diff --git a/linear_algebra/src/python-polynom-for-points.py b/linear_algebra/src/python-polynom-for-points.py new file mode 100644 index 000000000..c884416b6 --- /dev/null +++ b/linear_algebra/src/python-polynom-for-points.py @@ -0,0 +1,130 @@ +def points_to_polynomial(coordinates): + """ + coordinates is a two dimensional matrix: [[x, y], [x, y], ...] + number of points you want to use + + >>> print(points_to_polynomial([])) + The program cannot work out a fitting polynomial. + >>> print(points_to_polynomial([[]])) + The program cannot work out a fitting polynomial. + >>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*1.0 + >>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) + f(x)=x^2*0.0+x^1*-0.0+x^0*3.0 + >>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) + f(x)=x^2*0.0+x^1*1.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) + f(x)=x^2*1.0+x^1*-0.0+x^0*0.0 + >>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) + f(x)=x^2*1.0+x^1*-0.0+x^0*2.0 + >>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) + f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0 + >>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]])) + f(x)=x^2*5.0+x^1*-18.0+x^0*18.0 + """ + try: + check = 1 + more_check = 0 + d = coordinates[0][0] + for j in range(len(coordinates)): + if j == 0: + continue + if d == coordinates[j][0]: + more_check += 1 + solved = "x=" + str(coordinates[j][0]) + if more_check == len(coordinates) - 1: + check = 2 + break + elif more_check > 0 and more_check != len(coordinates) - 1: + check = 3 + else: + check = 1 + + if len(coordinates) == 1 and coordinates[0][0] == 0: + check = 2 + solved = "x=0" + except Exception: + check = 3 + + x = len(coordinates) + + if check == 1: + count_of_line = 0 + matrix = [] + # put the x and x to the power values in a matrix + while count_of_line < x: + count_in_line = 0 + a = coordinates[count_of_line][0] + count_line = [] + while count_in_line < x: + count_line.append(a ** (x - (count_in_line + 1))) + count_in_line += 1 + matrix.append(count_line) + count_of_line += 1 + + count_of_line = 0 + # put the y values into a vector + vector = [] + while count_of_line < x: + count_in_line = 0 + vector.append(coordinates[count_of_line][1]) + count_of_line += 1 + + count = 0 + + while count < x: + zahlen = 0 + while zahlen < x: + if count == zahlen: + zahlen += 1 + if zahlen == x: + break + bruch = (matrix[zahlen][count]) / (matrix[count][count]) + for counting_columns, item in enumerate(matrix[count]): + # manipulating all the values in the matrix + matrix[zahlen][counting_columns] -= item * bruch + # manipulating the values in the vector + vector[zahlen] -= vector[count] * bruch + zahlen += 1 + count += 1 + + count = 0 + # make solutions + solution = [] + while count < x: + solution.append(vector[count] / matrix[count][count]) + count += 1 + + count = 0 + solved = "f(x)=" + + while count < x: + remove_e = str(solution[count]).split("E") + if len(remove_e) > 1: + solution[count] = remove_e[0] + "*10^" + remove_e[1] + solved += "x^" + str(x - (count + 1)) + "*" + str(solution[count]) + if count + 1 != x: + solved += "+" + count += 1 + + return solved + + elif check == 2: + return solved + else: + return "The program cannot work out a fitting polynomial." + + +if __name__ == "__main__": + print(points_to_polynomial([])) + print(points_to_polynomial([[]])) + print(points_to_polynomial([[1, 0], [2, 0], [3, 0]])) + print(points_to_polynomial([[1, 1], [2, 1], [3, 1]])) + print(points_to_polynomial([[1, 3], [2, 3], [3, 3]])) + print(points_to_polynomial([[1, 1], [2, 2], [3, 3]])) + print(points_to_polynomial([[1, 1], [2, 4], [3, 9]])) + print(points_to_polynomial([[1, 3], [2, 6], [3, 11]])) + print(points_to_polynomial([[1, -3], [2, -6], [3, -11]])) + print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))