mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Create alternate_disjoint_set.py (#2302)
* Create alternate_disjoint_set.py This code implements a disjoint set using Lists with added heuristics for efficiency Union by Rank Heuristic and Path Compression * Update alternate_disjoint_set.py Added typehints, doctests and some suggested variable name change * Update alternate_disjoint_set.py * Formatted with Black * More formatting * Formatting on line 28 * Error in Doctest * Doctest Update in alternate disjoint set * Fixed build error * Fixed doctest
This commit is contained in:
parent
5ef784331e
commit
1f5134b368
68
data_structures/disjoint_set/alternate_disjoint_set.py
Normal file
68
data_structures/disjoint_set/alternate_disjoint_set.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
"""
|
||||
Implements a disjoint set using Lists and some added heuristics for efficiency
|
||||
Union by Rank Heuristic and Path Compression
|
||||
"""
|
||||
|
||||
|
||||
class DisjointSet:
|
||||
def __init__(self, set_counts: list) -> None:
|
||||
"""
|
||||
Initialize with a list of the number of items in each set
|
||||
and with rank = 1 for each set
|
||||
"""
|
||||
self.set_counts = set_counts
|
||||
self.max_set = max(set_counts)
|
||||
num_sets = len(set_counts)
|
||||
self.ranks = [1] * num_sets
|
||||
self.parents = list(range(num_sets))
|
||||
|
||||
def merge(self, src: int, dst: int) -> bool:
|
||||
"""
|
||||
Merge two sets together using Union by rank heuristic
|
||||
Return True if successful
|
||||
Merge two disjoint sets
|
||||
>>> A = DisjointSet([1, 1, 1])
|
||||
>>> A.merge(1, 2)
|
||||
True
|
||||
>>> A.merge(0, 2)
|
||||
True
|
||||
>>> A.merge(0, 1)
|
||||
False
|
||||
"""
|
||||
src_parent = self.get_parent(src)
|
||||
dst_parent = self.get_parent(dst)
|
||||
|
||||
if src_parent == dst_parent:
|
||||
return False
|
||||
|
||||
if self.ranks[dst_parent] >= self.ranks[src_parent]:
|
||||
self.set_counts[dst_parent] += self.set_counts[src_parent]
|
||||
self.set_counts[src_parent] = 0
|
||||
self.parents[src_parent] = dst_parent
|
||||
if self.ranks[dst_parent] == self.ranks[src_parent]:
|
||||
self.ranks[dst_parent] += 1
|
||||
joined_set_size = self.set_counts[dst_parent]
|
||||
else:
|
||||
self.set_counts[src_parent] += self.set_counts[dst_parent]
|
||||
self.set_counts[dst_parent] = 0
|
||||
self.parents[dst_parent] = src_parent
|
||||
joined_set_size = self.set_counts[src_parent]
|
||||
|
||||
self.max_set = max(self.max_set, joined_set_size)
|
||||
return True
|
||||
|
||||
def get_parent(self, disj_set: int) -> int:
|
||||
"""
|
||||
Find the Parent of a given set
|
||||
>>> A = DisjointSet([1, 1, 1])
|
||||
>>> A.merge(1, 2)
|
||||
True
|
||||
>>> A.get_parent(0)
|
||||
0
|
||||
>>> A.get_parent(1)
|
||||
2
|
||||
"""
|
||||
if self.parents[disj_set] == disj_set:
|
||||
return disj_set
|
||||
self.parents[disj_set] = self.get_parent(self.parents[disj_set])
|
||||
return self.parents[disj_set]
|
Loading…
Reference in New Issue
Block a user