From 179298e3a291470ef30e850f23d98c2fb9055202 Mon Sep 17 00:00:00 2001 From: Christian Clauss Date: Sat, 8 Apr 2023 02:52:26 +0200 Subject: [PATCH] Revert "Add LeNet Implementation in PyTorch (#7070)" (#8621) This reverts commit b2b8585e63664a0c7aa18b95528e345c2738c4ae. --- computer_vision/lenet_pytorch.py | 82 -------------------------------- requirements.txt | 1 - 2 files changed, 83 deletions(-) delete mode 100644 computer_vision/lenet_pytorch.py diff --git a/computer_vision/lenet_pytorch.py b/computer_vision/lenet_pytorch.py deleted file mode 100644 index 177a5ebfc..000000000 --- a/computer_vision/lenet_pytorch.py +++ /dev/null @@ -1,82 +0,0 @@ -""" -LeNet Network - -Paper: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf -""" - -import numpy -import torch -import torch.nn as nn - - -class LeNet(nn.Module): - def __init__(self) -> None: - super().__init__() - - self.tanh = nn.Tanh() - self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) - - self.conv1 = nn.Conv2d( - in_channels=1, - out_channels=6, - kernel_size=(5, 5), - stride=(1, 1), - padding=(0, 0), - ) - self.conv2 = nn.Conv2d( - in_channels=6, - out_channels=16, - kernel_size=(5, 5), - stride=(1, 1), - padding=(0, 0), - ) - self.conv3 = nn.Conv2d( - in_channels=16, - out_channels=120, - kernel_size=(5, 5), - stride=(1, 1), - padding=(0, 0), - ) - - self.linear1 = nn.Linear(120, 84) - self.linear2 = nn.Linear(84, 10) - - def forward(self, image_array: numpy.ndarray) -> numpy.ndarray: - image_array = self.tanh(self.conv1(image_array)) - image_array = self.avgpool(image_array) - image_array = self.tanh(self.conv2(image_array)) - image_array = self.avgpool(image_array) - image_array = self.tanh(self.conv3(image_array)) - - image_array = image_array.reshape(image_array.shape[0], -1) - image_array = self.tanh(self.linear1(image_array)) - image_array = self.linear2(image_array) - return image_array - - -def test_model(image_tensor: torch.tensor) -> bool: - """ - Test the model on an input batch of 64 images - - Args: - image_tensor (torch.tensor): Batch of Images for the model - - >>> test_model(torch.randn(64, 1, 32, 32)) - True - - """ - try: - model = LeNet() - output = model(image_tensor) - except RuntimeError: - return False - - return output.shape == torch.zeros([64, 10]).shape - - -if __name__ == "__main__": - random_image_1 = torch.randn(64, 1, 32, 32) - random_image_2 = torch.randn(1, 32, 32) - - print(f"random_image_1 Model Passed: {test_model(random_image_1)}") - print(f"\nrandom_image_2 Model Passed: {test_model(random_image_2)}") diff --git a/requirements.txt b/requirements.txt index e159fe010..acfbc823e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -17,7 +17,6 @@ statsmodels sympy tensorflow texttable -torch tweepy xgboost yulewalker