mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
create qr_decomposition (#1363)
This commit is contained in:
parent
28b964c9b5
commit
14c23bc847
71
maths/qr_decomposition.py
Normal file
71
maths/qr_decomposition.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def qr_householder(A):
|
||||
"""Return a QR-decomposition of the matrix A using Householder reflection.
|
||||
|
||||
The QR-decomposition decomposes the matrix A of shape (m, n) into an
|
||||
orthogonal matrix Q of shape (m, m) and an upper triangular matrix R of
|
||||
shape (m, n). Note that the matrix A does not have to be square. This
|
||||
method of decomposing A uses the Householder reflection, which is
|
||||
numerically stable and of complexity O(n^3).
|
||||
|
||||
https://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections
|
||||
|
||||
Arguments:
|
||||
A -- a numpy.ndarray of shape (m, n)
|
||||
|
||||
Note: several optimizations can be made for numeric efficiency, but this is
|
||||
intended to demonstrate how it would be represented in a mathematics
|
||||
textbook. In cases where efficiency is particularly important, an optimized
|
||||
version from BLAS should be used.
|
||||
|
||||
>>> A = np.array([[12, -51, 4], [6, 167, -68], [-4, 24, -41]], dtype=float)
|
||||
>>> Q, R = qr_householder(A)
|
||||
|
||||
>>> # check that the decomposition is correct
|
||||
>>> np.allclose(Q@R, A)
|
||||
True
|
||||
|
||||
>>> # check that Q is orthogonal
|
||||
>>> np.allclose(Q@Q.T, np.eye(A.shape[0]))
|
||||
True
|
||||
>>> np.allclose(Q.T@Q, np.eye(A.shape[0]))
|
||||
True
|
||||
|
||||
>>> # check that R is upper triangular
|
||||
>>> np.allclose(np.triu(R), R)
|
||||
True
|
||||
"""
|
||||
m, n = A.shape
|
||||
t = min(m, n)
|
||||
Q = np.eye(m)
|
||||
R = A.copy()
|
||||
|
||||
for k in range(t - 1):
|
||||
# select a column of modified matrix A':
|
||||
x = R[k:, [k]]
|
||||
# construct first basis vector
|
||||
e1 = np.zeros_like(x)
|
||||
e1[0] = 1.0
|
||||
# determine scaling factor
|
||||
alpha = np.linalg.norm(x)
|
||||
# construct vector v for Householder reflection
|
||||
v = x + np.sign(x[0])*alpha*e1
|
||||
v /= np.linalg.norm(v)
|
||||
|
||||
# construct the Householder matrix
|
||||
Q_k = np.eye(m - k) - 2.0*v@v.T
|
||||
# pad with ones and zeros as necessary
|
||||
Q_k = np.block([[np.eye(k), np.zeros((k, m - k))],
|
||||
[np.zeros((m - k, k)), Q_k ]])
|
||||
|
||||
Q = Q@Q_k.T
|
||||
R = Q_k@R
|
||||
|
||||
return Q, R
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user