Retried commit with base fib heap implementation2

This commit is contained in:
mcawezome 2024-11-21 22:10:25 +11:00
parent c4516d1dfc
commit 144030aed1

View File

@ -1,357 +1,178 @@
"""
Fibonacci Heap
A more efficient priority queue implementation that provides amortized time bounds
that are better than those of the binary and binomial heaps.
reference: https://en.wikipedia.org/wiki/Fibonacci_heap
import math
Operations supported:
- Insert: O(1) amortized
- Find minimum: O(1)
- Delete minimum: O(log n) amortized
- Decrease key: O(1) amortized
- Merge: O(1)
"""
class Node:
"""
A node in a Fibonacci heap.
Args:
val: The value stored in the node.
Attributes:
val: The value stored in the node.
parent: Reference to parent node.
child: Reference to one child node.
left: Reference to left sibling.
right: Reference to right sibling.
degree: Number of children.
mark: Boolean indicating if node has lost a child.
"""
def __init__(self, val):
self.val = val
class FibonacciHeapNode:
def __init__(self, key, value=None):
self.key = key
self.value = value
self.degree = 0
self.parent = None
self.child = None
self.left = self
self.right = self
self.degree = 0
self.mark = False
def add_sibling(self, node):
"""
Adds a node as a sibling to the current node.
Args:
node: The node to add as a sibling.
"""
node.left = self
node.right = self.right
self.right.left = node
self.right = node
self.next = self
self.prev = self
def add_child(self, node):
"""
Adds a node as a child of the current node.
Args:
node: The node to add as a child.
"""
node.parent = self
if not self.child:
self.child = node
else:
self.child.add_sibling(node)
node.prev = self.child
node.next = self.child.next
self.child.next.prev = node
self.child.next = node
node.parent = self
self.degree += 1
def remove(self):
"""Removes this node from its sibling list."""
self.left.right = self.right
self.right.left = self.left
def remove_child(self, node):
if node.next == node: # Single child
self.child = None
elif self.child == node:
self.child = node.next
node.prev.next = node.next
node.next.prev = node.prev
node.parent = None
self.degree -= 1
class FibonacciHeap:
"""
A Fibonacci heap implementation providing
amortized efficient priority queue operations.
This implementation provides the following time complexities:
- Insert: O(1) amortized
- Find minimum: O(1)
- Delete minimum: O(log n) amortized
- Decrease key: O(1) amortized
- Merge: O(1)
Example:
>>> heap = FibonacciHeap()
>>> node1 = heap.insert(3)
>>> node2 = heap.insert(2)
>>> node3 = heap.insert(15)
>>> heap.peek()
2
>>> heap.delete_min()
2
>>> heap.peek()
3
>>> other_heap = FibonacciHeap()
>>> node4 = other_heap.insert(1)
>>> heap.merge_heaps(other_heap)
>>> heap.peek()
1
"""
def __init__(self):
"""Initializes an empty Fibonacci heap."""
self.min_node = None
self.size = 0
self.total_nodes = 0
def is_empty(self):
"""
Checks if the heap is empty.
Returns:
bool: True if heap is empty, False otherwise.
"""
return self.min_node is None
def insert(self, val):
"""
Inserts a new value into the heap.
Args:
val: Value to insert.
Returns:
Node: The newly created node.
"""
node = Node(val)
if not self.min_node:
def insert(self, key, value=None):
node = FibonacciHeapNode(key, value)
self._merge_with_root_list(node)
if not self.min_node or node.key < self.min_node.key:
self.min_node = node
else:
self.min_node.add_sibling(node)
if node.val < self.min_node.val:
self.min_node = node
self.size += 1
self.total_nodes += 1
return node
def peek(self):
"""
Returns the minimum value without removing it.
def find_min(self):
return self.min_node
Returns:
The minimum value in the heap.
Raises:
IndexError: If the heap is empty.
"""
def union(self, other_heap):
if not other_heap.min_node:
return self
if not self.min_node:
raise IndexError("Heap is empty")
return self.min_node.val
def merge_heaps(self, other):
"""
Merges another Fibonacci heap into this one.
Args:
other: Another FibonacciHeap instance to merge with this one.
"""
if not other.min_node:
return
if not self.min_node:
self.min_node = other.min_node
self.min_node = other_heap.min_node
else:
# Merge root lists
self.min_node.right.left = other.min_node.left
other.min_node.left.right = self.min_node.right
self.min_node.right = other.min_node
other.min_node.left = self.min_node
self._merge_with_root_list(other_heap.min_node)
if other_heap.min_node.key < self.min_node.key:
self.min_node = other_heap.min_node
self.total_nodes += other_heap.total_nodes
if other.min_node.val < self.min_node.val:
self.min_node = other.min_node
def extract_min(self):
z = self.min_node
if z:
if z.child:
children = list(self._iterate(z.child))
for child in children:
self._merge_with_root_list(child)
child.parent = None
self._remove_from_root_list(z)
if z == z.next:
self.min_node = None
else:
self.min_node = z.next
self._consolidate()
self.total_nodes -= 1
return z
self.size += other.size
def decrease_key(self, x, new_key):
if new_key > x.key:
raise ValueError("New key is greater than current key")
x.key = new_key
y = x.parent
if y and x.key < y.key:
self._cut(x, y)
self._cascading_cut(y)
if x.key < self.min_node.key:
self.min_node = x
def __link_trees(self, node1, node2):
"""
Links two trees of same degree.
def delete(self, x):
self.decrease_key(x, -math.inf)
self.extract_min()
Args:
node1: First tree's root node.
node2: Second tree's root node.
"""
node1.remove()
if node2.child:
node2.child.add_sibling(node1)
else:
node2.child = node1
node1.parent = node2
node2.degree += 1
node1.mark = False
def _cut(self, x, y):
y.remove_child(x)
self._merge_with_root_list(x)
x.mark = False
def delete_min(self):
"""
Removes and returns the minimum value from the heap.
def _cascading_cut(self, y):
if z := y.parent:
if not y.mark:
y.mark = True
else:
self._cut(y, z)
self._cascading_cut(z)
Returns:
The minimum value that was removed.
Raises:
IndexError: If the heap is empty.
"""
def _merge_with_root_list(self, node):
if not self.min_node:
raise IndexError("Heap is empty")
self.min_node = node
else:
node.prev = self.min_node
node.next = self.min_node.next
self.min_node.next.prev = node
self.min_node.next = node
min_val = self.min_node.val
# Add all children to root list
if self.min_node.child:
curr = self.min_node.child
while True:
next_node = curr.right
curr.parent = None
curr.mark = False
self.min_node.add_sibling(curr)
if curr.right == self.min_node.child:
break
curr = next_node
# Remove minimum node
if self.min_node.right == self.min_node:
def _remove_from_root_list(self, node):
if node.next == node:
self.min_node = None
else:
self.min_node.remove()
self.min_node = self.min_node.right
self.__consolidate()
node.prev.next = node.next
node.next.prev = node.prev
self.size -= 1
return min_val
def _consolidate(self):
array_size = int(math.log(self.total_nodes) * 2) + 1
array = [None] * array_size
nodes = list(self._iterate(self.min_node))
for w in nodes:
x = w
d = x.degree
while array[d]:
y = array[d]
if x.key > y.key:
x, y = y, x
self._link(y, x)
array[d] = None
d += 1
array[d] = x
self.min_node = None
for i in range(array_size):
if array[i]:
if not self.min_node:
self.min_node = array[i]
else:
self._merge_with_root_list(array[i])
if array[i].key < self.min_node.key:
self.min_node = array[i]
def __consolidate(self):
"""
Consolidates the trees in the heap after a delete_min operation.
def _link(self, y, x):
self._remove_from_root_list(y)
x.add_child(y)
y.mark = False
This is an internal method that maintains the heap's structure.
"""
max_degree = int(self.size ** 0.5) + 1
degree_table = [None] * max_degree
# Collect all roots
roots = []
curr = self.min_node
def _iterate(self, start):
node = start
while True:
roots.append(curr)
curr = curr.right
if curr == self.min_node:
yield node
node = node.next
if node == start:
break
# Consolidate trees
for root in roots:
degree = root.degree
while degree_table[degree]:
other = degree_table[degree]
if root.val > other.val:
root, other = other, root
self.__link_trees(other, root)
degree_table[degree] = None
degree += 1
degree_table[degree] = root
# Find new minimum
self.min_node = None
for degree in range(max_degree):
if degree_table[degree]:
if not self.min_node:
self.min_node = degree_table[degree]
self.min_node.left = self.min_node
self.min_node.right = self.min_node
else:
self.min_node.add_sibling(degree_table[degree])
if degree_table[degree].val < self.min_node.val:
self.min_node = degree_table[degree]
def decrease_key(self, node, new_val):
"""
Decreases the value of a node.
Args:
node: The node whose value should be decreased.
new_val: The new value for the node.
Raises:
ValueError: If new value is greater than current value.
"""
if new_val > node.val:
raise ValueError("New value is greater than current value")
node.val = new_val
parent = node.parent
if parent and node.val < parent.val:
self.__cut(node, parent)
self.__cascading_cut(parent)
if node.val < self.min_node.val:
self.min_node = node
def __cut(self, node, parent):
"""
Cuts a node from its parent
Args:
node: Node to be cut.
parent: Parent of the node to be cut.
"""
parent.degree -= 1
if parent.child == node:
parent.child = node.right if node.right != node else None
node.remove()
node.left = node
node.right = node
node.parent = None
node.mark = False
self.min_node.add_sibling(node)
def __cascading_cut(self, node):
"""
Performs cascading cut operation.
Args:
node: Starting node for cascading cut.
"""
parent = node.parent
if parent:
if not node.mark:
node.mark = True
else:
self.__cut(node, parent)
self.__cascading_cut(parent)
def __str__(self):
"""
Returns a string representation of the heap.
Returns:
str: A string showing the heap structure.
"""
if not self.min_node:
return "Empty heap"
def print_tree(node, level=0):
result = []
curr = node
while True:
result.append("-" * level + str(curr.val))
if curr.child:
result.extend(print_tree(curr.child, level + 1))
curr = curr.right
if curr == node:
break
return result
return "\n".join(print_tree(self.min_node))
# Example usage
if __name__ == "__main__":
import doctest
doctest.testmod()
fh = FibonacciHeap()
n1 = fh.insert(10, "value1")
n2 = fh.insert(2, "value2")
n3 = fh.insert(15, "value3")
print("Min:", fh.find_min().key) # Output: 2
fh.decrease_key(n3, 1)
print("Min after decrease key:", fh.find_min().key) # Output: 1
fh.extract_min()
print("Min after extract:", fh.find_min().key) # Output: 2