mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Added Linear regression
This commit is contained in:
parent
fb20f96e66
commit
1727d79d97
108
machine_learning/linear_regression.py
Normal file
108
machine_learning/linear_regression.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
"""
|
||||
Linear regression is the most basic type of regression commonly used for
|
||||
predictive analysis. The idea is preety simple, we have a dataset and we have
|
||||
a feature's associated with it. The Features should be choose very cautiously
|
||||
as they determine, how much our model will be able to make future predictions.
|
||||
We try to set these Feature weights, over many iterations, so that they best
|
||||
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
|
||||
Rating). We try to best fit a line through dataset and estimate the parameters.
|
||||
"""
|
||||
|
||||
import requests
|
||||
import numpy as np
|
||||
|
||||
|
||||
def collect_dataset():
|
||||
""" Collect dataset of CSGO
|
||||
The dataset contains ADR vs Rating of a Player
|
||||
:return : dataset obtained from the link, as matrix
|
||||
"""
|
||||
response = requests.get('https://raw.githubusercontent.com/yashLadha/' +
|
||||
'The_Math_of_Intelligence/master/Week1/ADRvs' +
|
||||
'Rating.csv')
|
||||
lines = response.text.splitlines()
|
||||
data = []
|
||||
for item in lines:
|
||||
item = item.split(',')
|
||||
data.append(item)
|
||||
data.pop(0) # This is for removing the labels from the list
|
||||
dataset = np.matrix(data)
|
||||
return dataset
|
||||
|
||||
|
||||
def run_steep_gradient_descent(data_x, data_y,
|
||||
len_data, alpha, theta):
|
||||
""" Run steep gradient descent and updates the Feature vector accordingly_
|
||||
:param data_x : contains the dataset
|
||||
:param data_y : contains the output associated with each data-entry
|
||||
:param len_data : length of the data_
|
||||
:param alpha : Learning rate of the model
|
||||
:param theta : Feature vector (weight's for our model)
|
||||
;param return : Updated Feature's, using
|
||||
curr_features - alpha_ * gradient(w.r.t. feature)
|
||||
"""
|
||||
n = len_data
|
||||
|
||||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_grad = np.dot(prod, data_x)
|
||||
theta = theta - (alpha / n) * sum_grad
|
||||
return theta
|
||||
|
||||
|
||||
def sum_of_square_error(data_x, data_y, len_data, theta):
|
||||
""" Return sum of square error for error calculation
|
||||
:param data_x : contains our dataset
|
||||
:param data_y : contains the output (result vector)
|
||||
:param len_data : len of the dataset
|
||||
:param theta : contains the feature vector
|
||||
:return : sum of square error computed from given feature's
|
||||
"""
|
||||
error = 0.0
|
||||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_elem = np.sum(np.square(prod))
|
||||
error = sum_elem / (2 * len_data)
|
||||
return error
|
||||
|
||||
|
||||
def run_linear_regression(data_x, data_y):
|
||||
""" Implement Linear regression over the dataset
|
||||
:param data_x : contains our dataset
|
||||
:param data_y : contains the output (result vector)
|
||||
:return : feature for line of best fit (Feature vector)
|
||||
"""
|
||||
iterations = 100000
|
||||
alpha = 0.0001550
|
||||
|
||||
no_features = data_x.shape[1]
|
||||
len_data = data_x.shape[0] - 1
|
||||
|
||||
theta = np.zeros((1, no_features))
|
||||
|
||||
for i in range(0, iterations):
|
||||
theta = run_steep_gradient_descent(data_x, data_y,
|
||||
len_data, alpha, theta)
|
||||
error = sum_of_square_error(data_x, data_y, len_data, theta)
|
||||
print('At Iteration %d - Error is %.5f ' % (i + 1, error))
|
||||
|
||||
return theta
|
||||
|
||||
|
||||
def main():
|
||||
""" Driver function """
|
||||
data = collect_dataset()
|
||||
|
||||
len_data = data.shape[0]
|
||||
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
|
||||
data_y = data[:, -1].astype(float)
|
||||
|
||||
theta = run_linear_regression(data_x, data_y)
|
||||
len_result = theta.shape[1]
|
||||
print('Resultant Feature vector : ')
|
||||
for i in range(0, len_result):
|
||||
print('%.5f' % (theta[0, i]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user