diff --git a/maths/trapezoidal_rule.py b/maths/trapezoidal_rule.py index 9a4ddc8af..0186629ee 100644 --- a/maths/trapezoidal_rule.py +++ b/maths/trapezoidal_rule.py @@ -5,13 +5,25 @@ This method is the classical approach of suming 'Equally Spaced Abscissas' method 1: "extended trapezoidal rule" +int(f) = dx/2 * (f1 + 2f2 + ... + fn) """ def method_1(boundary, steps): - # "extended trapezoidal rule" - # int(f) = dx/2 * (f1 + 2f2 + ... + fn) + """ + Apply the extended trapezoidal rule to approximate the integral of function f(x) + over the interval defined by 'boundary' with the number of 'steps'. + + Args: + boundary (list of floats): A list containing the start and end values [a, b]. + steps (int): The number of steps or subintervals. + Returns: + float: Approximation of the integral of f(x) over [a, b]. + Examples: + >>> method_1([0, 1], 10) + 0.3349999999999999 + """ h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] @@ -26,13 +38,40 @@ def method_1(boundary, steps): def make_points(a, b, h): + """ + Generates points between 'a' and 'b' with step size 'h', excluding the end points. + Args: + a (float): Start value + b (float): End value + h (float): Step size + Examples: + >>> list(make_points(0, 10, 2.5)) + [2.5, 5.0, 7.5] + + >>> list(make_points(0, 10, 2)) + [2, 4, 6, 8] + + >>> list(make_points(1, 21, 5)) + [6, 11, 16] + + >>> list(make_points(1, 5, 2)) + [3] + + >>> list(make_points(1, 4, 3)) + [] + """ x = a + h - while x < (b - h): + while x <= (b - h): yield x x = x + h def f(x): # enter your function here + """ + Example: + >>> f(2) + 4 + """ y = (x - 0) * (x - 0) return y @@ -47,4 +86,7 @@ def main(): if __name__ == "__main__": + import doctest + + doctest.testmod() main()