Coding style change for project_euler problem 36 and 35 (#3062)

* add problem url. Add typehint, default value and doctest

* run black

* add project url. add solution function for problem 35

* add space between imports on problem 35

* Update sol1.py

* Update sol1.py

Co-authored-by: Dhruv <dhruvmanila@gmail.com>
This commit is contained in:
Nelson Stoik 2020-10-08 21:05:13 -06:00 committed by GitHub
parent a3bbcd5f88
commit 1c0deb88ac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 36 additions and 7 deletions

View File

@ -1,4 +1,9 @@
""" """
Project Euler Problem 35
https://projecteuler.net/problem=35
Problem Statement:
The number 197 is called a circular prime because all rotations of the digits: The number 197 is called a circular prime because all rotations of the digits:
197, 971, and 719, are themselves prime. 197, 971, and 719, are themselves prime.
There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73,
@ -65,5 +70,13 @@ def find_circular_primes(limit: int = 1000000) -> list[int]:
return result return result
def solution() -> int:
"""
>>> solution()
55
"""
return len(find_circular_primes())
if __name__ == "__main__": if __name__ == "__main__":
print(f"{len(find_circular_primes()) = }") print(f"{len(find_circular_primes()) = }")

View File

@ -1,4 +1,9 @@
""" """
Project Euler Problem 36
https://projecteuler.net/problem=36
Problem Statement:
Double-base palindromes Double-base palindromes
Problem 36 Problem 36
The decimal number, 585 = 10010010012 (binary), is palindromic in both bases. The decimal number, 585 = 10010010012 (binary), is palindromic in both bases.
@ -10,17 +15,28 @@ base 10 and base 2.
leading zeros.) leading zeros.)
""" """
from typing import Union
def is_palindrome(n):
def is_palindrome(n: Union[int, str]) -> bool:
"""
Return true if the input n is a palindrome.
Otherwise return false. n can be an integer or a string.
>>> is_palindrome(909)
True
>>> is_palindrome(908)
False
>>> is_palindrome('10101')
True
>>> is_palindrome('10111')
False
"""
n = str(n) n = str(n)
return True if n == n[::-1] else False
if n == n[::-1]:
return True
else:
return False
def solution(n): def solution(n: int = 1000000):
"""Return the sum of all numbers, less than n , which are palindromic in """Return the sum of all numbers, less than n , which are palindromic in
base 10 and base 2. base 10 and base 2.