From ea36ef407bc5ed3f8e931b9e2e2f552ec81e736c Mon Sep 17 00:00:00 2001 From: Anup Kumar Panwar <1anuppanwar@gmail.com> Date: Sat, 4 Feb 2017 18:15:41 +0530 Subject: [PATCH] Revert "Update Normal Distribution QuickSort Readme" --- README.md | 6 -- sorts/normal_distribution_QuickSort_README.md | 80 ------------------- 2 files changed, 86 deletions(-) delete mode 100644 sorts/normal_distribution_QuickSort_README.md diff --git a/README.md b/README.md index fd3de1465..1d8d3386e 100644 --- a/README.md +++ b/README.md @@ -59,12 +59,6 @@ __Properties__ ###### View the algorithm in [action][quick-toptal] - - - -![Normal Distribution QuickSort](https://github.com/prateekiiest/Python/blob/master/sorts/normal_distribution_QuickSort_README.md) - - ### Selection ![alt text][selection-image] diff --git a/sorts/normal_distribution_QuickSort_README.md b/sorts/normal_distribution_QuickSort_README.md deleted file mode 100644 index fc6d55ed5..000000000 --- a/sorts/normal_distribution_QuickSort_README.md +++ /dev/null @@ -1,80 +0,0 @@ -#Normal Distribution QuickSort - - -Algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution. -This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one. - - -##Array Elements - -The array elements are taken from a Standard Normal Distribution , having mean = 0 and standard deviation 1. - -####The code - -```python - ->>> import numpy as np ->>> from tempfile import TemporaryFile ->>> outfile = TemporaryFile() ->>> p = 100 # 100 elements are to be sorted ->>> mu, sigma = 0, 1 # mean and standard deviation ->>> X = np.random.normal(mu, sigma, p) ->>> np.save(outfile, X) ->>> print('The array is') ->>> print(X) - -``` - ------- - -#### The Distribution of the Array elements. - -```python ->>> mu, sigma = 0, 1 # mean and standard deviation ->>> s = np.random.normal(mu, sigma, p) ->>> count, bins, ignored = plt.hist(s, 30, normed=True) ->>> plt.plot(bins , 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r') ->>> plt.show() - -``` - - -![Array_Element_Distribution](https://github.com/prateekiiest/Algorithms/blob/master/normaldistributionforarrayelements.png) - - - - ---- - ---------------------- - --- - -##Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort - -```python ->>>import matplotlib.pyplot as plt - - - # Normal Disrtibution QuickSort is red ->>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,6,15,43,136,340,800,2156,6821,16325],linewidth=2, color='r') - - #Ordinary QuickSort is green ->>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,4,16,67,122,362,949,2131,5086,12866],linewidth=2, color='g') - ->>> plt.show() - -``` - - ----- - -###The Plot - -* X axis denotes the number of elements to be sorted. -* Y axis denotes the number of comparisons taking place - -![Plot](https://github.com/prateekiiest/Algorithms/blob/master/normaldist.png) - - -------------------