mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Performance: 75% faster Project Euler 187 (#10503)
* Add comments and wikipedia link in calculate_prime_numbers * Add improved calculate_prime_numbers * Separate slow_solution and new_solution * Use for loops in solution * Separate while_solution and new solution * Add performance benchmark * Add doctest for calculate_prime_numbers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Removed white space --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
7dbc301818
commit
1ebae5d43e
|
@ -14,29 +14,89 @@ not necessarily distinct, prime factors?
|
|||
from math import isqrt
|
||||
|
||||
|
||||
def calculate_prime_numbers(max_number: int) -> list[int]:
|
||||
def slow_calculate_prime_numbers(max_number: int) -> list[int]:
|
||||
"""
|
||||
Returns prime numbers below max_number
|
||||
Returns prime numbers below max_number.
|
||||
See: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
|
||||
>>> calculate_prime_numbers(10)
|
||||
>>> slow_calculate_prime_numbers(10)
|
||||
[2, 3, 5, 7]
|
||||
|
||||
>>> slow_calculate_prime_numbers(2)
|
||||
[]
|
||||
"""
|
||||
|
||||
# List containing a bool value for every number below max_number/2
|
||||
is_prime = [True] * max_number
|
||||
|
||||
for i in range(2, isqrt(max_number - 1) + 1):
|
||||
if is_prime[i]:
|
||||
# Mark all multiple of i as not prime
|
||||
for j in range(i**2, max_number, i):
|
||||
is_prime[j] = False
|
||||
|
||||
return [i for i in range(2, max_number) if is_prime[i]]
|
||||
|
||||
|
||||
def solution(max_number: int = 10**8) -> int:
|
||||
def calculate_prime_numbers(max_number: int) -> list[int]:
|
||||
"""
|
||||
Returns prime numbers below max_number.
|
||||
See: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
|
||||
>>> calculate_prime_numbers(10)
|
||||
[2, 3, 5, 7]
|
||||
|
||||
>>> calculate_prime_numbers(2)
|
||||
[]
|
||||
"""
|
||||
|
||||
if max_number <= 2:
|
||||
return []
|
||||
|
||||
# List containing a bool value for every odd number below max_number/2
|
||||
is_prime = [True] * (max_number // 2)
|
||||
|
||||
for i in range(3, isqrt(max_number - 1) + 1, 2):
|
||||
if is_prime[i // 2]:
|
||||
# Mark all multiple of i as not prime using list slicing
|
||||
is_prime[i**2 // 2 :: i] = [False] * (
|
||||
# Same as: (max_number - (i**2)) // (2 * i) + 1
|
||||
# but faster than len(is_prime[i**2 // 2 :: i])
|
||||
len(range(i**2 // 2, max_number // 2, i))
|
||||
)
|
||||
|
||||
return [2] + [2 * i + 1 for i in range(1, max_number // 2) if is_prime[i]]
|
||||
|
||||
|
||||
def slow_solution(max_number: int = 10**8) -> int:
|
||||
"""
|
||||
Returns the number of composite integers below max_number have precisely two,
|
||||
not necessarily distinct, prime factors
|
||||
not necessarily distinct, prime factors.
|
||||
|
||||
>>> solution(30)
|
||||
>>> slow_solution(30)
|
||||
10
|
||||
"""
|
||||
|
||||
prime_numbers = slow_calculate_prime_numbers(max_number // 2)
|
||||
|
||||
semiprimes_count = 0
|
||||
left = 0
|
||||
right = len(prime_numbers) - 1
|
||||
while left <= right:
|
||||
while prime_numbers[left] * prime_numbers[right] >= max_number:
|
||||
right -= 1
|
||||
semiprimes_count += right - left + 1
|
||||
left += 1
|
||||
|
||||
return semiprimes_count
|
||||
|
||||
|
||||
def while_solution(max_number: int = 10**8) -> int:
|
||||
"""
|
||||
Returns the number of composite integers below max_number have precisely two,
|
||||
not necessarily distinct, prime factors.
|
||||
|
||||
>>> while_solution(30)
|
||||
10
|
||||
"""
|
||||
|
||||
|
@ -54,5 +114,49 @@ def solution(max_number: int = 10**8) -> int:
|
|||
return semiprimes_count
|
||||
|
||||
|
||||
def solution(max_number: int = 10**8) -> int:
|
||||
"""
|
||||
Returns the number of composite integers below max_number have precisely two,
|
||||
not necessarily distinct, prime factors.
|
||||
|
||||
>>> solution(30)
|
||||
10
|
||||
"""
|
||||
|
||||
prime_numbers = calculate_prime_numbers(max_number // 2)
|
||||
|
||||
semiprimes_count = 0
|
||||
right = len(prime_numbers) - 1
|
||||
for left in range(len(prime_numbers)):
|
||||
if left > right:
|
||||
break
|
||||
for r in range(right, left - 2, -1):
|
||||
if prime_numbers[left] * prime_numbers[r] < max_number:
|
||||
break
|
||||
right = r
|
||||
semiprimes_count += right - left + 1
|
||||
|
||||
return semiprimes_count
|
||||
|
||||
|
||||
def benchmark() -> None:
|
||||
"""
|
||||
Benchmarks
|
||||
"""
|
||||
# Running performance benchmarks...
|
||||
# slow_solution : 108.50874730000032
|
||||
# while_sol : 28.09581200000048
|
||||
# solution : 25.063097400000515
|
||||
|
||||
from timeit import timeit
|
||||
|
||||
print("Running performance benchmarks...")
|
||||
|
||||
print(f"slow_solution : {timeit('slow_solution()', globals=globals(), number=10)}")
|
||||
print(f"while_sol : {timeit('while_solution()', globals=globals(), number=10)}")
|
||||
print(f"solution : {timeit('solution()', globals=globals(), number=10)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
||||
print(f"Solution: {solution()}")
|
||||
benchmark()
|
||||
|
|
Loading…
Reference in New Issue
Block a user