402758, -0.7530659 , 1. ])
+
+ """
+
+ return (2 / (1 + np.exp(-2 * vector))) - 1
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/test_prime_check.py b/maths/test_prime_check.py
index b6389684a..3ea3b2f1f 100644
--- a/maths/test_prime_check.py
+++ b/maths/test_prime_check.py
@@ -1,6 +1,6 @@
"""
Minimalist file that allows pytest to find and run the Test unittest. For details, see:
-http://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery
+https://doc.pytest.org/en/latest/goodpractices.html#conventions-for-python-test-discovery
"""
from .prime_check import Test
diff --git a/maths/twin_prime.py b/maths/twin_prime.py
new file mode 100644
index 000000000..912b10b36
--- /dev/null
+++ b/maths/twin_prime.py
@@ -0,0 +1,46 @@
+"""
+== Twin Prime ==
+A number n+2 is said to be a Twin prime of number n if
+both n and n+2 are prime.
+
+Examples of Twin pairs: (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), ...
+https://en.wikipedia.org/wiki/Twin_prime
+"""
+
+# Author : Akshay Dubey (https://github.com/itsAkshayDubey)
+from maths.prime_check import is_prime
+
+
+def twin_prime(number: int) -> int:
+ """
+ # doctest: +NORMALIZE_WHITESPACE
+ This functions takes an integer number as input.
+ returns n+2 if n and n+2 are prime numbers and -1 otherwise.
+ >>> twin_prime(3)
+ 5
+ >>> twin_prime(4)
+ -1
+ >>> twin_prime(5)
+ 7
+ >>> twin_prime(17)
+ 19
+ >>> twin_prime(0)
+ -1
+ >>> twin_prime(6.0)
+ Traceback (most recent call last):
+ ...
+ TypeError: Input value of [number=6.0] must be an integer
+ """
+ if not isinstance(number, int):
+ msg = f"Input value of [number={number}] must be an integer"
+ raise TypeError(msg)
+ if is_prime(number) and is_prime(number + 2):
+ return number + 2
+ else:
+ return -1
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/maths/two_pointer.py b/maths/two_pointer.py
index ff234cddc..d0fb0fc9c 100644
--- a/maths/two_pointer.py
+++ b/maths/two_pointer.py
@@ -43,7 +43,6 @@ def two_pointer(nums: list[int], target: int) -> list[int]:
j = len(nums) - 1
while i < j:
-
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
diff --git a/maths/ugly_numbers.py b/maths/ugly_numbers.py
index 4451a68cd..81bd928c6 100644
--- a/maths/ugly_numbers.py
+++ b/maths/ugly_numbers.py
@@ -32,7 +32,7 @@ def ugly_numbers(n: int) -> int:
next_3 = ugly_nums[i3] * 3
next_5 = ugly_nums[i5] * 5
- for i in range(1, n):
+ for _ in range(1, n):
next_num = min(next_2, next_3, next_5)
ugly_nums.append(next_num)
if next_num == next_2:
diff --git a/maths/volume.py b/maths/volume.py
index acaed65f4..721974e68 100644
--- a/maths/volume.py
+++ b/maths/volume.py
@@ -1,33 +1,55 @@
"""
-Find Volumes of Various Shapes.
-
-Wikipedia reference: https://en.wikipedia.org/wiki/Volume
+Find the volume of various shapes.
+* https://en.wikipedia.org/wiki/Volume
+* https://en.wikipedia.org/wiki/Spherical_cap
"""
from __future__ import annotations
from math import pi, pow
-def vol_cube(side_length: int | float) -> float:
+def vol_cube(side_length: float) -> float:
"""
Calculate the Volume of a Cube.
-
>>> vol_cube(1)
1.0
>>> vol_cube(3)
27.0
+ >>> vol_cube(0)
+ 0.0
+ >>> vol_cube(1.6)
+ 4.096000000000001
+ >>> vol_cube(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cube() only accepts non-negative values
"""
+ if side_length < 0:
+ raise ValueError("vol_cube() only accepts non-negative values")
return pow(side_length, 3)
def vol_spherical_cap(height: float, radius: float) -> float:
"""
- Calculate the Volume of the spherical cap.
- :return 1/3 pi * height ^ 2 * (3 * radius - height)
-
+ Calculate the volume of the spherical cap.
>>> vol_spherical_cap(1, 2)
5.235987755982988
+ >>> vol_spherical_cap(1.6, 2.6)
+ 16.621119532592402
+ >>> vol_spherical_cap(0, 0)
+ 0.0
+ >>> vol_spherical_cap(-1, 2)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spherical_cap() only accepts non-negative values
+ >>> vol_spherical_cap(1, -2)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spherical_cap() only accepts non-negative values
"""
+ if height < 0 or radius < 0:
+ raise ValueError("vol_spherical_cap() only accepts non-negative values")
+ # Volume is 1/3 pi * height squared * (3 * radius - height)
return 1 / 3 * pi * pow(height, 2) * (3 * radius - height)
@@ -36,7 +58,6 @@ def vol_spheres_intersect(
) -> float:
"""
Calculate the volume of the intersection of two spheres.
-
The intersection is composed by two spherical caps and therefore its volume is the
sum of the volumes of the spherical caps. First, it calculates the heights (h1, h2)
of the spherical caps, then the two volumes and it returns the sum.
@@ -49,10 +70,27 @@ def vol_spheres_intersect(
/ (2 * centers_distance)
if centers_distance is 0 then it returns the volume of the smallers sphere
:return vol_spherical_cap(h1, radius_2) + vol_spherical_cap(h2, radius_1)
-
>>> vol_spheres_intersect(2, 2, 1)
21.205750411731103
+ >>> vol_spheres_intersect(2.6, 2.6, 1.6)
+ 40.71504079052372
+ >>> vol_spheres_intersect(0, 0, 0)
+ 0.0
+ >>> vol_spheres_intersect(-2, 2, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spheres_intersect() only accepts non-negative values
+ >>> vol_spheres_intersect(2, -2, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spheres_intersect() only accepts non-negative values
+ >>> vol_spheres_intersect(2, 2, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spheres_intersect() only accepts non-negative values
"""
+ if radius_1 < 0 or radius_2 < 0 or centers_distance < 0:
+ raise ValueError("vol_spheres_intersect() only accepts non-negative values")
if centers_distance == 0:
return vol_sphere(min(radius_1, radius_2))
@@ -70,44 +108,130 @@ def vol_spheres_intersect(
return vol_spherical_cap(h1, radius_2) + vol_spherical_cap(h2, radius_1)
+def vol_spheres_union(
+ radius_1: float, radius_2: float, centers_distance: float
+) -> float:
+ """
+ Calculate the volume of the union of two spheres that possibly intersect.
+ It is the sum of sphere A and sphere B minus their intersection.
+ First, it calculates the volumes (v1, v2) of the spheres,
+ then the volume of the intersection (i) and it returns the sum v1+v2-i.
+ If centers_distance is 0 then it returns the volume of the larger sphere
+ :return vol_sphere(radius_1) + vol_sphere(radius_2)
+ - vol_spheres_intersect(radius_1, radius_2, centers_distance)
+
+ >>> vol_spheres_union(2, 2, 1)
+ 45.814892864851146
+ >>> vol_spheres_union(1.56, 2.2, 1.4)
+ 48.77802773671288
+ >>> vol_spheres_union(0, 2, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_spheres_union() only accepts non-negative values, non-zero radius
+ >>> vol_spheres_union('1.56', '2.2', '1.4')
+ Traceback (most recent call last):
+ ...
+ TypeError: '<=' not supported between instances of 'str' and 'int'
+ >>> vol_spheres_union(1, None, 1)
+ Traceback (most recent call last):
+ ...
+ TypeError: '<=' not supported between instances of 'NoneType' and 'int'
+ """
+
+ if radius_1 <= 0 or radius_2 <= 0 or centers_distance < 0:
+ raise ValueError(
+ "vol_spheres_union() only accepts non-negative values, non-zero radius"
+ )
+
+ if centers_distance == 0:
+ return vol_sphere(max(radius_1, radius_2))
+
+ return (
+ vol_sphere(radius_1)
+ + vol_sphere(radius_2)
+ - vol_spheres_intersect(radius_1, radius_2, centers_distance)
+ )
+
+
def vol_cuboid(width: float, height: float, length: float) -> float:
"""
Calculate the Volume of a Cuboid.
:return multiple of width, length and height
-
>>> vol_cuboid(1, 1, 1)
1.0
>>> vol_cuboid(1, 2, 3)
6.0
+ >>> vol_cuboid(1.6, 2.6, 3.6)
+ 14.976
+ >>> vol_cuboid(0, 0, 0)
+ 0.0
+ >>> vol_cuboid(-1, 2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cuboid() only accepts non-negative values
+ >>> vol_cuboid(1, -2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cuboid() only accepts non-negative values
+ >>> vol_cuboid(1, 2, -3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cuboid() only accepts non-negative values
"""
+ if width < 0 or height < 0 or length < 0:
+ raise ValueError("vol_cuboid() only accepts non-negative values")
return float(width * height * length)
def vol_cone(area_of_base: float, height: float) -> float:
"""
Calculate the Volume of a Cone.
-
Wikipedia reference: https://en.wikipedia.org/wiki/Cone
:return (1/3) * area_of_base * height
-
>>> vol_cone(10, 3)
10.0
>>> vol_cone(1, 1)
0.3333333333333333
+ >>> vol_cone(1.6, 1.6)
+ 0.8533333333333335
+ >>> vol_cone(0, 0)
+ 0.0
+ >>> vol_cone(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cone() only accepts non-negative values
+ >>> vol_cone(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_cone() only accepts non-negative values
"""
+ if height < 0 or area_of_base < 0:
+ raise ValueError("vol_cone() only accepts non-negative values")
return area_of_base * height / 3.0
def vol_right_circ_cone(radius: float, height: float) -> float:
"""
Calculate the Volume of a Right Circular Cone.
-
Wikipedia reference: https://en.wikipedia.org/wiki/Cone
:return (1/3) * pi * radius^2 * height
-
>>> vol_right_circ_cone(2, 3)
12.566370614359172
+ >>> vol_right_circ_cone(0, 0)
+ 0.0
+ >>> vol_right_circ_cone(1.6, 1.6)
+ 4.289321169701265
+ >>> vol_right_circ_cone(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_right_circ_cone() only accepts non-negative values
+ >>> vol_right_circ_cone(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_right_circ_cone() only accepts non-negative values
"""
+ if height < 0 or radius < 0:
+ raise ValueError("vol_right_circ_cone() only accepts non-negative values")
return pi * pow(radius, 2) * height / 3.0
@@ -116,12 +240,25 @@ def vol_prism(area_of_base: float, height: float) -> float:
Calculate the Volume of a Prism.
Wikipedia reference: https://en.wikipedia.org/wiki/Prism_(geometry)
:return V = Bh
-
>>> vol_prism(10, 2)
20.0
>>> vol_prism(11, 1)
11.0
+ >>> vol_prism(1.6, 1.6)
+ 2.5600000000000005
+ >>> vol_prism(0, 0)
+ 0.0
+ >>> vol_prism(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_prism() only accepts non-negative values
+ >>> vol_prism(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_prism() only accepts non-negative values
"""
+ if height < 0 or area_of_base < 0:
+ raise ValueError("vol_prism() only accepts non-negative values")
return float(area_of_base * height)
@@ -130,12 +267,25 @@ def vol_pyramid(area_of_base: float, height: float) -> float:
Calculate the Volume of a Pyramid.
Wikipedia reference: https://en.wikipedia.org/wiki/Pyramid_(geometry)
:return (1/3) * Bh
-
>>> vol_pyramid(10, 3)
10.0
>>> vol_pyramid(1.5, 3)
1.5
+ >>> vol_pyramid(1.6, 1.6)
+ 0.8533333333333335
+ >>> vol_pyramid(0, 0)
+ 0.0
+ >>> vol_pyramid(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_pyramid() only accepts non-negative values
+ >>> vol_pyramid(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_pyramid() only accepts non-negative values
"""
+ if height < 0 or area_of_base < 0:
+ raise ValueError("vol_pyramid() only accepts non-negative values")
return area_of_base * height / 3.0
@@ -144,54 +294,144 @@ def vol_sphere(radius: float) -> float:
Calculate the Volume of a Sphere.
Wikipedia reference: https://en.wikipedia.org/wiki/Sphere
:return (4/3) * pi * r^3
-
>>> vol_sphere(5)
523.5987755982989
>>> vol_sphere(1)
4.1887902047863905
+ >>> vol_sphere(1.6)
+ 17.15728467880506
+ >>> vol_sphere(0)
+ 0.0
+ >>> vol_sphere(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_sphere() only accepts non-negative values
"""
+ if radius < 0:
+ raise ValueError("vol_sphere() only accepts non-negative values")
+ # Volume is 4/3 * pi * radius cubed
return 4 / 3 * pi * pow(radius, 3)
-def vol_hemisphere(radius: float):
+def vol_hemisphere(radius: float) -> float:
"""Calculate the volume of a hemisphere
Wikipedia reference: https://en.wikipedia.org/wiki/Hemisphere
Other references: https://www.cuemath.com/geometry/hemisphere
:return 2/3 * pi * radius^3
-
>>> vol_hemisphere(1)
2.0943951023931953
-
>>> vol_hemisphere(7)
- 718.3775201208659
+ 718.377520120866
+ >>> vol_hemisphere(1.6)
+ 8.57864233940253
+ >>> vol_hemisphere(0)
+ 0.0
+ >>> vol_hemisphere(-1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_hemisphere() only accepts non-negative values
"""
- return 2 / 3 * pi * pow(radius, 3)
+ if radius < 0:
+ raise ValueError("vol_hemisphere() only accepts non-negative values")
+ # Volume is radius cubed * pi * 2/3
+ return pow(radius, 3) * pi * 2 / 3
def vol_circular_cylinder(radius: float, height: float) -> float:
"""Calculate the Volume of a Circular Cylinder.
Wikipedia reference: https://en.wikipedia.org/wiki/Cylinder
:return pi * radius^2 * height
-
>>> vol_circular_cylinder(1, 1)
3.141592653589793
>>> vol_circular_cylinder(4, 3)
150.79644737231007
+ >>> vol_circular_cylinder(1.6, 1.6)
+ 12.867963509103795
+ >>> vol_circular_cylinder(0, 0)
+ 0.0
+ >>> vol_circular_cylinder(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_circular_cylinder() only accepts non-negative values
+ >>> vol_circular_cylinder(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_circular_cylinder() only accepts non-negative values
"""
- return pi * pow(radius, 2) * height
+ if height < 0 or radius < 0:
+ raise ValueError("vol_circular_cylinder() only accepts non-negative values")
+ # Volume is radius squared * height * pi
+ return pow(radius, 2) * height * pi
-def vol_conical_frustum(height: float, radius_1: float, radius_2: float):
+def vol_hollow_circular_cylinder(
+ inner_radius: float, outer_radius: float, height: float
+) -> float:
+ """Calculate the Volume of a Hollow Circular Cylinder.
+ >>> vol_hollow_circular_cylinder(1, 2, 3)
+ 28.274333882308138
+ >>> vol_hollow_circular_cylinder(1.6, 2.6, 3.6)
+ 47.50088092227767
+ >>> vol_hollow_circular_cylinder(-1, 2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
+ >>> vol_hollow_circular_cylinder(1, -2, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
+ >>> vol_hollow_circular_cylinder(1, 2, -3)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_hollow_circular_cylinder() only accepts non-negative values
+ >>> vol_hollow_circular_cylinder(2, 1, 3)
+ Traceback (most recent call last):
+ ...
+ ValueError: outer_radius must be greater than inner_radius
+ >>> vol_hollow_circular_cylinder(0, 0, 0)
+ Traceback (most recent call last):
+ ...
+ ValueError: outer_radius must be greater than inner_radius
+ """
+ # Volume - (outer_radius squared - inner_radius squared) * pi * height
+ if inner_radius < 0 or outer_radius < 0 or height < 0:
+ raise ValueError(
+ "vol_hollow_circular_cylinder() only accepts non-negative values"
+ )
+ if outer_radius <= inner_radius:
+ raise ValueError("outer_radius must be greater than inner_radius")
+ return pi * (pow(outer_radius, 2) - pow(inner_radius, 2)) * height
+
+
+def vol_conical_frustum(height: float, radius_1: float, radius_2: float) -> float:
"""Calculate the Volume of a Conical Frustum.
Wikipedia reference: https://en.wikipedia.org/wiki/Frustum
- :return 1/3 * pi * height * (radius_1^2 + radius_top^2 + radius_1 * radius_2)
>>> vol_conical_frustum(45, 7, 28)
48490.482608158454
-
>>> vol_conical_frustum(1, 1, 2)
7.330382858376184
+ >>> vol_conical_frustum(1.6, 2.6, 3.6)
+ 48.7240076620753
+ >>> vol_conical_frustum(0, 0, 0)
+ 0.0
+ >>> vol_conical_frustum(-2, 2, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_conical_frustum() only accepts non-negative values
+ >>> vol_conical_frustum(2, -2, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_conical_frustum() only accepts non-negative values
+ >>> vol_conical_frustum(2, 2, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_conical_frustum() only accepts non-negative values
"""
+ # Volume is 1/3 * pi * height *
+ # (radius_1 squared + radius_2 squared + radius_1 * radius_2)
+ if radius_1 < 0 or radius_2 < 0 or height < 0:
+ raise ValueError("vol_conical_frustum() only accepts non-negative values")
return (
1
/ 3
@@ -201,21 +441,54 @@ def vol_conical_frustum(height: float, radius_1: float, radius_2: float):
)
+def vol_torus(torus_radius: float, tube_radius: float) -> float:
+ """Calculate the Volume of a Torus.
+ Wikipedia reference: https://en.wikipedia.org/wiki/Torus
+ :return 2pi^2 * torus_radius * tube_radius^2
+ >>> vol_torus(1, 1)
+ 19.739208802178716
+ >>> vol_torus(4, 3)
+ 710.6115168784338
+ >>> vol_torus(3, 4)
+ 947.4820225045784
+ >>> vol_torus(1.6, 1.6)
+ 80.85179925372404
+ >>> vol_torus(0, 0)
+ 0.0
+ >>> vol_torus(-1, 1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_torus() only accepts non-negative values
+ >>> vol_torus(1, -1)
+ Traceback (most recent call last):
+ ...
+ ValueError: vol_torus() only accepts non-negative values
+ """
+ if torus_radius < 0 or tube_radius < 0:
+ raise ValueError("vol_torus() only accepts non-negative values")
+ return 2 * pow(pi, 2) * torus_radius * pow(tube_radius, 2)
+
+
def main():
"""Print the Results of Various Volume Calculations."""
print("Volumes:")
- print("Cube: " + str(vol_cube(2))) # = 8
- print("Cuboid: " + str(vol_cuboid(2, 2, 2))) # = 8
- print("Cone: " + str(vol_cone(2, 2))) # ~= 1.33
- print("Right Circular Cone: " + str(vol_right_circ_cone(2, 2))) # ~= 8.38
- print("Prism: " + str(vol_prism(2, 2))) # = 4
- print("Pyramid: " + str(vol_pyramid(2, 2))) # ~= 1.33
- print("Sphere: " + str(vol_sphere(2))) # ~= 33.5
- print("Hemisphere: " + str(vol_hemisphere(2))) # ~= 16.75
- print("Circular Cylinder: " + str(vol_circular_cylinder(2, 2))) # ~= 25.1
- print("Conical Frustum: " + str(vol_conical_frustum(2, 2, 4))) # ~= 58.6
- print("Spherical cap: " + str(vol_spherical_cap(1, 2))) # ~= 5.24
- print("Spheres intersetion: " + str(vol_spheres_intersect(2, 2, 1))) # ~= 21.21
+ print(f"Cube: {vol_cube(2) = }") # = 8
+ print(f"Cuboid: {vol_cuboid(2, 2, 2) = }") # = 8
+ print(f"Cone: {vol_cone(2, 2) = }") # ~= 1.33
+ print(f"Right Circular Cone: {vol_right_circ_cone(2, 2) = }") # ~= 8.38
+ print(f"Prism: {vol_prism(2, 2) = }") # = 4
+ print(f"Pyramid: {vol_pyramid(2, 2) = }") # ~= 1.33
+ print(f"Sphere: {vol_sphere(2) = }") # ~= 33.5
+ print(f"Hemisphere: {vol_hemisphere(2) = }") # ~= 16.75
+ print(f"Circular Cylinder: {vol_circular_cylinder(2, 2) = }") # ~= 25.1
+ print(f"Torus: {vol_torus(2, 2) = }") # ~= 157.9
+ print(f"Conical Frustum: {vol_conical_frustum(2, 2, 4) = }") # ~= 58.6
+ print(f"Spherical cap: {vol_spherical_cap(1, 2) = }") # ~= 5.24
+ print(f"Spheres intersetion: {vol_spheres_intersect(2, 2, 1) = }") # ~= 21.21
+ print(f"Spheres union: {vol_spheres_union(2, 2, 1) = }") # ~= 45.81
+ print(
+ f"Hollow Circular Cylinder: {vol_hollow_circular_cylinder(1, 2, 3) = }"
+ ) # ~= 28.3
if __name__ == "__main__":
diff --git a/maths/weird_number.py b/maths/weird_number.py
new file mode 100644
index 000000000..2834a9fee
--- /dev/null
+++ b/maths/weird_number.py
@@ -0,0 +1,100 @@
+"""
+https://en.wikipedia.org/wiki/Weird_number
+
+Fun fact: The set of weird numbers has positive asymptotic density.
+"""
+from math import sqrt
+
+
+def factors(number: int) -> list[int]:
+ """
+ >>> factors(12)
+ [1, 2, 3, 4, 6]
+ >>> factors(1)
+ [1]
+ >>> factors(100)
+ [1, 2, 4, 5, 10, 20, 25, 50]
+
+ # >>> factors(-12)
+ # [1, 2, 3, 4, 6]
+ """
+
+ values = [1]
+ for i in range(2, int(sqrt(number)) + 1, 1):
+ if number % i == 0:
+ values.append(i)
+ if int(number // i) != i:
+ values.append(int(number // i))
+ return sorted(values)
+
+
+def abundant(n: int) -> bool:
+ """
+ >>> abundant(0)
+ True
+ >>> abundant(1)
+ False
+ >>> abundant(12)
+ True
+ >>> abundant(13)
+ False
+ >>> abundant(20)
+ True
+
+ # >>> abundant(-12)
+ # True
+ """
+ return sum(factors(n)) > n
+
+
+def semi_perfect(number: int) -> bool:
+ """
+ >>> semi_perfect(0)
+ True
+ >>> semi_perfect(1)
+ True
+ >>> semi_perfect(12)
+ True
+ >>> semi_perfect(13)
+ False
+
+ # >>> semi_perfect(-12)
+ # True
+ """
+ values = factors(number)
+ r = len(values)
+ subset = [[0 for i in range(number + 1)] for j in range(r + 1)]
+ for i in range(r + 1):
+ subset[i][0] = True
+
+ for i in range(1, number + 1):
+ subset[0][i] = False
+
+ for i in range(1, r + 1):
+ for j in range(1, number + 1):
+ if j < values[i - 1]:
+ subset[i][j] = subset[i - 1][j]
+ else:
+ subset[i][j] = subset[i - 1][j] or subset[i - 1][j - values[i - 1]]
+
+ return subset[r][number] != 0
+
+
+def weird(number: int) -> bool:
+ """
+ >>> weird(0)
+ False
+ >>> weird(70)
+ True
+ >>> weird(77)
+ False
+ """
+ return abundant(number) and not semi_perfect(number)
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod(verbose=True)
+ for number in (69, 70, 71):
+ print(f"{number} is {'' if weird(number) else 'not '}weird.")
diff --git a/maths/zellers_congruence.py b/maths/zellers_congruence.py
index 2d4a22a0a..483fb000f 100644
--- a/maths/zellers_congruence.py
+++ b/maths/zellers_congruence.py
@@ -3,7 +3,6 @@ import datetime
def zeller(date_input: str) -> str:
-
"""
Zellers Congruence Algorithm
Find the day of the week for nearly any Gregorian or Julian calendar date
@@ -14,11 +13,11 @@ def zeller(date_input: str) -> str:
Validate out of range month
>>> zeller('13-31-2010')
Traceback (most recent call last):
- ...
+ ...
ValueError: Month must be between 1 - 12
>>> zeller('.2-31-2010')
Traceback (most recent call last):
- ...
+ ...
ValueError: invalid literal for int() with base 10: '.2'
Validate out of range date:
diff --git a/matrix/binary_search_matrix.py b/matrix/binary_search_matrix.py
new file mode 100644
index 000000000..6f203b7a3
--- /dev/null
+++ b/matrix/binary_search_matrix.py
@@ -0,0 +1,57 @@
+def binary_search(array: list, lower_bound: int, upper_bound: int, value: int) -> int:
+ """
+ This function carries out Binary search on a 1d array and
+ return -1 if it do not exist
+ array: A 1d sorted array
+ value : the value meant to be searched
+ >>> matrix = [1, 4, 7, 11, 15]
+ >>> binary_search(matrix, 0, len(matrix) - 1, 1)
+ 0
+ >>> binary_search(matrix, 0, len(matrix) - 1, 23)
+ -1
+ """
+
+ r = int((lower_bound + upper_bound) // 2)
+ if array[r] == value:
+ return r
+ if lower_bound >= upper_bound:
+ return -1
+ if array[r] < value:
+ return binary_search(array, r + 1, upper_bound, value)
+ else:
+ return binary_search(array, lower_bound, r - 1, value)
+
+
+def mat_bin_search(value: int, matrix: list) -> list:
+ """
+ This function loops over a 2d matrix and calls binarySearch on
+ the selected 1d array and returns [-1, -1] is it do not exist
+ value : value meant to be searched
+ matrix = a sorted 2d matrix
+ >>> matrix = [[1, 4, 7, 11, 15],
+ ... [2, 5, 8, 12, 19],
+ ... [3, 6, 9, 16, 22],
+ ... [10, 13, 14, 17, 24],
+ ... [18, 21, 23, 26, 30]]
+ >>> target = 1
+ >>> mat_bin_search(target, matrix)
+ [0, 0]
+ >>> target = 34
+ >>> mat_bin_search(target, matrix)
+ [-1, -1]
+ """
+ index = 0
+ if matrix[index][0] == value:
+ return [index, 0]
+ while index < len(matrix) and matrix[index][0] < value:
+ r = binary_search(matrix[index], 0, len(matrix[index]) - 1, value)
+ if r != -1:
+ return [index, r]
+ index += 1
+ return [-1, -1]
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/matrix/count_islands_in_matrix.py b/matrix/count_islands_in_matrix.py
index ad9c67fb8..64c595e84 100644
--- a/matrix/count_islands_in_matrix.py
+++ b/matrix/count_islands_in_matrix.py
@@ -3,13 +3,13 @@
# connections.
-class matrix: # Public class to implement a graph
- def __init__(self, row: int, col: int, graph: list):
+class Matrix: # Public class to implement a graph
+ def __init__(self, row: int, col: int, graph: list[list[bool]]) -> None:
self.ROW = row
self.COL = col
self.graph = graph
- def is_safe(self, i, j, visited) -> bool:
+ def is_safe(self, i: int, j: int, visited: list[list[bool]]) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
@@ -17,13 +17,14 @@ class matrix: # Public class to implement a graph
and self.graph[i][j]
)
- def diffs(self, i, j, visited): # Checking all 8 elements surrounding nth element
- rowNbr = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
- colNbr = [-1, 0, 1, -1, 1, -1, 0, 1]
+ def diffs(self, i: int, j: int, visited: list[list[bool]]) -> None:
+ # Checking all 8 elements surrounding nth element
+ row_nbr = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
+ col_nbr = [-1, 0, 1, -1, 1, -1, 0, 1]
visited[i][j] = True # Make those cells visited
for k in range(8):
- if self.is_safe(i + rowNbr[k], j + colNbr[k], visited):
- self.diffs(i + rowNbr[k], j + colNbr[k], visited)
+ if self.is_safe(i + row_nbr[k], j + col_nbr[k], visited):
+ self.diffs(i + row_nbr[k], j + col_nbr[k], visited)
def count_islands(self) -> int: # And finally, count all islands.
visited = [[False for j in range(self.COL)] for i in range(self.ROW)]
diff --git a/matrix/count_negative_numbers_in_sorted_matrix.py b/matrix/count_negative_numbers_in_sorted_matrix.py
new file mode 100644
index 000000000..2799ff3b4
--- /dev/null
+++ b/matrix/count_negative_numbers_in_sorted_matrix.py
@@ -0,0 +1,151 @@
+"""
+Given an matrix of numbers in which all rows and all columns are sorted in decreasing
+order, return the number of negative numbers in grid.
+
+Reference: https://leetcode.com/problems/count-negative-numbers-in-a-sorted-matrix
+"""
+
+
+def generate_large_matrix() -> list[list[int]]:
+ """
+ >>> generate_large_matrix() # doctest: +ELLIPSIS
+ [[1000, ..., -999], [999, ..., -1001], ..., [2, ..., -1998]]
+ """
+ return [list(range(1000 - i, -1000 - i, -1)) for i in range(1000)]
+
+
+grid = generate_large_matrix()
+test_grids = (
+ [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
+ [[3, 2], [1, 0]],
+ [[7, 7, 6]],
+ [[7, 7, 6], [-1, -2, -3]],
+ grid,
+)
+
+
+def validate_grid(grid: list[list[int]]) -> None:
+ """
+ Validate that the rows and columns of the grid is sorted in decreasing order.
+ >>> for grid in test_grids:
+ ... validate_grid(grid)
+ """
+ assert all(row == sorted(row, reverse=True) for row in grid)
+ assert all(list(col) == sorted(col, reverse=True) for col in zip(*grid))
+
+
+def find_negative_index(array: list[int]) -> int:
+ """
+ Find the smallest negative index
+
+ >>> find_negative_index([0,0,0,0])
+ 4
+ >>> find_negative_index([4,3,2,-1])
+ 3
+ >>> find_negative_index([1,0,-1,-10])
+ 2
+ >>> find_negative_index([0,0,0,-1])
+ 3
+ >>> find_negative_index([11,8,7,-3,-5,-9])
+ 3
+ >>> find_negative_index([-1,-1,-2,-3])
+ 0
+ >>> find_negative_index([5,1,0])
+ 3
+ >>> find_negative_index([-5,-5,-5])
+ 0
+ >>> find_negative_index([0])
+ 1
+ >>> find_negative_index([])
+ 0
+ """
+ left = 0
+ right = len(array) - 1
+
+ # Edge cases such as no values or all numbers are negative.
+ if not array or array[0] < 0:
+ return 0
+
+ while right + 1 > left:
+ mid = (left + right) // 2
+ num = array[mid]
+
+ # Num must be negative and the index must be greater than or equal to 0.
+ if num < 0 and array[mid - 1] >= 0:
+ return mid
+
+ if num >= 0:
+ left = mid + 1
+ else:
+ right = mid - 1
+ # No negative numbers so return the last index of the array + 1 which is the length.
+ return len(array)
+
+
+def count_negatives_binary_search(grid: list[list[int]]) -> int:
+ """
+ An O(m logn) solution that uses binary search in order to find the boundary between
+ positive and negative numbers
+
+ >>> [count_negatives_binary_search(grid) for grid in test_grids]
+ [8, 0, 0, 3, 1498500]
+ """
+ total = 0
+ bound = len(grid[0])
+
+ for i in range(len(grid)):
+ bound = find_negative_index(grid[i][:bound])
+ total += bound
+ return (len(grid) * len(grid[0])) - total
+
+
+def count_negatives_brute_force(grid: list[list[int]]) -> int:
+ """
+ This solution is O(n^2) because it iterates through every column and row.
+
+ >>> [count_negatives_brute_force(grid) for grid in test_grids]
+ [8, 0, 0, 3, 1498500]
+ """
+ return len([number for row in grid for number in row if number < 0])
+
+
+def count_negatives_brute_force_with_break(grid: list[list[int]]) -> int:
+ """
+ Similar to the brute force solution above but uses break in order to reduce the
+ number of iterations.
+
+ >>> [count_negatives_brute_force_with_break(grid) for grid in test_grids]
+ [8, 0, 0, 3, 1498500]
+ """
+ total = 0
+ for row in grid:
+ for i, number in enumerate(row):
+ if number < 0:
+ total += len(row) - i
+ break
+ return total
+
+
+def benchmark() -> None:
+ """Benchmark our functions next to each other"""
+ from timeit import timeit
+
+ print("Running benchmarks")
+ setup = (
+ "from __main__ import count_negatives_binary_search, "
+ "count_negatives_brute_force, count_negatives_brute_force_with_break, grid"
+ )
+ for func in (
+ "count_negatives_binary_search", # took 0.7727 seconds
+ "count_negatives_brute_force_with_break", # took 4.6505 seconds
+ "count_negatives_brute_force", # took 12.8160 seconds
+ ):
+ time = timeit(f"{func}(grid=grid)", setup=setup, number=500)
+ print(f"{func}() took {time:0.4f} seconds")
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ benchmark()
diff --git a/matrix/count_paths.py b/matrix/count_paths.py
new file mode 100644
index 000000000..4861ad5fd
--- /dev/null
+++ b/matrix/count_paths.py
@@ -0,0 +1,75 @@
+"""
+Given a grid, where you start from the top left position [0, 0],
+you want to find how many paths you can take to get to the bottom right position.
+
+start here -> 0 0 0 0
+ 1 1 0 0
+ 0 0 0 1
+ 0 1 0 0 <- finish here
+how many 'distinct' paths can you take to get to the finish?
+Using a recursive depth-first search algorithm below, you are able to
+find the number of distinct unique paths (count).
+
+'*' will demonstrate a path
+In the example above, there are two distinct paths:
+1. 2.
+ * * * 0 * * * *
+ 1 1 * 0 1 1 * *
+ 0 0 * 1 0 0 * 1
+ 0 1 * * 0 1 * *
+"""
+
+
+def depth_first_search(grid: list[list[int]], row: int, col: int, visit: set) -> int:
+ """
+ Recursive Backtracking Depth First Search Algorithm
+
+ Starting from top left of a matrix, count the number of
+ paths that can reach the bottom right of a matrix.
+ 1 represents a block (inaccessible)
+ 0 represents a valid space (accessible)
+
+ 0 0 0 0
+ 1 1 0 0
+ 0 0 0 1
+ 0 1 0 0
+ >>> grid = [[0, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0]]
+ >>> depth_first_search(grid, 0, 0, set())
+ 2
+
+ 0 0 0 0 0
+ 0 1 1 1 0
+ 0 1 1 1 0
+ 0 0 0 0 0
+ >>> grid = [[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]]
+ >>> depth_first_search(grid, 0, 0, set())
+ 2
+ """
+ row_length, col_length = len(grid), len(grid[0])
+ if (
+ min(row, col) < 0
+ or row == row_length
+ or col == col_length
+ or (row, col) in visit
+ or grid[row][col] == 1
+ ):
+ return 0
+ if row == row_length - 1 and col == col_length - 1:
+ return 1
+
+ visit.add((row, col))
+
+ count = 0
+ count += depth_first_search(grid, row + 1, col, visit)
+ count += depth_first_search(grid, row - 1, col, visit)
+ count += depth_first_search(grid, row, col + 1, visit)
+ count += depth_first_search(grid, row, col - 1, visit)
+
+ visit.remove((row, col))
+ return count
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/matrix/cramers_rule_2x2.py b/matrix/cramers_rule_2x2.py
new file mode 100644
index 000000000..4f52dbe64
--- /dev/null
+++ b/matrix/cramers_rule_2x2.py
@@ -0,0 +1,84 @@
+# https://www.chilimath.com/lessons/advanced-algebra/cramers-rule-with-two-variables
+# https://en.wikipedia.org/wiki/Cramer%27s_rule
+
+
+def cramers_rule_2x2(equation1: list[int], equation2: list[int]) -> tuple[float, float]:
+ """
+ Solves the system of linear equation in 2 variables.
+ :param: equation1: list of 3 numbers
+ :param: equation2: list of 3 numbers
+ :return: String of result
+ input format : [a1, b1, d1], [a2, b2, d2]
+ determinant = [[a1, b1], [a2, b2]]
+ determinant_x = [[d1, b1], [d2, b2]]
+ determinant_y = [[a1, d1], [a2, d2]]
+
+ >>> cramers_rule_2x2([2, 3, 0], [5, 1, 0])
+ (0.0, 0.0)
+ >>> cramers_rule_2x2([0, 4, 50], [2, 0, 26])
+ (13.0, 12.5)
+ >>> cramers_rule_2x2([11, 2, 30], [1, 0, 4])
+ (4.0, -7.0)
+ >>> cramers_rule_2x2([4, 7, 1], [1, 2, 0])
+ (2.0, -1.0)
+
+ >>> cramers_rule_2x2([1, 2, 3], [2, 4, 6])
+ Traceback (most recent call last):
+ ...
+ ValueError: Infinite solutions. (Consistent system)
+ >>> cramers_rule_2x2([1, 2, 3], [2, 4, 7])
+ Traceback (most recent call last):
+ ...
+ ValueError: No solution. (Inconsistent system)
+ >>> cramers_rule_2x2([1, 2, 3], [11, 22])
+ Traceback (most recent call last):
+ ...
+ ValueError: Please enter a valid equation.
+ >>> cramers_rule_2x2([0, 1, 6], [0, 0, 3])
+ Traceback (most recent call last):
+ ...
+ ValueError: No solution. (Inconsistent system)
+ >>> cramers_rule_2x2([0, 0, 6], [0, 0, 3])
+ Traceback (most recent call last):
+ ...
+ ValueError: Both a & b of two equations can't be zero.
+ >>> cramers_rule_2x2([1, 2, 3], [1, 2, 3])
+ Traceback (most recent call last):
+ ...
+ ValueError: Infinite solutions. (Consistent system)
+ >>> cramers_rule_2x2([0, 4, 50], [0, 3, 99])
+ Traceback (most recent call last):
+ ...
+ ValueError: No solution. (Inconsistent system)
+ """
+
+ # Check if the input is valid
+ if not len(equation1) == len(equation2) == 3:
+ raise ValueError("Please enter a valid equation.")
+ if equation1[0] == equation1[1] == equation2[0] == equation2[1] == 0:
+ raise ValueError("Both a & b of two equations can't be zero.")
+
+ # Extract the coefficients
+ a1, b1, c1 = equation1
+ a2, b2, c2 = equation2
+
+ # Calculate the determinants of the matrices
+ determinant = a1 * b2 - a2 * b1
+ determinant_x = c1 * b2 - c2 * b1
+ determinant_y = a1 * c2 - a2 * c1
+
+ # Check if the system of linear equations has a solution (using Cramer's rule)
+ if determinant == 0:
+ if determinant_x == determinant_y == 0:
+ raise ValueError("Infinite solutions. (Consistent system)")
+ else:
+ raise ValueError("No solution. (Inconsistent system)")
+ else:
+ if determinant_x == determinant_y == 0:
+ # Trivial solution (Inconsistent system)
+ return (0.0, 0.0)
+ else:
+ x = determinant_x / determinant
+ y = determinant_y / determinant
+ # Non-Trivial Solution (Consistent system)
+ return (x, y)
diff --git a/matrix/inverse_of_matrix.py b/matrix/inverse_of_matrix.py
index 92780e656..e53d90df8 100644
--- a/matrix/inverse_of_matrix.py
+++ b/matrix/inverse_of_matrix.py
@@ -2,22 +2,25 @@ from __future__ import annotations
from decimal import Decimal
+from numpy import array
+
def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
"""
A matrix multiplied with its inverse gives the identity matrix.
- This function finds the inverse of a 2x2 matrix.
+ This function finds the inverse of a 2x2 and 3x3 matrix.
If the determinant of a matrix is 0, its inverse does not exist.
Sources for fixing inaccurate float arithmetic:
https://stackoverflow.com/questions/6563058/how-do-i-use-accurate-float-arithmetic-in-python
https://docs.python.org/3/library/decimal.html
+ Doctests for 2x2
>>> inverse_of_matrix([[2, 5], [2, 0]])
[[0.0, 0.5], [0.2, -0.2]]
>>> inverse_of_matrix([[2.5, 5], [1, 2]])
Traceback (most recent call last):
- ...
+ ...
ValueError: This matrix has no inverse.
>>> inverse_of_matrix([[12, -16], [-9, 0]])
[[0.0, -0.1111111111111111], [-0.0625, -0.08333333333333333]]
@@ -25,24 +28,128 @@ def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
[[0.16666666666666666, -0.0625], [-0.3333333333333333, 0.25]]
>>> inverse_of_matrix([[10, 5], [3, 2.5]])
[[0.25, -0.5], [-0.3, 1.0]]
+
+ Doctests for 3x3
+ >>> inverse_of_matrix([[2, 5, 7], [2, 0, 1], [1, 2, 3]])
+ [[2.0, 5.0, -4.0], [1.0, 1.0, -1.0], [-5.0, -12.0, 10.0]]
+ >>> inverse_of_matrix([[1, 2, 2], [1, 2, 2], [3, 2, -1]])
+ Traceback (most recent call last):
+ ...
+ ValueError: This matrix has no inverse.
+
+ >>> inverse_of_matrix([[],[]])
+ Traceback (most recent call last):
+ ...
+ ValueError: Please provide a matrix of size 2x2 or 3x3.
+
+ >>> inverse_of_matrix([[1, 2], [3, 4], [5, 6]])
+ Traceback (most recent call last):
+ ...
+ ValueError: Please provide a matrix of size 2x2 or 3x3.
+
+ >>> inverse_of_matrix([[1, 2, 1], [0,3, 4]])
+ Traceback (most recent call last):
+ ...
+ ValueError: Please provide a matrix of size 2x2 or 3x3.
+
+ >>> inverse_of_matrix([[1, 2, 3], [7, 8, 9], [7, 8, 9]])
+ Traceback (most recent call last):
+ ...
+ ValueError: This matrix has no inverse.
+
+ >>> inverse_of_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
"""
- D = Decimal # An abbreviation for conciseness
+ d = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
- if len(matrix) != 2 or len(matrix[0]) != 2 or len(matrix[1]) != 2:
- raise ValueError("Please provide a matrix of size 2x2.")
+ if len(matrix) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2:
+ # Calculate the determinant of the matrix
+ determinant = float(
+ d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])
+ )
+ if determinant == 0:
+ raise ValueError("This matrix has no inverse.")
- # Calculate the determinant of the matrix
- determinant = D(matrix[0][0]) * D(matrix[1][1]) - D(matrix[1][0]) * D(matrix[0][1])
- if determinant == 0:
- raise ValueError("This matrix has no inverse.")
+ # Creates a copy of the matrix with swapped positions of the elements
+ swapped_matrix = [[0.0, 0.0], [0.0, 0.0]]
+ swapped_matrix[0][0], swapped_matrix[1][1] = matrix[1][1], matrix[0][0]
+ swapped_matrix[1][0], swapped_matrix[0][1] = -matrix[1][0], -matrix[0][1]
- # Creates a copy of the matrix with swapped positions of the elements
- swapped_matrix = [[0.0, 0.0], [0.0, 0.0]]
- swapped_matrix[0][0], swapped_matrix[1][1] = matrix[1][1], matrix[0][0]
- swapped_matrix[1][0], swapped_matrix[0][1] = -matrix[1][0], -matrix[0][1]
+ # Calculate the inverse of the matrix
+ return [
+ [(float(d(n)) / determinant) or 0.0 for n in row] for row in swapped_matrix
+ ]
+ elif (
+ len(matrix) == 3
+ and len(matrix[0]) == 3
+ and len(matrix[1]) == 3
+ and len(matrix[2]) == 3
+ ):
+ # Calculate the determinant of the matrix using Sarrus rule
+ determinant = float(
+ (
+ (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2]))
+ + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0]))
+ + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1]))
+ )
+ - (
+ (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0]))
+ + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2]))
+ + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1]))
+ )
+ )
+ if determinant == 0:
+ raise ValueError("This matrix has no inverse.")
- # Calculate the inverse of the matrix
- return [[float(D(n) / determinant) or 0.0 for n in row] for row in swapped_matrix]
+ # Creating cofactor matrix
+ cofactor_matrix = [
+ [d(0.0), d(0.0), d(0.0)],
+ [d(0.0), d(0.0), d(0.0)],
+ [d(0.0), d(0.0), d(0.0)],
+ ]
+ cofactor_matrix[0][0] = (d(matrix[1][1]) * d(matrix[2][2])) - (
+ d(matrix[1][2]) * d(matrix[2][1])
+ )
+ cofactor_matrix[0][1] = -(
+ (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0]))
+ )
+ cofactor_matrix[0][2] = (d(matrix[1][0]) * d(matrix[2][1])) - (
+ d(matrix[1][1]) * d(matrix[2][0])
+ )
+ cofactor_matrix[1][0] = -(
+ (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1]))
+ )
+ cofactor_matrix[1][1] = (d(matrix[0][0]) * d(matrix[2][2])) - (
+ d(matrix[0][2]) * d(matrix[2][0])
+ )
+ cofactor_matrix[1][2] = -(
+ (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0]))
+ )
+ cofactor_matrix[2][0] = (d(matrix[0][1]) * d(matrix[1][2])) - (
+ d(matrix[0][2]) * d(matrix[1][1])
+ )
+ cofactor_matrix[2][1] = -(
+ (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0]))
+ )
+ cofactor_matrix[2][2] = (d(matrix[0][0]) * d(matrix[1][1])) - (
+ d(matrix[0][1]) * d(matrix[1][0])
+ )
+
+ # Transpose the cofactor matrix (Adjoint matrix)
+ adjoint_matrix = array(cofactor_matrix)
+ for i in range(3):
+ for j in range(3):
+ adjoint_matrix[i][j] = cofactor_matrix[j][i]
+
+ # Inverse of the matrix using the formula (1/determinant) * adjoint matrix
+ inverse_matrix = array(cofactor_matrix)
+ for i in range(3):
+ for j in range(3):
+ inverse_matrix[i][j] /= d(determinant)
+
+ # Calculate the inverse of the matrix
+ return [[float(d(n)) or 0.0 for n in row] for row in inverse_matrix]
+ raise ValueError("Please provide a matrix of size 2x2 or 3x3.")
diff --git a/matrix/largest_square_area_in_matrix.py b/matrix/largest_square_area_in_matrix.py
new file mode 100644
index 000000000..a93369c56
--- /dev/null
+++ b/matrix/largest_square_area_in_matrix.py
@@ -0,0 +1,188 @@
+"""
+Question:
+Given a binary matrix mat of size n * m, find out the maximum size square
+sub-matrix with all 1s.
+
+---
+Example 1:
+
+Input:
+n = 2, m = 2
+mat = [[1, 1],
+ [1, 1]]
+
+Output:
+2
+
+Explanation: The maximum size of the square
+sub-matrix is 2. The matrix itself is the
+maximum sized sub-matrix in this case.
+---
+Example 2
+
+Input:
+n = 2, m = 2
+mat = [[0, 0],
+ [0, 0]]
+Output: 0
+
+Explanation: There is no 1 in the matrix.
+
+
+Approach:
+We initialize another matrix (dp) with the same dimensions
+as the original one initialized with all 0’s.
+
+dp_array(i,j) represents the side length of the maximum square whose
+bottom right corner is the cell with index (i,j) in the original matrix.
+
+Starting from index (0,0), for every 1 found in the original matrix,
+we update the value of the current element as
+
+dp_array(i,j)=dp_array(dp(i−1,j),dp_array(i−1,j−1),dp_array(i,j−1)) + 1.
+"""
+
+
+def largest_square_area_in_matrix_top_down_approch(
+ rows: int, cols: int, mat: list[list[int]]
+) -> int:
+ """
+ Function updates the largest_square_area[0], if recursive call found
+ square with maximum area.
+
+ We aren't using dp_array here, so the time complexity would be exponential.
+
+ >>> largest_square_area_in_matrix_top_down_approch(2, 2, [[1,1], [1,1]])
+ 2
+ >>> largest_square_area_in_matrix_top_down_approch(2, 2, [[0,0], [0,0]])
+ 0
+ """
+
+ def update_area_of_max_square(row: int, col: int) -> int:
+ # BASE CASE
+ if row >= rows or col >= cols:
+ return 0
+
+ right = update_area_of_max_square(row, col + 1)
+ diagonal = update_area_of_max_square(row + 1, col + 1)
+ down = update_area_of_max_square(row + 1, col)
+
+ if mat[row][col]:
+ sub_problem_sol = 1 + min([right, diagonal, down])
+ largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
+ return sub_problem_sol
+ else:
+ return 0
+
+ largest_square_area = [0]
+ update_area_of_max_square(0, 0)
+ return largest_square_area[0]
+
+
+def largest_square_area_in_matrix_top_down_approch_with_dp(
+ rows: int, cols: int, mat: list[list[int]]
+) -> int:
+ """
+ Function updates the largest_square_area[0], if recursive call found
+ square with maximum area.
+
+ We are using dp_array here, so the time complexity would be O(N^2).
+
+ >>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[1,1], [1,1]])
+ 2
+ >>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[0,0], [0,0]])
+ 0
+ """
+
+ def update_area_of_max_square_using_dp_array(
+ row: int, col: int, dp_array: list[list[int]]
+ ) -> int:
+ if row >= rows or col >= cols:
+ return 0
+ if dp_array[row][col] != -1:
+ return dp_array[row][col]
+
+ right = update_area_of_max_square_using_dp_array(row, col + 1, dp_array)
+ diagonal = update_area_of_max_square_using_dp_array(row + 1, col + 1, dp_array)
+ down = update_area_of_max_square_using_dp_array(row + 1, col, dp_array)
+
+ if mat[row][col]:
+ sub_problem_sol = 1 + min([right, diagonal, down])
+ largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
+ dp_array[row][col] = sub_problem_sol
+ return sub_problem_sol
+ else:
+ return 0
+
+ largest_square_area = [0]
+ dp_array = [[-1] * cols for _ in range(rows)]
+ update_area_of_max_square_using_dp_array(0, 0, dp_array)
+
+ return largest_square_area[0]
+
+
+def largest_square_area_in_matrix_bottom_up(
+ rows: int, cols: int, mat: list[list[int]]
+) -> int:
+ """
+ Function updates the largest_square_area, using bottom up approach.
+
+ >>> largest_square_area_in_matrix_bottom_up(2, 2, [[1,1], [1,1]])
+ 2
+ >>> largest_square_area_in_matrix_bottom_up(2, 2, [[0,0], [0,0]])
+ 0
+
+ """
+ dp_array = [[0] * (cols + 1) for _ in range(rows + 1)]
+ largest_square_area = 0
+ for row in range(rows - 1, -1, -1):
+ for col in range(cols - 1, -1, -1):
+ right = dp_array[row][col + 1]
+ diagonal = dp_array[row + 1][col + 1]
+ bottom = dp_array[row + 1][col]
+
+ if mat[row][col] == 1:
+ dp_array[row][col] = 1 + min(right, diagonal, bottom)
+ largest_square_area = max(dp_array[row][col], largest_square_area)
+ else:
+ dp_array[row][col] = 0
+
+ return largest_square_area
+
+
+def largest_square_area_in_matrix_bottom_up_space_optimization(
+ rows: int, cols: int, mat: list[list[int]]
+) -> int:
+ """
+ Function updates the largest_square_area, using bottom up
+ approach. with space optimization.
+
+ >>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[1,1], [1,1]])
+ 2
+ >>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[0,0], [0,0]])
+ 0
+ """
+ current_row = [0] * (cols + 1)
+ next_row = [0] * (cols + 1)
+ largest_square_area = 0
+ for row in range(rows - 1, -1, -1):
+ for col in range(cols - 1, -1, -1):
+ right = current_row[col + 1]
+ diagonal = next_row[col + 1]
+ bottom = next_row[col]
+
+ if mat[row][col] == 1:
+ current_row[col] = 1 + min(right, diagonal, bottom)
+ largest_square_area = max(current_row[col], largest_square_area)
+ else:
+ current_row[col] = 0
+ next_row = current_row
+
+ return largest_square_area
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
+ print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
diff --git a/matrix/matrix_class.py b/matrix/matrix_class.py
index 57a2fc45f..a5940a38e 100644
--- a/matrix/matrix_class.py
+++ b/matrix/matrix_class.py
@@ -1,358 +1,366 @@
-# An OOP approach to representing and manipulating matrices
-
-
-class Matrix:
- """
- Matrix object generated from a 2D array where each element is an array representing
- a row.
- Rows can contain type int or float.
- Common operations and information available.
- >>> rows = [
- ... [1, 2, 3],
- ... [4, 5, 6],
- ... [7, 8, 9]
- ... ]
- >>> matrix = Matrix(rows)
- >>> print(matrix)
- [[1. 2. 3.]
- [4. 5. 6.]
- [7. 8. 9.]]
-
- Matrix rows and columns are available as 2D arrays
- >>> print(matrix.rows)
- [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
- >>> print(matrix.columns())
- [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
-
- Order is returned as a tuple
- >>> matrix.order
- (3, 3)
-
- Squareness and invertability are represented as bool
- >>> matrix.is_square
- True
- >>> matrix.is_invertable()
- False
-
- Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be
- a Matrix or Nonetype
- >>> print(matrix.identity())
- [[1. 0. 0.]
- [0. 1. 0.]
- [0. 0. 1.]]
- >>> print(matrix.minors())
- [[-3. -6. -3.]
- [-6. -12. -6.]
- [-3. -6. -3.]]
- >>> print(matrix.cofactors())
- [[-3. 6. -3.]
- [6. -12. 6.]
- [-3. 6. -3.]]
- >>> # won't be apparent due to the nature of the cofactor matrix
- >>> print(matrix.adjugate())
- [[-3. 6. -3.]
- [6. -12. 6.]
- [-3. 6. -3.]]
- >>> print(matrix.inverse())
- None
-
- Determinant is an int, float, or Nonetype
- >>> matrix.determinant()
- 0
-
- Negation, scalar multiplication, addition, subtraction, multiplication and
- exponentiation are available and all return a Matrix
- >>> print(-matrix)
- [[-1. -2. -3.]
- [-4. -5. -6.]
- [-7. -8. -9.]]
- >>> matrix2 = matrix * 3
- >>> print(matrix2)
- [[3. 6. 9.]
- [12. 15. 18.]
- [21. 24. 27.]]
- >>> print(matrix + matrix2)
- [[4. 8. 12.]
- [16. 20. 24.]
- [28. 32. 36.]]
- >>> print(matrix - matrix2)
- [[-2. -4. -6.]
- [-8. -10. -12.]
- [-14. -16. -18.]]
- >>> print(matrix ** 3)
- [[468. 576. 684.]
- [1062. 1305. 1548.]
- [1656. 2034. 2412.]]
-
- Matrices can also be modified
- >>> matrix.add_row([10, 11, 12])
- >>> print(matrix)
- [[1. 2. 3.]
- [4. 5. 6.]
- [7. 8. 9.]
- [10. 11. 12.]]
- >>> matrix2.add_column([8, 16, 32])
- >>> print(matrix2)
- [[3. 6. 9. 8.]
- [12. 15. 18. 16.]
- [21. 24. 27. 32.]]
- >>> print(matrix * matrix2)
- [[90. 108. 126. 136.]
- [198. 243. 288. 304.]
- [306. 378. 450. 472.]
- [414. 513. 612. 640.]]
-
- """
-
- def __init__(self, rows):
- error = TypeError(
- "Matrices must be formed from a list of zero or more lists containing at "
- "least one and the same number of values, each of which must be of type "
- "int or float."
- )
- if len(rows) != 0:
- cols = len(rows[0])
- if cols == 0:
- raise error
- for row in rows:
- if len(row) != cols:
- raise error
- for value in row:
- if not isinstance(value, (int, float)):
- raise error
- self.rows = rows
- else:
- self.rows = []
-
- # MATRIX INFORMATION
- def columns(self):
- return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
-
- @property
- def num_rows(self):
- return len(self.rows)
-
- @property
- def num_columns(self):
- return len(self.rows[0])
-
- @property
- def order(self):
- return (self.num_rows, self.num_columns)
-
- @property
- def is_square(self):
- return self.order[0] == self.order[1]
-
- def identity(self):
- values = [
- [0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
- for row_num in range(self.num_rows)
- ]
- return Matrix(values)
-
- def determinant(self):
- if not self.is_square:
- return None
- if self.order == (0, 0):
- return 1
- if self.order == (1, 1):
- return self.rows[0][0]
- if self.order == (2, 2):
- return (self.rows[0][0] * self.rows[1][1]) - (
- self.rows[0][1] * self.rows[1][0]
- )
- else:
- return sum(
- self.rows[0][column] * self.cofactors().rows[0][column]
- for column in range(self.num_columns)
- )
-
- def is_invertable(self):
- return bool(self.determinant())
-
- def get_minor(self, row, column):
- values = [
- [
- self.rows[other_row][other_column]
- for other_column in range(self.num_columns)
- if other_column != column
- ]
- for other_row in range(self.num_rows)
- if other_row != row
- ]
- return Matrix(values).determinant()
-
- def get_cofactor(self, row, column):
- if (row + column) % 2 == 0:
- return self.get_minor(row, column)
- return -1 * self.get_minor(row, column)
-
- def minors(self):
- return Matrix(
- [
- [self.get_minor(row, column) for column in range(self.num_columns)]
- for row in range(self.num_rows)
- ]
- )
-
- def cofactors(self):
- return Matrix(
- [
- [
- self.minors().rows[row][column]
- if (row + column) % 2 == 0
- else self.minors().rows[row][column] * -1
- for column in range(self.minors().num_columns)
- ]
- for row in range(self.minors().num_rows)
- ]
- )
-
- def adjugate(self):
- values = [
- [self.cofactors().rows[column][row] for column in range(self.num_columns)]
- for row in range(self.num_rows)
- ]
- return Matrix(values)
-
- def inverse(self):
- determinant = self.determinant()
- return None if not determinant else self.adjugate() * (1 / determinant)
-
- def __repr__(self):
- return str(self.rows)
-
- def __str__(self):
- if self.num_rows == 0:
- return "[]"
- if self.num_rows == 1:
- return "[[" + ". ".join(self.rows[0]) + "]]"
- return (
- "["
- + "\n ".join(
- [
- "[" + ". ".join([str(value) for value in row]) + ".]"
- for row in self.rows
- ]
- )
- + "]"
- )
-
- # MATRIX MANIPULATION
- def add_row(self, row, position=None):
- type_error = TypeError("Row must be a list containing all ints and/or floats")
- if not isinstance(row, list):
- raise type_error
- for value in row:
- if not isinstance(value, (int, float)):
- raise type_error
- if len(row) != self.num_columns:
- raise ValueError(
- "Row must be equal in length to the other rows in the matrix"
- )
- if position is None:
- self.rows.append(row)
- else:
- self.rows = self.rows[0:position] + [row] + self.rows[position:]
-
- def add_column(self, column, position=None):
- type_error = TypeError(
- "Column must be a list containing all ints and/or floats"
- )
- if not isinstance(column, list):
- raise type_error
- for value in column:
- if not isinstance(value, (int, float)):
- raise type_error
- if len(column) != self.num_rows:
- raise ValueError(
- "Column must be equal in length to the other columns in the matrix"
- )
- if position is None:
- self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
- else:
- self.rows = [
- self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
- for i in range(self.num_rows)
- ]
-
- # MATRIX OPERATIONS
- def __eq__(self, other):
- if not isinstance(other, Matrix):
- raise TypeError("A Matrix can only be compared with another Matrix")
- return self.rows == other.rows
-
- def __ne__(self, other):
- return not self == other
-
- def __neg__(self):
- return self * -1
-
- def __add__(self, other):
- if self.order != other.order:
- raise ValueError("Addition requires matrices of the same order")
- return Matrix(
- [
- [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
- for i in range(self.num_rows)
- ]
- )
-
- def __sub__(self, other):
- if self.order != other.order:
- raise ValueError("Subtraction requires matrices of the same order")
- return Matrix(
- [
- [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
- for i in range(self.num_rows)
- ]
- )
-
- def __mul__(self, other):
- if isinstance(other, (int, float)):
- return Matrix([[element * other for element in row] for row in self.rows])
- elif isinstance(other, Matrix):
- if self.num_columns != other.num_rows:
- raise ValueError(
- "The number of columns in the first matrix must "
- "be equal to the number of rows in the second"
- )
- return Matrix(
- [
- [Matrix.dot_product(row, column) for column in other.columns()]
- for row in self.rows
- ]
- )
- else:
- raise TypeError(
- "A Matrix can only be multiplied by an int, float, or another matrix"
- )
-
- def __pow__(self, other):
- if not isinstance(other, int):
- raise TypeError("A Matrix can only be raised to the power of an int")
- if not self.is_square:
- raise ValueError("Only square matrices can be raised to a power")
- if other == 0:
- return self.identity()
- if other < 0:
- if self.is_invertable:
- return self.inverse() ** (-other)
- raise ValueError(
- "Only invertable matrices can be raised to a negative power"
- )
- result = self
- for i in range(other - 1):
- result *= self
- return result
-
- @classmethod
- def dot_product(cls, row, column):
- return sum(row[i] * column[i] for i in range(len(row)))
-
-
-if __name__ == "__main__":
- import doctest
-
- doctest.testmod()
+# An OOP approach to representing and manipulating matrices
+
+from __future__ import annotations
+
+
+class Matrix:
+ """
+ Matrix object generated from a 2D array where each element is an array representing
+ a row.
+ Rows can contain type int or float.
+ Common operations and information available.
+ >>> rows = [
+ ... [1, 2, 3],
+ ... [4, 5, 6],
+ ... [7, 8, 9]
+ ... ]
+ >>> matrix = Matrix(rows)
+ >>> print(matrix)
+ [[1. 2. 3.]
+ [4. 5. 6.]
+ [7. 8. 9.]]
+
+ Matrix rows and columns are available as 2D arrays
+ >>> matrix.rows
+ [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
+ >>> matrix.columns()
+ [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
+
+ Order is returned as a tuple
+ >>> matrix.order
+ (3, 3)
+
+ Squareness and invertability are represented as bool
+ >>> matrix.is_square
+ True
+ >>> matrix.is_invertable()
+ False
+
+ Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be
+ a Matrix or Nonetype
+ >>> print(matrix.identity())
+ [[1. 0. 0.]
+ [0. 1. 0.]
+ [0. 0. 1.]]
+ >>> print(matrix.minors())
+ [[-3. -6. -3.]
+ [-6. -12. -6.]
+ [-3. -6. -3.]]
+ >>> print(matrix.cofactors())
+ [[-3. 6. -3.]
+ [6. -12. 6.]
+ [-3. 6. -3.]]
+ >>> # won't be apparent due to the nature of the cofactor matrix
+ >>> print(matrix.adjugate())
+ [[-3. 6. -3.]
+ [6. -12. 6.]
+ [-3. 6. -3.]]
+ >>> matrix.inverse()
+ Traceback (most recent call last):
+ ...
+ TypeError: Only matrices with a non-zero determinant have an inverse
+
+ Determinant is an int, float, or Nonetype
+ >>> matrix.determinant()
+ 0
+
+ Negation, scalar multiplication, addition, subtraction, multiplication and
+ exponentiation are available and all return a Matrix
+ >>> print(-matrix)
+ [[-1. -2. -3.]
+ [-4. -5. -6.]
+ [-7. -8. -9.]]
+ >>> matrix2 = matrix * 3
+ >>> print(matrix2)
+ [[3. 6. 9.]
+ [12. 15. 18.]
+ [21. 24. 27.]]
+ >>> print(matrix + matrix2)
+ [[4. 8. 12.]
+ [16. 20. 24.]
+ [28. 32. 36.]]
+ >>> print(matrix - matrix2)
+ [[-2. -4. -6.]
+ [-8. -10. -12.]
+ [-14. -16. -18.]]
+ >>> print(matrix ** 3)
+ [[468. 576. 684.]
+ [1062. 1305. 1548.]
+ [1656. 2034. 2412.]]
+
+ Matrices can also be modified
+ >>> matrix.add_row([10, 11, 12])
+ >>> print(matrix)
+ [[1. 2. 3.]
+ [4. 5. 6.]
+ [7. 8. 9.]
+ [10. 11. 12.]]
+ >>> matrix2.add_column([8, 16, 32])
+ >>> print(matrix2)
+ [[3. 6. 9. 8.]
+ [12. 15. 18. 16.]
+ [21. 24. 27. 32.]]
+ >>> print(matrix * matrix2)
+ [[90. 108. 126. 136.]
+ [198. 243. 288. 304.]
+ [306. 378. 450. 472.]
+ [414. 513. 612. 640.]]
+ """
+
+ def __init__(self, rows: list[list[int]]):
+ error = TypeError(
+ "Matrices must be formed from a list of zero or more lists containing at "
+ "least one and the same number of values, each of which must be of type "
+ "int or float."
+ )
+ if len(rows) != 0:
+ cols = len(rows[0])
+ if cols == 0:
+ raise error
+ for row in rows:
+ if len(row) != cols:
+ raise error
+ for value in row:
+ if not isinstance(value, (int, float)):
+ raise error
+ self.rows = rows
+ else:
+ self.rows = []
+
+ # MATRIX INFORMATION
+ def columns(self) -> list[list[int]]:
+ return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))]
+
+ @property
+ def num_rows(self) -> int:
+ return len(self.rows)
+
+ @property
+ def num_columns(self) -> int:
+ return len(self.rows[0])
+
+ @property
+ def order(self) -> tuple[int, int]:
+ return self.num_rows, self.num_columns
+
+ @property
+ def is_square(self) -> bool:
+ return self.order[0] == self.order[1]
+
+ def identity(self) -> Matrix:
+ values = [
+ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)]
+ for row_num in range(self.num_rows)
+ ]
+ return Matrix(values)
+
+ def determinant(self) -> int:
+ if not self.is_square:
+ return 0
+ if self.order == (0, 0):
+ return 1
+ if self.order == (1, 1):
+ return int(self.rows[0][0])
+ if self.order == (2, 2):
+ return int(
+ (self.rows[0][0] * self.rows[1][1])
+ - (self.rows[0][1] * self.rows[1][0])
+ )
+ else:
+ return sum(
+ self.rows[0][column] * self.cofactors().rows[0][column]
+ for column in range(self.num_columns)
+ )
+
+ def is_invertable(self) -> bool:
+ return bool(self.determinant())
+
+ def get_minor(self, row: int, column: int) -> int:
+ values = [
+ [
+ self.rows[other_row][other_column]
+ for other_column in range(self.num_columns)
+ if other_column != column
+ ]
+ for other_row in range(self.num_rows)
+ if other_row != row
+ ]
+ return Matrix(values).determinant()
+
+ def get_cofactor(self, row: int, column: int) -> int:
+ if (row + column) % 2 == 0:
+ return self.get_minor(row, column)
+ return -1 * self.get_minor(row, column)
+
+ def minors(self) -> Matrix:
+ return Matrix(
+ [
+ [self.get_minor(row, column) for column in range(self.num_columns)]
+ for row in range(self.num_rows)
+ ]
+ )
+
+ def cofactors(self) -> Matrix:
+ return Matrix(
+ [
+ [
+ self.minors().rows[row][column]
+ if (row + column) % 2 == 0
+ else self.minors().rows[row][column] * -1
+ for column in range(self.minors().num_columns)
+ ]
+ for row in range(self.minors().num_rows)
+ ]
+ )
+
+ def adjugate(self) -> Matrix:
+ values = [
+ [self.cofactors().rows[column][row] for column in range(self.num_columns)]
+ for row in range(self.num_rows)
+ ]
+ return Matrix(values)
+
+ def inverse(self) -> Matrix:
+ determinant = self.determinant()
+ if not determinant:
+ raise TypeError("Only matrices with a non-zero determinant have an inverse")
+ return self.adjugate() * (1 / determinant)
+
+ def __repr__(self) -> str:
+ return str(self.rows)
+
+ def __str__(self) -> str:
+ if self.num_rows == 0:
+ return "[]"
+ if self.num_rows == 1:
+ return "[[" + ". ".join(str(self.rows[0])) + "]]"
+ return (
+ "["
+ + "\n ".join(
+ [
+ "[" + ". ".join([str(value) for value in row]) + ".]"
+ for row in self.rows
+ ]
+ )
+ + "]"
+ )
+
+ # MATRIX MANIPULATION
+ def add_row(self, row: list[int], position: int | None = None) -> None:
+ type_error = TypeError("Row must be a list containing all ints and/or floats")
+ if not isinstance(row, list):
+ raise type_error
+ for value in row:
+ if not isinstance(value, (int, float)):
+ raise type_error
+ if len(row) != self.num_columns:
+ raise ValueError(
+ "Row must be equal in length to the other rows in the matrix"
+ )
+ if position is None:
+ self.rows.append(row)
+ else:
+ self.rows = self.rows[0:position] + [row] + self.rows[position:]
+
+ def add_column(self, column: list[int], position: int | None = None) -> None:
+ type_error = TypeError(
+ "Column must be a list containing all ints and/or floats"
+ )
+ if not isinstance(column, list):
+ raise type_error
+ for value in column:
+ if not isinstance(value, (int, float)):
+ raise type_error
+ if len(column) != self.num_rows:
+ raise ValueError(
+ "Column must be equal in length to the other columns in the matrix"
+ )
+ if position is None:
+ self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)]
+ else:
+ self.rows = [
+ self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
+ for i in range(self.num_rows)
+ ]
+
+ # MATRIX OPERATIONS
+ def __eq__(self, other: object) -> bool:
+ if not isinstance(other, Matrix):
+ return NotImplemented
+ return self.rows == other.rows
+
+ def __ne__(self, other: object) -> bool:
+ return not self == other
+
+ def __neg__(self) -> Matrix:
+ return self * -1
+
+ def __add__(self, other: Matrix) -> Matrix:
+ if self.order != other.order:
+ raise ValueError("Addition requires matrices of the same order")
+ return Matrix(
+ [
+ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)]
+ for i in range(self.num_rows)
+ ]
+ )
+
+ def __sub__(self, other: Matrix) -> Matrix:
+ if self.order != other.order:
+ raise ValueError("Subtraction requires matrices of the same order")
+ return Matrix(
+ [
+ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)]
+ for i in range(self.num_rows)
+ ]
+ )
+
+ def __mul__(self, other: Matrix | float) -> Matrix:
+ if isinstance(other, (int, float)):
+ return Matrix(
+ [[int(element * other) for element in row] for row in self.rows]
+ )
+ elif isinstance(other, Matrix):
+ if self.num_columns != other.num_rows:
+ raise ValueError(
+ "The number of columns in the first matrix must "
+ "be equal to the number of rows in the second"
+ )
+ return Matrix(
+ [
+ [Matrix.dot_product(row, column) for column in other.columns()]
+ for row in self.rows
+ ]
+ )
+ else:
+ raise TypeError(
+ "A Matrix can only be multiplied by an int, float, or another matrix"
+ )
+
+ def __pow__(self, other: int) -> Matrix:
+ if not isinstance(other, int):
+ raise TypeError("A Matrix can only be raised to the power of an int")
+ if not self.is_square:
+ raise ValueError("Only square matrices can be raised to a power")
+ if other == 0:
+ return self.identity()
+ if other < 0:
+ if self.is_invertable():
+ return self.inverse() ** (-other)
+ raise ValueError(
+ "Only invertable matrices can be raised to a negative power"
+ )
+ result = self
+ for _ in range(other - 1):
+ result *= self
+ return result
+
+ @classmethod
+ def dot_product(cls, row: list[int], column: list[int]) -> int:
+ return sum(row[i] * column[i] for i in range(len(row)))
+
+
+if __name__ == "__main__":
+ import doctest
+
+ doctest.testmod()
diff --git a/matrix/matrix_operation.py b/matrix/matrix_operation.py
index 8e5d0f583..d63e758f1 100644
--- a/matrix/matrix_operation.py
+++ b/matrix/matrix_operation.py
@@ -4,8 +4,10 @@ Functions for 2D matrix operations
from __future__ import annotations
+from typing import Any
-def add(*matrix_s: list[list]) -> list[list]:
+
+def add(*matrix_s: list[list[int]]) -> list[list[int]]:
"""
>>> add([[1,2],[3,4]],[[2,3],[4,5]])
[[3, 5], [7, 9]]
@@ -25,7 +27,7 @@ def add(*matrix_s: list[list]) -> list[list]:
raise TypeError("Expected a matrix, got int/list instead")
-def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
+def subtract(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
"""
>>> subtract([[1,2],[3,4]],[[2,3],[4,5]])
[[-1, -1], [-1, -1]]
@@ -45,7 +47,7 @@ def subtract(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
raise TypeError("Expected a matrix, got int/list instead")
-def scalar_multiply(matrix: list[list], n: int | float) -> list[list]:
+def scalar_multiply(matrix: list[list[int]], n: float) -> list[list[float]]:
"""
>>> scalar_multiply([[1,2],[3,4]],5)
[[5, 10], [15, 20]]
@@ -55,7 +57,7 @@ def scalar_multiply(matrix: list[list], n: int | float) -> list[list]:
return [[x * n for x in row] for row in matrix]
-def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
+def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]:
"""
>>> multiply([[1,2],[3,4]],[[5,5],[7,5]])
[[19, 15], [43, 35]]
@@ -68,16 +70,17 @@ def multiply(matrix_a: list[list], matrix_b: list[list]) -> list[list]:
rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)
if cols[0] != rows[1]:
- raise ValueError(
- f"Cannot multiply matrix of dimensions ({rows[0]},{cols[0]}) "
- f"and ({rows[1]},{cols[1]})"
+ msg = (
+ "Cannot multiply matrix of dimensions "
+ f"({rows[0]},{cols[0]}) and ({rows[1]},{cols[1]})"
)
+ raise ValueError(msg)
return [
[sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for i in matrix_a
]
-def identity(n: int) -> list[list]:
+def identity(n: int) -> list[list[int]]:
"""
:param n: dimension for nxn matrix
:type n: int
@@ -89,7 +92,9 @@ def identity(n: int) -> list[list]:
return [[int(row == column) for column in range(n)] for row in range(n)]
-def transpose(matrix: list[list], return_map: bool = True) -> list[list] | map[list]:
+def transpose(
+ matrix: list[list[int]], return_map: bool = True
+) -> list[list[int]] | map[list[int]]:
"""
>>> transpose([[1,2],[3,4]]) # doctest: +ELLIPSIS