mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Update levenshtein_distance.py (#11171)
* Update levenshtein_distance.py * Update levenshtein_distance.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update levenshtein_distance.py * Update levenshtein_distance.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update levenshtein_distance.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update levenshtein_distance.py * Update levenshtein_distance.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
84a1533fd5
commit
154e5e8681
|
@ -1,20 +1,9 @@
|
|||
"""
|
||||
This is a Python implementation of the levenshtein distance.
|
||||
Levenshtein distance is a string metric for measuring the
|
||||
difference between two sequences.
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v levenshtein-distance.py
|
||||
or
|
||||
python3 -m doctest -v levenshtein-distance.py
|
||||
|
||||
For manual testing run:
|
||||
python levenshtein-distance.py
|
||||
"""
|
||||
from collections.abc import Callable
|
||||
|
||||
|
||||
def levenshtein_distance(first_word: str, second_word: str) -> int:
|
||||
"""Implementation of the levenshtein distance in Python.
|
||||
"""
|
||||
Implementation of the Levenshtein distance in Python.
|
||||
:param first_word: the first word to measure the difference.
|
||||
:param second_word: the second word to measure the difference.
|
||||
:return: the levenshtein distance between the two words.
|
||||
|
@ -47,7 +36,7 @@ def levenshtein_distance(first_word: str, second_word: str) -> int:
|
|||
current_row = [i + 1]
|
||||
|
||||
for j, c2 in enumerate(second_word):
|
||||
# Calculate insertions, deletions and substitutions
|
||||
# Calculate insertions, deletions, and substitutions
|
||||
insertions = previous_row[j + 1] + 1
|
||||
deletions = current_row[j] + 1
|
||||
substitutions = previous_row[j] + (c1 != c2)
|
||||
|
@ -62,9 +51,75 @@ def levenshtein_distance(first_word: str, second_word: str) -> int:
|
|||
return previous_row[-1]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
first_word = input("Enter the first word:\n").strip()
|
||||
second_word = input("Enter the second word:\n").strip()
|
||||
def levenshtein_distance_optimized(first_word: str, second_word: str) -> int:
|
||||
"""
|
||||
Compute the Levenshtein distance between two words (strings).
|
||||
The function is optimized for efficiency by modifying rows in place.
|
||||
:param first_word: the first word to measure the difference.
|
||||
:param second_word: the second word to measure the difference.
|
||||
:return: the Levenshtein distance between the two words.
|
||||
Examples:
|
||||
>>> levenshtein_distance_optimized("planet", "planetary")
|
||||
3
|
||||
>>> levenshtein_distance_optimized("", "test")
|
||||
4
|
||||
>>> levenshtein_distance_optimized("book", "back")
|
||||
2
|
||||
>>> levenshtein_distance_optimized("book", "book")
|
||||
0
|
||||
>>> levenshtein_distance_optimized("test", "")
|
||||
4
|
||||
>>> levenshtein_distance_optimized("", "")
|
||||
0
|
||||
>>> levenshtein_distance_optimized("orchestration", "container")
|
||||
10
|
||||
"""
|
||||
if len(first_word) < len(second_word):
|
||||
return levenshtein_distance_optimized(second_word, first_word)
|
||||
|
||||
result = levenshtein_distance(first_word, second_word)
|
||||
print(f"Levenshtein distance between {first_word} and {second_word} is {result}")
|
||||
if len(second_word) == 0:
|
||||
return len(first_word)
|
||||
|
||||
previous_row = list(range(len(second_word) + 1))
|
||||
|
||||
for i, c1 in enumerate(first_word):
|
||||
current_row = [i + 1] + [0] * len(second_word)
|
||||
|
||||
for j, c2 in enumerate(second_word):
|
||||
insertions = previous_row[j + 1] + 1
|
||||
deletions = current_row[j] + 1
|
||||
substitutions = previous_row[j] + (c1 != c2)
|
||||
current_row[j + 1] = min(insertions, deletions, substitutions)
|
||||
|
||||
previous_row = current_row
|
||||
|
||||
return previous_row[-1]
|
||||
|
||||
|
||||
def benchmark_levenshtein_distance(func: Callable) -> None:
|
||||
"""
|
||||
Benchmark the Levenshtein distance function.
|
||||
:param str: The name of the function being benchmarked.
|
||||
:param func: The function to be benchmarked.
|
||||
"""
|
||||
from timeit import timeit
|
||||
|
||||
stmt = f"{func.__name__}('sitting', 'kitten')"
|
||||
setup = f"from __main__ import {func.__name__}"
|
||||
number = 25_000
|
||||
result = timeit(stmt=stmt, setup=setup, number=number)
|
||||
print(f"{func.__name__:<30} finished {number:,} runs in {result:.5f} seconds")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Get user input for words
|
||||
first_word = input("Enter the first word for Levenshtein distance:\n").strip()
|
||||
second_word = input("Enter the second word for Levenshtein distance:\n").strip()
|
||||
|
||||
# Calculate and print Levenshtein distances
|
||||
print(f"{levenshtein_distance(first_word, second_word) = }")
|
||||
print(f"{levenshtein_distance_optimized(first_word, second_word) = }")
|
||||
|
||||
# Benchmark the Levenshtein distance functions
|
||||
benchmark_levenshtein_distance(levenshtein_distance)
|
||||
benchmark_levenshtein_distance(levenshtein_distance_optimized)
|
||||
|
|
Loading…
Reference in New Issue
Block a user