mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
Retried commit with base fib heap implementation2
This commit is contained in:
parent
c4516d1dfc
commit
144030aed1
|
@ -1,357 +1,178 @@
|
|||
"""
|
||||
Fibonacci Heap
|
||||
A more efficient priority queue implementation that provides amortized time bounds
|
||||
that are better than those of the binary and binomial heaps.
|
||||
reference: https://en.wikipedia.org/wiki/Fibonacci_heap
|
||||
import math
|
||||
|
||||
Operations supported:
|
||||
- Insert: O(1) amortized
|
||||
- Find minimum: O(1)
|
||||
- Delete minimum: O(log n) amortized
|
||||
- Decrease key: O(1) amortized
|
||||
- Merge: O(1)
|
||||
"""
|
||||
|
||||
class Node:
|
||||
"""
|
||||
A node in a Fibonacci heap.
|
||||
|
||||
Args:
|
||||
val: The value stored in the node.
|
||||
|
||||
Attributes:
|
||||
val: The value stored in the node.
|
||||
parent: Reference to parent node.
|
||||
child: Reference to one child node.
|
||||
left: Reference to left sibling.
|
||||
right: Reference to right sibling.
|
||||
degree: Number of children.
|
||||
mark: Boolean indicating if node has lost a child.
|
||||
"""
|
||||
def __init__(self, val):
|
||||
self.val = val
|
||||
class FibonacciHeapNode:
|
||||
def __init__(self, key, value=None):
|
||||
self.key = key
|
||||
self.value = value
|
||||
self.degree = 0
|
||||
self.parent = None
|
||||
self.child = None
|
||||
self.left = self
|
||||
self.right = self
|
||||
self.degree = 0
|
||||
self.mark = False
|
||||
|
||||
def add_sibling(self, node):
|
||||
"""
|
||||
Adds a node as a sibling to the current node.
|
||||
|
||||
Args:
|
||||
node: The node to add as a sibling.
|
||||
"""
|
||||
node.left = self
|
||||
node.right = self.right
|
||||
self.right.left = node
|
||||
self.right = node
|
||||
self.next = self
|
||||
self.prev = self
|
||||
|
||||
def add_child(self, node):
|
||||
"""
|
||||
Adds a node as a child of the current node.
|
||||
|
||||
Args:
|
||||
node: The node to add as a child.
|
||||
"""
|
||||
node.parent = self
|
||||
if not self.child:
|
||||
self.child = node
|
||||
else:
|
||||
self.child.add_sibling(node)
|
||||
node.prev = self.child
|
||||
node.next = self.child.next
|
||||
self.child.next.prev = node
|
||||
self.child.next = node
|
||||
node.parent = self
|
||||
self.degree += 1
|
||||
|
||||
def remove(self):
|
||||
"""Removes this node from its sibling list."""
|
||||
self.left.right = self.right
|
||||
self.right.left = self.left
|
||||
def remove_child(self, node):
|
||||
if node.next == node: # Single child
|
||||
self.child = None
|
||||
elif self.child == node:
|
||||
self.child = node.next
|
||||
node.prev.next = node.next
|
||||
node.next.prev = node.prev
|
||||
node.parent = None
|
||||
self.degree -= 1
|
||||
|
||||
|
||||
class FibonacciHeap:
|
||||
"""
|
||||
A Fibonacci heap implementation providing
|
||||
amortized efficient priority queue operations.
|
||||
|
||||
This implementation provides the following time complexities:
|
||||
- Insert: O(1) amortized
|
||||
- Find minimum: O(1)
|
||||
- Delete minimum: O(log n) amortized
|
||||
- Decrease key: O(1) amortized
|
||||
- Merge: O(1)
|
||||
|
||||
Example:
|
||||
>>> heap = FibonacciHeap()
|
||||
>>> node1 = heap.insert(3)
|
||||
>>> node2 = heap.insert(2)
|
||||
>>> node3 = heap.insert(15)
|
||||
>>> heap.peek()
|
||||
2
|
||||
>>> heap.delete_min()
|
||||
2
|
||||
>>> heap.peek()
|
||||
3
|
||||
>>> other_heap = FibonacciHeap()
|
||||
>>> node4 = other_heap.insert(1)
|
||||
>>> heap.merge_heaps(other_heap)
|
||||
>>> heap.peek()
|
||||
1
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes an empty Fibonacci heap."""
|
||||
self.min_node = None
|
||||
self.size = 0
|
||||
self.total_nodes = 0
|
||||
|
||||
def is_empty(self):
|
||||
"""
|
||||
Checks if the heap is empty.
|
||||
|
||||
Returns:
|
||||
bool: True if heap is empty, False otherwise.
|
||||
"""
|
||||
return self.min_node is None
|
||||
|
||||
def insert(self, val):
|
||||
"""
|
||||
Inserts a new value into the heap.
|
||||
|
||||
Args:
|
||||
val: Value to insert.
|
||||
|
||||
Returns:
|
||||
Node: The newly created node.
|
||||
"""
|
||||
node = Node(val)
|
||||
if not self.min_node:
|
||||
def insert(self, key, value=None):
|
||||
node = FibonacciHeapNode(key, value)
|
||||
self._merge_with_root_list(node)
|
||||
if not self.min_node or node.key < self.min_node.key:
|
||||
self.min_node = node
|
||||
else:
|
||||
self.min_node.add_sibling(node)
|
||||
if node.val < self.min_node.val:
|
||||
self.min_node = node
|
||||
self.size += 1
|
||||
self.total_nodes += 1
|
||||
return node
|
||||
|
||||
def peek(self):
|
||||
"""
|
||||
Returns the minimum value without removing it.
|
||||
def find_min(self):
|
||||
return self.min_node
|
||||
|
||||
Returns:
|
||||
The minimum value in the heap.
|
||||
|
||||
Raises:
|
||||
IndexError: If the heap is empty.
|
||||
"""
|
||||
def union(self, other_heap):
|
||||
if not other_heap.min_node:
|
||||
return self
|
||||
if not self.min_node:
|
||||
raise IndexError("Heap is empty")
|
||||
return self.min_node.val
|
||||
|
||||
def merge_heaps(self, other):
|
||||
"""
|
||||
Merges another Fibonacci heap into this one.
|
||||
|
||||
Args:
|
||||
other: Another FibonacciHeap instance to merge with this one.
|
||||
"""
|
||||
if not other.min_node:
|
||||
return
|
||||
if not self.min_node:
|
||||
self.min_node = other.min_node
|
||||
self.min_node = other_heap.min_node
|
||||
else:
|
||||
# Merge root lists
|
||||
self.min_node.right.left = other.min_node.left
|
||||
other.min_node.left.right = self.min_node.right
|
||||
self.min_node.right = other.min_node
|
||||
other.min_node.left = self.min_node
|
||||
self._merge_with_root_list(other_heap.min_node)
|
||||
if other_heap.min_node.key < self.min_node.key:
|
||||
self.min_node = other_heap.min_node
|
||||
self.total_nodes += other_heap.total_nodes
|
||||
|
||||
if other.min_node.val < self.min_node.val:
|
||||
self.min_node = other.min_node
|
||||
def extract_min(self):
|
||||
z = self.min_node
|
||||
if z:
|
||||
if z.child:
|
||||
children = list(self._iterate(z.child))
|
||||
for child in children:
|
||||
self._merge_with_root_list(child)
|
||||
child.parent = None
|
||||
self._remove_from_root_list(z)
|
||||
if z == z.next:
|
||||
self.min_node = None
|
||||
else:
|
||||
self.min_node = z.next
|
||||
self._consolidate()
|
||||
self.total_nodes -= 1
|
||||
return z
|
||||
|
||||
self.size += other.size
|
||||
def decrease_key(self, x, new_key):
|
||||
if new_key > x.key:
|
||||
raise ValueError("New key is greater than current key")
|
||||
x.key = new_key
|
||||
y = x.parent
|
||||
if y and x.key < y.key:
|
||||
self._cut(x, y)
|
||||
self._cascading_cut(y)
|
||||
if x.key < self.min_node.key:
|
||||
self.min_node = x
|
||||
|
||||
def __link_trees(self, node1, node2):
|
||||
"""
|
||||
Links two trees of same degree.
|
||||
def delete(self, x):
|
||||
self.decrease_key(x, -math.inf)
|
||||
self.extract_min()
|
||||
|
||||
Args:
|
||||
node1: First tree's root node.
|
||||
node2: Second tree's root node.
|
||||
"""
|
||||
node1.remove()
|
||||
if node2.child:
|
||||
node2.child.add_sibling(node1)
|
||||
else:
|
||||
node2.child = node1
|
||||
node1.parent = node2
|
||||
node2.degree += 1
|
||||
node1.mark = False
|
||||
def _cut(self, x, y):
|
||||
y.remove_child(x)
|
||||
self._merge_with_root_list(x)
|
||||
x.mark = False
|
||||
|
||||
def delete_min(self):
|
||||
"""
|
||||
Removes and returns the minimum value from the heap.
|
||||
def _cascading_cut(self, y):
|
||||
if z := y.parent:
|
||||
if not y.mark:
|
||||
y.mark = True
|
||||
else:
|
||||
self._cut(y, z)
|
||||
self._cascading_cut(z)
|
||||
|
||||
Returns:
|
||||
The minimum value that was removed.
|
||||
|
||||
Raises:
|
||||
IndexError: If the heap is empty.
|
||||
"""
|
||||
def _merge_with_root_list(self, node):
|
||||
if not self.min_node:
|
||||
raise IndexError("Heap is empty")
|
||||
self.min_node = node
|
||||
else:
|
||||
node.prev = self.min_node
|
||||
node.next = self.min_node.next
|
||||
self.min_node.next.prev = node
|
||||
self.min_node.next = node
|
||||
|
||||
min_val = self.min_node.val
|
||||
|
||||
# Add all children to root list
|
||||
if self.min_node.child:
|
||||
curr = self.min_node.child
|
||||
while True:
|
||||
next_node = curr.right
|
||||
curr.parent = None
|
||||
curr.mark = False
|
||||
self.min_node.add_sibling(curr)
|
||||
if curr.right == self.min_node.child:
|
||||
break
|
||||
curr = next_node
|
||||
|
||||
# Remove minimum node
|
||||
if self.min_node.right == self.min_node:
|
||||
def _remove_from_root_list(self, node):
|
||||
if node.next == node:
|
||||
self.min_node = None
|
||||
else:
|
||||
self.min_node.remove()
|
||||
self.min_node = self.min_node.right
|
||||
self.__consolidate()
|
||||
node.prev.next = node.next
|
||||
node.next.prev = node.prev
|
||||
|
||||
self.size -= 1
|
||||
return min_val
|
||||
def _consolidate(self):
|
||||
array_size = int(math.log(self.total_nodes) * 2) + 1
|
||||
array = [None] * array_size
|
||||
nodes = list(self._iterate(self.min_node))
|
||||
for w in nodes:
|
||||
x = w
|
||||
d = x.degree
|
||||
while array[d]:
|
||||
y = array[d]
|
||||
if x.key > y.key:
|
||||
x, y = y, x
|
||||
self._link(y, x)
|
||||
array[d] = None
|
||||
d += 1
|
||||
array[d] = x
|
||||
self.min_node = None
|
||||
for i in range(array_size):
|
||||
if array[i]:
|
||||
if not self.min_node:
|
||||
self.min_node = array[i]
|
||||
else:
|
||||
self._merge_with_root_list(array[i])
|
||||
if array[i].key < self.min_node.key:
|
||||
self.min_node = array[i]
|
||||
|
||||
def __consolidate(self):
|
||||
"""
|
||||
Consolidates the trees in the heap after a delete_min operation.
|
||||
def _link(self, y, x):
|
||||
self._remove_from_root_list(y)
|
||||
x.add_child(y)
|
||||
y.mark = False
|
||||
|
||||
This is an internal method that maintains the heap's structure.
|
||||
"""
|
||||
max_degree = int(self.size ** 0.5) + 1
|
||||
degree_table = [None] * max_degree
|
||||
|
||||
# Collect all roots
|
||||
roots = []
|
||||
curr = self.min_node
|
||||
def _iterate(self, start):
|
||||
node = start
|
||||
while True:
|
||||
roots.append(curr)
|
||||
curr = curr.right
|
||||
if curr == self.min_node:
|
||||
yield node
|
||||
node = node.next
|
||||
if node == start:
|
||||
break
|
||||
|
||||
# Consolidate trees
|
||||
for root in roots:
|
||||
degree = root.degree
|
||||
while degree_table[degree]:
|
||||
other = degree_table[degree]
|
||||
if root.val > other.val:
|
||||
root, other = other, root
|
||||
self.__link_trees(other, root)
|
||||
degree_table[degree] = None
|
||||
degree += 1
|
||||
degree_table[degree] = root
|
||||
|
||||
# Find new minimum
|
||||
self.min_node = None
|
||||
for degree in range(max_degree):
|
||||
if degree_table[degree]:
|
||||
if not self.min_node:
|
||||
self.min_node = degree_table[degree]
|
||||
self.min_node.left = self.min_node
|
||||
self.min_node.right = self.min_node
|
||||
else:
|
||||
self.min_node.add_sibling(degree_table[degree])
|
||||
if degree_table[degree].val < self.min_node.val:
|
||||
self.min_node = degree_table[degree]
|
||||
|
||||
def decrease_key(self, node, new_val):
|
||||
"""
|
||||
Decreases the value of a node.
|
||||
|
||||
Args:
|
||||
node: The node whose value should be decreased.
|
||||
new_val: The new value for the node.
|
||||
|
||||
Raises:
|
||||
ValueError: If new value is greater than current value.
|
||||
"""
|
||||
if new_val > node.val:
|
||||
raise ValueError("New value is greater than current value")
|
||||
|
||||
node.val = new_val
|
||||
parent = node.parent
|
||||
|
||||
if parent and node.val < parent.val:
|
||||
self.__cut(node, parent)
|
||||
self.__cascading_cut(parent)
|
||||
|
||||
if node.val < self.min_node.val:
|
||||
self.min_node = node
|
||||
|
||||
def __cut(self, node, parent):
|
||||
"""
|
||||
Cuts a node from its parent
|
||||
|
||||
Args:
|
||||
node: Node to be cut.
|
||||
parent: Parent of the node to be cut.
|
||||
"""
|
||||
|
||||
parent.degree -= 1
|
||||
if parent.child == node:
|
||||
parent.child = node.right if node.right != node else None
|
||||
node.remove()
|
||||
node.left = node
|
||||
node.right = node
|
||||
node.parent = None
|
||||
node.mark = False
|
||||
self.min_node.add_sibling(node)
|
||||
|
||||
def __cascading_cut(self, node):
|
||||
"""
|
||||
Performs cascading cut operation.
|
||||
|
||||
Args:
|
||||
node: Starting node for cascading cut.
|
||||
"""
|
||||
|
||||
parent = node.parent
|
||||
if parent:
|
||||
if not node.mark:
|
||||
node.mark = True
|
||||
else:
|
||||
self.__cut(node, parent)
|
||||
self.__cascading_cut(parent)
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
Returns a string representation of the heap.
|
||||
|
||||
Returns:
|
||||
str: A string showing the heap structure.
|
||||
"""
|
||||
if not self.min_node:
|
||||
return "Empty heap"
|
||||
|
||||
def print_tree(node, level=0):
|
||||
result = []
|
||||
curr = node
|
||||
while True:
|
||||
result.append("-" * level + str(curr.val))
|
||||
if curr.child:
|
||||
result.extend(print_tree(curr.child, level + 1))
|
||||
curr = curr.right
|
||||
if curr == node:
|
||||
break
|
||||
return result
|
||||
|
||||
return "\n".join(print_tree(self.min_node))
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
fh = FibonacciHeap()
|
||||
n1 = fh.insert(10, "value1")
|
||||
n2 = fh.insert(2, "value2")
|
||||
n3 = fh.insert(15, "value3")
|
||||
|
||||
print("Min:", fh.find_min().key) # Output: 2
|
||||
fh.decrease_key(n3, 1)
|
||||
print("Min after decrease key:", fh.find_min().key) # Output: 1
|
||||
fh.extract_min()
|
||||
print("Min after extract:", fh.find_min().key) # Output: 2
|
||||
|
|
Loading…
Reference in New Issue
Block a user