mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Mean absolute error (#10927)
* added mean absolute error to loss_functions.py * added doctest to mean absolute error to loss_functions.py * fixed long line in loss_functions.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed error in MAE * Update machine_learning/loss_functions.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
0e7f8284a3
commit
1a5d5cf93d
|
@ -261,6 +261,43 @@ def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|||
return np.mean(squared_errors)
|
||||
|
||||
|
||||
def mean_absolute_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculates the Mean Absolute Error (MAE) between ground truth (observed)
|
||||
and predicted values.
|
||||
|
||||
MAE measures the absolute difference between true values and predicted values.
|
||||
|
||||
Equation:
|
||||
MAE = (1/n) * Σ(abs(y_true - y_pred))
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Mean_absolute_error
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth)
|
||||
- y_pred: The predicted values
|
||||
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 0.16)
|
||||
True
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 2.16)
|
||||
False
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 5.2])
|
||||
>>> mean_absolute_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
return np.mean(abs(y_true - y_pred))
|
||||
|
||||
|
||||
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the mean squared logarithmic error (MSLE) between ground truth and
|
||||
|
|
Loading…
Reference in New Issue
Block a user