shubhamvk03

This commit is contained in:
shubhamvk03 2024-09-03 21:38:16 +05:30
parent 8ff00a8b36
commit 17ab8364ce

View File

@ -107,14 +107,12 @@ class Node:
"""
>>> list(Node(0))
[0]
>>> list(Node(0, Node(-1), Node(1)))
>>> list(Node(0, Node(-1), Node(1), None))
[-1, 0, 1]
"""
if self.left:
yield from self.left
yield from self.left or []
yield self.value
if self.right:
yield from self.right
yield from self.right or []
def __repr__(self) -> str:
from pprint import pformat
@ -145,10 +143,10 @@ class BinarySearchTree:
return str(self.root)
def __reassign_nodes(self, node: Node, new_children: Node | None) -> None:
if new_children is not None:
if new_children is not None: # reset its kids
new_children.parent = node.parent
if node.parent is not None:
if node.is_right:
if node.parent is not None: # reset its parent
if node.is_right: # If it is the right child
node.parent.right = new_children
else:
node.parent.left = new_children
@ -169,37 +167,37 @@ class BinarySearchTree:
"""
return not self.root
def __insert(self, value: int) -> None:
def __insert(self, value) -> None:
"""
Insert a new node in Binary Search Tree with value label
"""
new_node = Node(value)
if self.empty():
self.root = new_node
else:
parent_node = self.root
while True:
if value < parent_node.value:
new_node = Node(value) # create a new Node
if self.empty(): # if Tree is empty
self.root = new_node # set its root
else: # Tree is not empty
parent_node = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
parent_node.left = new_node
new_node.parent = parent_node
parent_node.left = new_node # We insert the new node in a leaf
break
else:
parent_node = parent_node.left
else:
if parent_node.right is None:
elif parent_node.right is None:
parent_node.right = new_node
new_node.parent = parent_node
break
else:
parent_node = parent_node.right
new_node.parent = parent_node
def insert(self, *values: int) -> Self:
def insert(self, *values) -> Self:
for value in values:
self.__insert(value)
return self
def search(self, value: int) -> Node | None:
def search(self, value) -> Node | None:
"""
>>> tree = BinarySearchTree().insert(10, 20, 30, 40, 50)
>>> tree.search(10)
@ -223,10 +221,13 @@ class BinarySearchTree:
...
IndexError: Warning: Tree is empty! please use another.
"""
if self.empty():
raise IndexError("Warning: Tree is empty! please use another.")
else:
node = self.root
while node is not None and node.value != value:
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
node = node.left if value < node.value else node.right
return node
@ -236,17 +237,19 @@ class BinarySearchTree:
>>> BinarySearchTree().insert(10, 20, 30, 40, 50).get_max()
50
>>> BinarySearchTree().insert(-5, -1, 0, -0.3, -4.5).get_max()
{'0': (-0.3, None)}
>>> BinarySearchTree().insert(-5, -1, 0.1, -0.3, -4.5).get_max()
{'0.1': (-0.3, None)}
>>> BinarySearchTree().insert(1, 78.3, 30, 74.0, 1).get_max()
{'78.3': ({'30': (1, 74.0)}, None)}
>>> BinarySearchTree().insert(1, 783, 30, 740, 1).get_max()
{'783': ({'30': (1, 740)}, None)}
"""
if node is None:
if self.empty():
if self.root is None:
return None
node = self.root
if not self.empty():
while node.right is not None:
node = node.right
return node
@ -265,47 +268,54 @@ class BinarySearchTree:
{'1': (None, {'783': ({'30': (1, 740)}, None)})}
"""
if node is None:
if self.empty():
node = self.root
if self.root is None:
return None
if not self.empty():
node = self.root
while node.left is not None:
node = node.left
return node
def remove(self, value: int) -> None:
# Look for the node with that label
node = self.search(value)
if node is None:
raise ValueError(f"Value {value} not found")
msg = f"Value {value} not found"
raise ValueError(msg)
if node.left is None and node.right is None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(node, None)
elif node.left is None:
elif node.left is None: # Has only right children
self.__reassign_nodes(node, node.right)
elif node.right is None:
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
predecessor = self.get_max(node.left)
if predecessor:
self.remove(predecessor.value)
node.value = predecessor.value
predecessor = self.get_max(
node.left
) # Gets the max value of the left branch
self.remove(predecessor.value) # type: ignore[union-attr]
node.value = (
predecessor.value # type: ignore[union-attr]
) # Assigns the value to the node to delete and keep tree structure
def preorder_traverse(self, node: Node | None) -> Iterable[Node]:
def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
yield node
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
def traversal_tree(self, traversal_function=None) -> Any:
"""
This function traverses the tree.
You can pass a function to traverse the tree as needed by client code
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
"""
if traversal_function is None:
return list(self.preorder_traverse(self.root))
return self.preorder_traverse(self.root)
else:
return traversal_function(self.root)
def inorder(self, arr: list[int], node: Node | None) -> None:
def inorder(self, arr: list, node: Node | None) -> None:
"""Perform an inorder traversal and append values of the nodes to
a list named arr"""
if node:
@ -316,10 +326,8 @@ class BinarySearchTree:
def find_kth_smallest(self, k: int, node: Node) -> int:
"""Return the kth smallest element in a binary search tree"""
arr: list[int] = []
self.inorder(arr, node)
if 0 < k <= len(arr):
self.inorder(arr, node) # append all values to list using inorder traversal
return arr[k - 1]
raise IndexError("k is out of bounds")
def inorder(curr_node: Node | None) -> list[Node]:
@ -338,4 +346,11 @@ def postorder(curr_node: Node | None) -> list[Node]:
"""
node_list = []
if curr_node is not None:
node_list = postorder(curr_node.left)
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return node_list
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)