Add doctests to interpolation_search.py (#11492)

* Add doctests to interpolation_search.py

* update docs

* update tests

* update tests 2

* clean code
This commit is contained in:
Ihor Pryyma 2024-07-25 18:56:31 +03:00 committed by GitHub
parent d9ded0727a
commit 146800307c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -3,13 +3,41 @@ This is pure Python implementation of interpolation search algorithm
"""
def interpolation_search(sorted_collection, item):
"""Pure implementation of interpolation search algorithm in Python
Be careful collection must be ascending sorted, otherwise result will be
unpredictable
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
def interpolation_search(sorted_collection: list[int], item: int) -> int | None:
"""
Searches for an item in a sorted collection by interpolation search algorithm.
Args:
sorted_collection: sorted list of integers
item: item value to search
Returns:
int: The index of the found item, or None if the item is not found.
Examples:
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([1, 2, 3, 4, 5], 4)
3
>>> interpolation_search([1, 2, 3, 4, 5], 6) is None
True
>>> interpolation_search([], 1) is None
True
>>> interpolation_search([100], 100)
0
>>> interpolation_search([1, 2, 3, 4, 5], 0) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 7) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([1, 2, 3, 4, 5], 0) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 7) is None
True
>>> interpolation_search([1, 2, 3, 4, 5], 2)
1
>>> interpolation_search([5, 5, 5, 5, 5], 3) is None
True
"""
left = 0
right = len(sorted_collection) - 1
@ -19,7 +47,6 @@ def interpolation_search(sorted_collection, item):
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
point = left + ((item - sorted_collection[left]) * (right - left)) // (
@ -33,7 +60,7 @@ def interpolation_search(sorted_collection, item):
current_item = sorted_collection[point]
if current_item == item:
return point
elif point < left:
if point < left:
right = left
left = point
elif point > right:
@ -46,21 +73,41 @@ def interpolation_search(sorted_collection, item):
return None
def interpolation_search_by_recursion(sorted_collection, item, left, right):
def interpolation_search_by_recursion(
sorted_collection: list[int], item: int, left: int = 0, right: int | None = None
) -> int | None:
"""Pure implementation of interpolation search algorithm in Python by recursion
Be careful collection must be ascending sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some ascending sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
"""
Args:
sorted_collection: some sorted collection with comparable items
item: item value to search
left: left index in collection
right: right index in collection
Returns:
index of item in collection or None if item is not present
Examples:
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 0)
0
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 15)
4
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 5)
1
>>> interpolation_search_by_recursion([0, 5, 7, 10, 15], 100) is None
True
>>> interpolation_search_by_recursion([5, 5, 5, 5, 5], 3) is None
True
"""
if right is None:
right = len(sorted_collection) - 1
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
point = left + ((item - sorted_collection[left]) * (right - left)) // (
@ -73,64 +120,18 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right):
if sorted_collection[point] == item:
return point
elif point < left:
if point < left:
return interpolation_search_by_recursion(sorted_collection, item, point, left)
elif point > right:
if point > right:
return interpolation_search_by_recursion(sorted_collection, item, right, left)
elif sorted_collection[point] > item:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
sorted_collection, item, left, point - 1
)
else:
return interpolation_search_by_recursion(
sorted_collection, item, point + 1, right
)
def __assert_sorted(collection):
"""Check if collection is ascending sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is ascending sorted
:raise: :py:class:`ValueError` if collection is not ascending sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be ascending sorted
"""
if collection != sorted(collection):
raise ValueError("Collection must be ascending sorted")
return True
return interpolation_search_by_recursion(sorted_collection, item, point + 1, right)
if __name__ == "__main__":
import sys
import doctest
"""
user_input = input('Enter numbers separated by comma:\n').strip()
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be ascending sorted to apply interpolation search')
target_input = input('Enter a single number to be found in the list:\n')
target = int(target_input)
"""
debug = 0
if debug == 1:
collection = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
target = 67
result = interpolation_search(collection, target)
if result is not None:
print(f"{target} found at positions: {result}")
else:
print("Not found")
doctest.testmod()